7 |
|
|
8 |
|
#include "copyright.h" |
9 |
|
|
10 |
+ |
#define _USE_MATH_DEFINES |
11 |
|
#include <math.h> |
12 |
|
#include "fvect.h" |
13 |
+ |
#include "random.h" |
14 |
|
|
15 |
+ |
double |
16 |
+ |
Acos(double x) /* insurance for touchy math library */ |
17 |
+ |
{ |
18 |
+ |
if (x <= -1.+FTINY*FTINY) |
19 |
+ |
return(M_PI); |
20 |
+ |
if (x >= 1.-FTINY*FTINY) |
21 |
+ |
return(.0); |
22 |
+ |
return(acos(x)); |
23 |
+ |
} |
24 |
|
|
25 |
|
double |
26 |
+ |
Asin(double x) /* insurance for touchy math library */ |
27 |
+ |
{ |
28 |
+ |
if (x <= -1.+FTINY*FTINY) |
29 |
+ |
return(-M_PI/2.); |
30 |
+ |
if (x >= 1.-FTINY*FTINY) |
31 |
+ |
return(M_PI/2); |
32 |
+ |
return(asin(x)); |
33 |
+ |
} |
34 |
+ |
|
35 |
+ |
double |
36 |
|
fdot( /* return the dot product of two vectors */ |
37 |
|
const FVECT v1, |
38 |
|
const FVECT v2 |
50 |
|
{ |
51 |
|
FVECT delta; |
52 |
|
|
53 |
< |
delta[0] = p2[0] - p1[0]; |
33 |
< |
delta[1] = p2[1] - p1[1]; |
34 |
< |
delta[2] = p2[2] - p1[2]; |
53 |
> |
VSUB(delta, p2, p1); |
54 |
|
|
55 |
|
return(DOT(delta, delta)); |
56 |
|
} |
106 |
|
const FVECT v2 |
107 |
|
) |
108 |
|
{ |
109 |
< |
vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
110 |
< |
vres[1] = v1[2]*v2[0] - v1[0]*v2[2]; |
111 |
< |
vres[2] = v1[0]*v2[1] - v1[1]*v2[0]; |
109 |
> |
if ((vres == v1) | (vres == v2)) { |
110 |
> |
FVECT vtmp; |
111 |
> |
VCROSS(vtmp, v1, v2); |
112 |
> |
VCOPY(vres, vtmp); |
113 |
> |
return; |
114 |
> |
} |
115 |
> |
VCROSS(vres, v1, v2); |
116 |
|
} |
117 |
|
|
118 |
|
|
124 |
|
double f |
125 |
|
) |
126 |
|
{ |
127 |
< |
vres[0] = v0[0] + f*v1[0]; |
105 |
< |
vres[1] = v0[1] + f*v1[1]; |
106 |
< |
vres[2] = v0[2] + f*v1[2]; |
127 |
> |
VSUM(vres, v0, v1, f); |
128 |
|
} |
129 |
|
|
130 |
|
|
156 |
|
|
157 |
|
|
158 |
|
int |
159 |
+ |
getperpendicular( /* choose random perpedicular direction */ |
160 |
+ |
FVECT vp, /* returns normalized */ |
161 |
+ |
const FVECT v /* input vector must be normalized */ |
162 |
+ |
) |
163 |
+ |
{ |
164 |
+ |
FVECT v1; |
165 |
+ |
int i; |
166 |
+ |
/* randomize other coordinates */ |
167 |
+ |
v1[0] = 0.5 - frandom(); |
168 |
+ |
v1[1] = 0.5 - frandom(); |
169 |
+ |
v1[2] = 0.5 - frandom(); |
170 |
+ |
for (i = 3; i--; ) |
171 |
+ |
if ((-0.6 < v[i]) & (v[i] < 0.6)) |
172 |
+ |
break; |
173 |
+ |
if (i < 0) |
174 |
+ |
return(0); |
175 |
+ |
v1[i] = 1.0; |
176 |
+ |
fcross(vp, v1, v); |
177 |
+ |
return(normalize(vp) > 0.0); |
178 |
+ |
} |
179 |
+ |
|
180 |
+ |
|
181 |
+ |
int |
182 |
|
closestapproach( /* closest approach of two rays */ |
183 |
|
RREAL t[2], /* returned distances along each ray */ |
184 |
|
const FVECT rorg0, /* first origin */ |
224 |
|
cost = cos(theta); |
225 |
|
sint = sin(theta); |
226 |
|
normprod = DOT(vorig, vnorm)*(1.-cost); |
227 |
< |
fcross(vperp, vnorm, vorig); |
227 |
> |
VCROSS(vperp, vnorm, vorig); |
228 |
|
for (i = 0; i < 3; i++) |
229 |
|
vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; |
230 |
|
} |
239 |
|
) |
240 |
|
{ |
241 |
|
FVECT normtarg; |
242 |
< |
double volen, dotprod, sint, cost; |
242 |
> |
double volen, dotprod, sintr, cost; |
243 |
|
int i; |
244 |
|
|
245 |
+ |
VCOPY(normtarg, vtarg); /* in case vtarg==vres */ |
246 |
|
if (vres != vorig) |
247 |
|
VCOPY(vres, vorig); |
248 |
|
if (t == 0.0) |
249 |
|
return(VLEN(vres)); /* no rotation requested */ |
250 |
|
if ((volen = normalize(vres)) == 0.0) |
251 |
|
return(0.0); |
207 |
– |
VCOPY(normtarg, vtarg); |
252 |
|
if (normalize(normtarg) == 0.0) |
253 |
|
return(0.0); /* target vector is zero */ |
254 |
|
dotprod = DOT(vres, normtarg); |
266 |
|
else if (meas == GEOD_REL) |
267 |
|
t *= acos(dotprod); |
268 |
|
cost = cos(t); |
269 |
< |
sint = sin(t); |
269 |
> |
sintr = sin(t) / sqrt(1. - dotprod*dotprod); |
270 |
|
for (i = 0; i < 3; i++) |
271 |
|
vres[i] = volen*( cost*vres[i] + |
272 |
< |
sint*(normtarg[i] - dotprod*vres[i]) ); |
272 |
> |
sintr*(normtarg[i] - dotprod*vres[i]) ); |
273 |
|
|
274 |
|
return(volen); /* return vector length */ |
275 |
|
} |