13 |
|
|
14 |
|
double |
15 |
|
fdot( /* return the dot product of two vectors */ |
16 |
< |
register FVECT v1, |
17 |
< |
register FVECT v2 |
16 |
> |
FVECT v1, |
17 |
> |
FVECT v2 |
18 |
|
) |
19 |
|
{ |
20 |
|
return(DOT(v1,v2)); |
23 |
|
|
24 |
|
double |
25 |
|
dist2( /* return square of distance between points */ |
26 |
< |
register FVECT p1, |
27 |
< |
register FVECT p2 |
26 |
> |
FVECT p1, |
27 |
> |
FVECT p2 |
28 |
|
) |
29 |
|
{ |
30 |
|
FVECT delta; |
44 |
|
FVECT ep2 /* points on the line */ |
45 |
|
) |
46 |
|
{ |
47 |
< |
register double d, d1, d2; |
47 |
> |
double d, d1, d2; |
48 |
|
|
49 |
|
d = dist2(ep1, ep2); |
50 |
|
d1 = dist2(ep1, p); |
61 |
|
FVECT ep2 /* the end points */ |
62 |
|
) |
63 |
|
{ |
64 |
< |
register double d, d1, d2; |
64 |
> |
double d, d1, d2; |
65 |
|
|
66 |
|
d = dist2(ep1, ep2); |
67 |
|
d1 = dist2(ep1, p); |
82 |
|
|
83 |
|
void |
84 |
|
fcross( /* vres = v1 X v2 */ |
85 |
< |
register FVECT vres, |
86 |
< |
register FVECT v1, |
87 |
< |
register FVECT v2 |
85 |
> |
FVECT vres, |
86 |
> |
FVECT v1, |
87 |
> |
FVECT v2 |
88 |
|
) |
89 |
|
{ |
90 |
|
vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
95 |
|
|
96 |
|
void |
97 |
|
fvsum( /* vres = v0 + f*v1 */ |
98 |
< |
register FVECT vres, |
99 |
< |
register FVECT v0, |
100 |
< |
register FVECT v1, |
101 |
< |
register double f |
98 |
> |
FVECT vres, |
99 |
> |
FVECT v0, |
100 |
> |
FVECT v1, |
101 |
> |
double f |
102 |
|
) |
103 |
|
{ |
104 |
|
vres[0] = v0[0] + f*v1[0]; |
109 |
|
|
110 |
|
double |
111 |
|
normalize( /* normalize a vector, return old magnitude */ |
112 |
< |
register FVECT v |
112 |
> |
FVECT v |
113 |
|
) |
114 |
|
{ |
115 |
< |
register double len, d; |
115 |
> |
double len, d; |
116 |
|
|
117 |
|
d = DOT(v, v); |
118 |
|
|
119 |
< |
if (d <= 0.0) |
119 |
> |
if (d == 0.0) |
120 |
|
return(0.0); |
121 |
|
|
122 |
|
if (d <= 1.0+FTINY && d >= 1.0-FTINY) |
158 |
|
} |
159 |
|
|
160 |
|
|
161 |
– |
#if 0 |
162 |
– |
int |
163 |
– |
closestapproach( /* closest approach of two rays */ |
164 |
– |
RREAL t[2], /* returned distances along each ray */ |
165 |
– |
FVECT rorg0, /* first origin */ |
166 |
– |
FVECT rdir0, /* first direction (unnormalized) */ |
167 |
– |
FVECT rorg1, /* second origin */ |
168 |
– |
FVECT rdir1 /* second direction (unnormalized) */ |
169 |
– |
) |
170 |
– |
{ |
171 |
– |
double dotprod = DOT(rdir0, rdir1); |
172 |
– |
double d0n2 = DOT(rdir0, rdir0); |
173 |
– |
double d1n2 = DOT(rdir1, rdir1); |
174 |
– |
double denom = d0n2*d1n2 - dotprod*dotprod; |
175 |
– |
double o1o2_d1; |
176 |
– |
FVECT o0o1; |
177 |
– |
|
178 |
– |
if (denom <= FTINY) { /* check if lines are parallel */ |
179 |
– |
t[0] = t[1] = 0.0; |
180 |
– |
return(0); |
181 |
– |
} |
182 |
– |
VSUB(o0o1, rorg0, rorg1); |
183 |
– |
o1o2_d1 = DOT(o0o1, rdir1); |
184 |
– |
t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)*d1n2) / denom; |
185 |
– |
t[1] = (o1o2_d1 + t[0]*dotprod) / d1n2; |
186 |
– |
return(1); |
187 |
– |
} |
188 |
– |
#endif |
189 |
– |
|
190 |
– |
|
161 |
|
void |
162 |
|
spinvector( /* rotate vector around normal */ |
163 |
|
FVECT vres, /* returned vector */ |
168 |
|
{ |
169 |
|
double sint, cost, normprod; |
170 |
|
FVECT vperp; |
171 |
< |
register int i; |
171 |
> |
int i; |
172 |
|
|
173 |
|
if (theta == 0.0) { |
174 |
|
if (vres != vorig) |