#ifndef lint static const char RCSid[] = "$Id: fvect.c,v 2.17 2012/11/22 06:07:17 greg Exp $"; #endif /* * fvect.c - routines for floating-point vector calculations */ #include "copyright.h" #include #include "fvect.h" double fdot( /* return the dot product of two vectors */ const FVECT v1, const FVECT v2 ) { return(DOT(v1,v2)); } double dist2( /* return square of distance between points */ const FVECT p1, const FVECT p2 ) { FVECT delta; delta[0] = p2[0] - p1[0]; delta[1] = p2[1] - p1[1]; delta[2] = p2[2] - p1[2]; return(DOT(delta, delta)); } double dist2line( /* return square of distance to line */ const FVECT p, /* the point */ const FVECT ep1, const FVECT ep2 /* points on the line */ ) { double d, d1, d2; d = dist2(ep1, ep2); d1 = dist2(ep1, p); d2 = d + d1 - dist2(ep2, p); return(d1 - 0.25*d2*d2/d); } double dist2lseg( /* return square of distance to line segment */ const FVECT p, /* the point */ const FVECT ep1, const FVECT ep2 /* the end points */ ) { double d, d1, d2; d = dist2(ep1, ep2); d1 = dist2(ep1, p); d2 = dist2(ep2, p); if (d2 > d1) { /* check if past endpoints */ if (d2 - d1 > d) return(d1); } else { if (d1 - d2 > d) return(d2); } d2 = d + d1 - d2; return(d1 - 0.25*d2*d2/d); /* distance to line */ } void fcross( /* vres = v1 X v2 */ FVECT vres, const FVECT v1, const FVECT v2 ) { vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; vres[1] = v1[2]*v2[0] - v1[0]*v2[2]; vres[2] = v1[0]*v2[1] - v1[1]*v2[0]; } void fvsum( /* vres = v0 + f*v1 */ FVECT vres, const FVECT v0, const FVECT v1, double f ) { vres[0] = v0[0] + f*v1[0]; vres[1] = v0[1] + f*v1[1]; vres[2] = v0[2] + f*v1[2]; } double normalize( /* normalize a vector, return old magnitude */ FVECT v ) { double len, d; d = DOT(v, v); if (d == 0.0) return(0.0); if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) { len = 0.5 + 0.5*d; /* first order approximation */ d = 2.0 - len; } else { len = sqrt(d); d = 1.0/len; } v[0] *= d; v[1] *= d; v[2] *= d; return(len); } int closestapproach( /* closest approach of two rays */ RREAL t[2], /* returned distances along each ray */ const FVECT rorg0, /* first origin */ const FVECT rdir0, /* first direction (normalized) */ const FVECT rorg1, /* second origin */ const FVECT rdir1 /* second direction (normalized) */ ) { double dotprod = DOT(rdir0, rdir1); double denom = 1. - dotprod*dotprod; double o1o2_d1; FVECT o0o1; if (denom <= FTINY) { /* check if lines are parallel */ t[0] = t[1] = 0.0; return(0); } VSUB(o0o1, rorg0, rorg1); o1o2_d1 = DOT(o0o1, rdir1); t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom; t[1] = o1o2_d1 + t[0]*dotprod; return(1); } void spinvector( /* rotate vector around normal */ FVECT vres, /* returned vector (same magnitude as vorig) */ const FVECT vorig, /* original vector */ const FVECT vnorm, /* normalized vector for rotation */ double theta /* right-hand radians */ ) { double sint, cost, normprod; FVECT vperp; int i; if (theta == 0.0) { if (vres != vorig) VCOPY(vres, vorig); return; } cost = cos(theta); sint = sin(theta); normprod = DOT(vorig, vnorm)*(1.-cost); fcross(vperp, vnorm, vorig); for (i = 0; i < 3; i++) vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; } double geodesic( /* rotate vector on great circle towards target */ FVECT vres, /* returned vector (same magnitude as vorig) */ const FVECT vorig, /* original vector */ const FVECT vtarg, /* vector we are rotating towards */ double t, /* amount along arc directed towards vtarg */ int meas /* distance measure (radians, absolute, relative) */ ) { FVECT normtarg; double volen, dotprod, sintr, cost; int i; VCOPY(normtarg, vtarg); /* in case vtarg==vres */ if (vres != vorig) VCOPY(vres, vorig); if (t == 0.0) return(VLEN(vres)); /* no rotation requested */ if ((volen = normalize(vres)) == 0.0) return(0.0); if (normalize(normtarg) == 0.0) return(0.0); /* target vector is zero */ dotprod = DOT(vres, normtarg); /* check for colinear */ if (dotprod >= 1.0-FTINY*FTINY) { if (meas != GEOD_REL) return(0.0); vres[0] *= volen; vres[1] *= volen; vres[2] *= volen; return(volen); } if (dotprod <= -1.0+FTINY*FTINY) return(0.0); if (meas == GEOD_ABS) t /= volen; else if (meas == GEOD_REL) t *= acos(dotprod); cost = cos(t); sintr = sin(t) / sqrt(1. - dotprod*dotprod); for (i = 0; i < 3; i++) vres[i] = volen*( cost*vres[i] + sintr*(normtarg[i] - dotprod*vres[i]) ); return(volen); /* return vector length */ }