--- ray/src/common/fvect.c 2003/02/22 02:07:22 2.6 +++ ray/src/common/fvect.c 2014/12/08 23:51:12 2.21 @@ -1,99 +1,69 @@ #ifndef lint -static const char RCSid[] = "$Id: fvect.c,v 2.6 2003/02/22 02:07:22 greg Exp $"; +static const char RCSid[] = "$Id: fvect.c,v 2.21 2014/12/08 23:51:12 greg Exp $"; #endif /* * fvect.c - routines for floating-point vector calculations */ -/* ==================================================================== - * The Radiance Software License, Version 1.0 - * - * Copyright (c) 1990 - 2002 The Regents of the University of California, - * through Lawrence Berkeley National Laboratory. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. The end-user documentation included with the redistribution, - * if any, must include the following acknowledgment: - * "This product includes Radiance software - * (http://radsite.lbl.gov/) - * developed by the Lawrence Berkeley National Laboratory - * (http://www.lbl.gov/)." - * Alternately, this acknowledgment may appear in the software itself, - * if and wherever such third-party acknowledgments normally appear. - * - * 4. The names "Radiance," "Lawrence Berkeley National Laboratory" - * and "The Regents of the University of California" must - * not be used to endorse or promote products derived from this - * software without prior written permission. For written - * permission, please contact radiance@radsite.lbl.gov. - * - * 5. Products derived from this software may not be called "Radiance", - * nor may "Radiance" appear in their name, without prior written - * permission of Lawrence Berkeley National Laboratory. - * - * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED - * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - * DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF - * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND - * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, - * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT - * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * ==================================================================== - * - * This software consists of voluntary contributions made by many - * individuals on behalf of Lawrence Berkeley National Laboratory. For more - * information on Lawrence Berkeley National Laboratory, please see - * . - */ +#include "copyright.h" +#define _USE_MATH_DEFINES #include #include "fvect.h" +#include "random.h" +double +Acos(double x) /* insurance for touchy math library */ +{ + if (x <= -1.+FTINY*FTINY) + return(M_PI); + if (x >= 1.-FTINY*FTINY) + return(.0); + return(acos(x)); +} double -fdot(v1, v2) /* return the dot product of two vectors */ -register FVECT v1, v2; +Asin(double x) /* insurance for touchy math library */ { + if (x <= -1.+FTINY*FTINY) + return(-M_PI/2.); + if (x >= 1.-FTINY*FTINY) + return(M_PI/2); + return(asin(x)); +} + +double +fdot( /* return the dot product of two vectors */ +const FVECT v1, +const FVECT v2 +) +{ return(DOT(v1,v2)); } double -dist2(p1, p2) /* return square of distance between points */ -register FVECT p1, p2; +dist2( /* return square of distance between points */ +const FVECT p1, +const FVECT p2 +) { FVECT delta; - delta[0] = p2[0] - p1[0]; - delta[1] = p2[1] - p1[1]; - delta[2] = p2[2] - p1[2]; + VSUB(delta, p2, p1); return(DOT(delta, delta)); } double -dist2line(p, ep1, ep2) /* return square of distance to line */ -FVECT p; /* the point */ -FVECT ep1, ep2; /* points on the line */ +dist2line( /* return square of distance to line */ +const FVECT p, /* the point */ +const FVECT ep1, +const FVECT ep2 /* points on the line */ +) { - register double d, d1, d2; + double d, d1, d2; d = dist2(ep1, ep2); d1 = dist2(ep1, p); @@ -104,11 +74,13 @@ FVECT ep1, ep2; /* points on the line */ double -dist2lseg(p, ep1, ep2) /* return square of distance to line segment */ -FVECT p; /* the point */ -FVECT ep1, ep2; /* the end points */ +dist2lseg( /* return square of distance to line segment */ +const FVECT p, /* the point */ +const FVECT ep1, +const FVECT ep2 /* the end points */ +) { - register double d, d1, d2; + double d, d1, d2; d = dist2(ep1, ep2); d1 = dist2(ep1, p); @@ -128,43 +100,54 @@ FVECT ep1, ep2; /* the end points */ void -fcross(vres, v1, v2) /* vres = v1 X v2 */ -register FVECT vres, v1, v2; +fcross( /* vres = v1 X v2 */ +FVECT vres, +const FVECT v1, +const FVECT v2 +) { - vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; - vres[1] = v1[2]*v2[0] - v1[0]*v2[2]; - vres[2] = v1[0]*v2[1] - v1[1]*v2[0]; + if ((vres == v1) | (vres == v2)) { + FVECT vtmp; + VCROSS(vtmp, v1, v2); + VCOPY(vres, vtmp); + return; + } + VCROSS(vres, v1, v2); } void -fvsum(vres, v0, v1, f) /* vres = v0 + f*v1 */ -register FVECT vres, v0, v1; -register double f; +fvsum( /* vres = v0 + f*v1 */ +FVECT vres, +const FVECT v0, +const FVECT v1, +double f +) { - vres[0] = v0[0] + f*v1[0]; - vres[1] = v0[1] + f*v1[1]; - vres[2] = v0[2] + f*v1[2]; + VSUM(vres, v0, v1, f); } double -normalize(v) /* normalize a vector, return old magnitude */ -register FVECT v; +normalize( /* normalize a vector, return old magnitude */ +FVECT v +) { - register double len, d; + double len, d; d = DOT(v, v); - if (d <= 0.0) + if (d == 0.0) return(0.0); - if (d <= 1.0+FTINY && d >= 1.0-FTINY) + if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) { len = 0.5 + 0.5*d; /* first order approximation */ - else + d = 2.0 - len; + } else { len = sqrt(d); - - v[0] *= d = 1.0/len; + d = 1.0/len; + } + v[0] *= d; v[1] *= d; v[2] *= d; @@ -172,14 +155,66 @@ register FVECT v; } +int +getperpendicular( /* choose random perpedicular direction */ +FVECT vp, /* returns normalized */ +const FVECT v /* input vector must be normalized */ +) +{ + FVECT v1; + int i; + /* randomize other coordinates */ + v1[0] = 0.5 - frandom(); + v1[1] = 0.5 - frandom(); + v1[2] = 0.5 - frandom(); + for (i = 3; i--; ) + if ((-0.6 < v[i]) & (v[i] < 0.6)) + break; + if (i < 0) + return(0); + v1[i] = 1.0; + fcross(vp, v1, v); + return(normalize(vp) > 0.0); +} + + +int +closestapproach( /* closest approach of two rays */ +RREAL t[2], /* returned distances along each ray */ +const FVECT rorg0, /* first origin */ +const FVECT rdir0, /* first direction (normalized) */ +const FVECT rorg1, /* second origin */ +const FVECT rdir1 /* second direction (normalized) */ +) +{ + double dotprod = DOT(rdir0, rdir1); + double denom = 1. - dotprod*dotprod; + double o1o2_d1; + FVECT o0o1; + + if (denom <= FTINY) { /* check if lines are parallel */ + t[0] = t[1] = 0.0; + return(0); + } + VSUB(o0o1, rorg0, rorg1); + o1o2_d1 = DOT(o0o1, rdir1); + t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom; + t[1] = o1o2_d1 + t[0]*dotprod; + return(1); +} + + void -spinvector(vres, vorig, vnorm, theta) /* rotate vector around normal */ -FVECT vres, vorig, vnorm; -double theta; +spinvector( /* rotate vector around normal */ +FVECT vres, /* returned vector (same magnitude as vorig) */ +const FVECT vorig, /* original vector */ +const FVECT vnorm, /* normalized vector for rotation */ +double theta /* right-hand radians */ +) { double sint, cost, normprod; FVECT vperp; - register int i; + int i; if (theta == 0.0) { if (vres != vorig) @@ -189,7 +224,52 @@ double theta; cost = cos(theta); sint = sin(theta); normprod = DOT(vorig, vnorm)*(1.-cost); - fcross(vperp, vnorm, vorig); + VCROSS(vperp, vnorm, vorig); for (i = 0; i < 3; i++) vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; +} + +double +geodesic( /* rotate vector on great circle towards target */ +FVECT vres, /* returned vector (same magnitude as vorig) */ +const FVECT vorig, /* original vector */ +const FVECT vtarg, /* vector we are rotating towards */ +double t, /* amount along arc directed towards vtarg */ +int meas /* distance measure (radians, absolute, relative) */ +) +{ + FVECT normtarg; + double volen, dotprod, sintr, cost; + int i; + + VCOPY(normtarg, vtarg); /* in case vtarg==vres */ + if (vres != vorig) + VCOPY(vres, vorig); + if (t == 0.0) + return(VLEN(vres)); /* no rotation requested */ + if ((volen = normalize(vres)) == 0.0) + return(0.0); + if (normalize(normtarg) == 0.0) + return(0.0); /* target vector is zero */ + dotprod = DOT(vres, normtarg); + /* check for colinear */ + if (dotprod >= 1.0-FTINY*FTINY) { + if (meas != GEOD_REL) + return(0.0); + vres[0] *= volen; vres[1] *= volen; vres[2] *= volen; + return(volen); + } + if (dotprod <= -1.0+FTINY*FTINY) + return(0.0); + if (meas == GEOD_ABS) + t /= volen; + else if (meas == GEOD_REL) + t *= acos(dotprod); + cost = cos(t); + sintr = sin(t) / sqrt(1. - dotprod*dotprod); + for (i = 0; i < 3; i++) + vres[i] = volen*( cost*vres[i] + + sintr*(normtarg[i] - dotprod*vres[i]) ); + + return(volen); /* return vector length */ }