ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.18
Committed: Wed Apr 3 00:22:12 2013 UTC (11 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.17: +5 -11 lines
Log Message:
Added more use of macros

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: fvect.c,v 2.17 2012/11/22 06:07:17 greg Exp $";
3 #endif
4 /*
5 * fvect.c - routines for floating-point vector calculations
6 */
7
8 #include "copyright.h"
9
10 #include <math.h>
11 #include "fvect.h"
12
13
14 double
15 fdot( /* return the dot product of two vectors */
16 const FVECT v1,
17 const FVECT v2
18 )
19 {
20 return(DOT(v1,v2));
21 }
22
23
24 double
25 dist2( /* return square of distance between points */
26 const FVECT p1,
27 const FVECT p2
28 )
29 {
30 FVECT delta;
31
32 VSUB(delta, p2, p1);
33
34 return(DOT(delta, delta));
35 }
36
37
38 double
39 dist2line( /* return square of distance to line */
40 const FVECT p, /* the point */
41 const FVECT ep1,
42 const FVECT ep2 /* points on the line */
43 )
44 {
45 double d, d1, d2;
46
47 d = dist2(ep1, ep2);
48 d1 = dist2(ep1, p);
49 d2 = d + d1 - dist2(ep2, p);
50
51 return(d1 - 0.25*d2*d2/d);
52 }
53
54
55 double
56 dist2lseg( /* return square of distance to line segment */
57 const FVECT p, /* the point */
58 const FVECT ep1,
59 const FVECT ep2 /* the end points */
60 )
61 {
62 double d, d1, d2;
63
64 d = dist2(ep1, ep2);
65 d1 = dist2(ep1, p);
66 d2 = dist2(ep2, p);
67
68 if (d2 > d1) { /* check if past endpoints */
69 if (d2 - d1 > d)
70 return(d1);
71 } else {
72 if (d1 - d2 > d)
73 return(d2);
74 }
75 d2 = d + d1 - d2;
76
77 return(d1 - 0.25*d2*d2/d); /* distance to line */
78 }
79
80
81 void
82 fcross( /* vres = v1 X v2 */
83 FVECT vres,
84 const FVECT v1,
85 const FVECT v2
86 )
87 {
88 VCROSS(vres, v1, v2);
89 }
90
91
92 void
93 fvsum( /* vres = v0 + f*v1 */
94 FVECT vres,
95 const FVECT v0,
96 const FVECT v1,
97 double f
98 )
99 {
100 VSUM(vres, v0, v1, f);
101 }
102
103
104 double
105 normalize( /* normalize a vector, return old magnitude */
106 FVECT v
107 )
108 {
109 double len, d;
110
111 d = DOT(v, v);
112
113 if (d == 0.0)
114 return(0.0);
115
116 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
117 len = 0.5 + 0.5*d; /* first order approximation */
118 d = 2.0 - len;
119 } else {
120 len = sqrt(d);
121 d = 1.0/len;
122 }
123 v[0] *= d;
124 v[1] *= d;
125 v[2] *= d;
126
127 return(len);
128 }
129
130
131 int
132 closestapproach( /* closest approach of two rays */
133 RREAL t[2], /* returned distances along each ray */
134 const FVECT rorg0, /* first origin */
135 const FVECT rdir0, /* first direction (normalized) */
136 const FVECT rorg1, /* second origin */
137 const FVECT rdir1 /* second direction (normalized) */
138 )
139 {
140 double dotprod = DOT(rdir0, rdir1);
141 double denom = 1. - dotprod*dotprod;
142 double o1o2_d1;
143 FVECT o0o1;
144
145 if (denom <= FTINY) { /* check if lines are parallel */
146 t[0] = t[1] = 0.0;
147 return(0);
148 }
149 VSUB(o0o1, rorg0, rorg1);
150 o1o2_d1 = DOT(o0o1, rdir1);
151 t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
152 t[1] = o1o2_d1 + t[0]*dotprod;
153 return(1);
154 }
155
156
157 void
158 spinvector( /* rotate vector around normal */
159 FVECT vres, /* returned vector (same magnitude as vorig) */
160 const FVECT vorig, /* original vector */
161 const FVECT vnorm, /* normalized vector for rotation */
162 double theta /* right-hand radians */
163 )
164 {
165 double sint, cost, normprod;
166 FVECT vperp;
167 int i;
168
169 if (theta == 0.0) {
170 if (vres != vorig)
171 VCOPY(vres, vorig);
172 return;
173 }
174 cost = cos(theta);
175 sint = sin(theta);
176 normprod = DOT(vorig, vnorm)*(1.-cost);
177 VCROSS(vperp, vnorm, vorig);
178 for (i = 0; i < 3; i++)
179 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
180 }
181
182 double
183 geodesic( /* rotate vector on great circle towards target */
184 FVECT vres, /* returned vector (same magnitude as vorig) */
185 const FVECT vorig, /* original vector */
186 const FVECT vtarg, /* vector we are rotating towards */
187 double t, /* amount along arc directed towards vtarg */
188 int meas /* distance measure (radians, absolute, relative) */
189 )
190 {
191 FVECT normtarg;
192 double volen, dotprod, sintr, cost;
193 int i;
194
195 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
196 if (vres != vorig)
197 VCOPY(vres, vorig);
198 if (t == 0.0)
199 return(VLEN(vres)); /* no rotation requested */
200 if ((volen = normalize(vres)) == 0.0)
201 return(0.0);
202 if (normalize(normtarg) == 0.0)
203 return(0.0); /* target vector is zero */
204 dotprod = DOT(vres, normtarg);
205 /* check for colinear */
206 if (dotprod >= 1.0-FTINY*FTINY) {
207 if (meas != GEOD_REL)
208 return(0.0);
209 vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
210 return(volen);
211 }
212 if (dotprod <= -1.0+FTINY*FTINY)
213 return(0.0);
214 if (meas == GEOD_ABS)
215 t /= volen;
216 else if (meas == GEOD_REL)
217 t *= acos(dotprod);
218 cost = cos(t);
219 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
220 for (i = 0; i < 3; i++)
221 vres[i] = volen*( cost*vres[i] +
222 sintr*(normtarg[i] - dotprod*vres[i]) );
223
224 return(volen); /* return vector length */
225 }