--- ray/src/common/fvect.c 2009/05/07 21:38:35 2.11 +++ ray/src/common/fvect.c 2013/04/03 00:22:12 2.18 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: fvect.c,v 2.11 2009/05/07 21:38:35 greg Exp $"; +static const char RCSid[] = "$Id: fvect.c,v 2.18 2013/04/03 00:22:12 greg Exp $"; #endif /* * fvect.c - routines for floating-point vector calculations @@ -13,8 +13,8 @@ static const char RCSid[] = "$Id: fvect.c,v 2.11 2009/ double fdot( /* return the dot product of two vectors */ -FVECT v1, -FVECT v2 +const FVECT v1, +const FVECT v2 ) { return(DOT(v1,v2)); @@ -23,15 +23,13 @@ FVECT v2 double dist2( /* return square of distance between points */ -FVECT p1, -FVECT p2 +const FVECT p1, +const FVECT p2 ) { FVECT delta; - delta[0] = p2[0] - p1[0]; - delta[1] = p2[1] - p1[1]; - delta[2] = p2[2] - p1[2]; + VSUB(delta, p2, p1); return(DOT(delta, delta)); } @@ -39,9 +37,9 @@ FVECT p2 double dist2line( /* return square of distance to line */ -FVECT p, /* the point */ -FVECT ep1, -FVECT ep2 /* points on the line */ +const FVECT p, /* the point */ +const FVECT ep1, +const FVECT ep2 /* points on the line */ ) { double d, d1, d2; @@ -56,9 +54,9 @@ FVECT ep2 /* points on the line */ double dist2lseg( /* return square of distance to line segment */ -FVECT p, /* the point */ -FVECT ep1, -FVECT ep2 /* the end points */ +const FVECT p, /* the point */ +const FVECT ep1, +const FVECT ep2 /* the end points */ ) { double d, d1, d2; @@ -83,27 +81,23 @@ FVECT ep2 /* the end points */ void fcross( /* vres = v1 X v2 */ FVECT vres, -FVECT v1, -FVECT v2 +const FVECT v1, +const FVECT v2 ) { - vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; - vres[1] = v1[2]*v2[0] - v1[0]*v2[2]; - vres[2] = v1[0]*v2[1] - v1[1]*v2[0]; + VCROSS(vres, v1, v2); } void fvsum( /* vres = v0 + f*v1 */ FVECT vres, -FVECT v0, -FVECT v1, +const FVECT v0, +const FVECT v1, double f ) { - vres[0] = v0[0] + f*v1[0]; - vres[1] = v0[1] + f*v1[1]; - vres[2] = v0[2] + f*v1[2]; + VSUM(vres, v0, v1, f); } @@ -119,12 +113,14 @@ FVECT v if (d == 0.0) return(0.0); - if (d <= 1.0+FTINY && d >= 1.0-FTINY) + if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) { len = 0.5 + 0.5*d; /* first order approximation */ - else + d = 2.0 - len; + } else { len = sqrt(d); - - v[0] *= d = 1.0/len; + d = 1.0/len; + } + v[0] *= d; v[1] *= d; v[2] *= d; @@ -135,10 +131,10 @@ FVECT v int closestapproach( /* closest approach of two rays */ RREAL t[2], /* returned distances along each ray */ -FVECT rorg0, /* first origin */ -FVECT rdir0, /* first direction (normalized) */ -FVECT rorg1, /* second origin */ -FVECT rdir1 /* second direction (normalized) */ +const FVECT rorg0, /* first origin */ +const FVECT rdir0, /* first direction (normalized) */ +const FVECT rorg1, /* second origin */ +const FVECT rdir1 /* second direction (normalized) */ ) { double dotprod = DOT(rdir0, rdir1); @@ -160,10 +156,10 @@ FVECT rdir1 /* second direction (normalized) */ void spinvector( /* rotate vector around normal */ -FVECT vres, /* returned vector */ -FVECT vorig, /* original vector */ -FVECT vnorm, /* normalized vector for rotation */ -double theta /* left-hand radians */ +FVECT vres, /* returned vector (same magnitude as vorig) */ +const FVECT vorig, /* original vector */ +const FVECT vnorm, /* normalized vector for rotation */ +double theta /* right-hand radians */ ) { double sint, cost, normprod; @@ -178,7 +174,52 @@ double theta /* left-hand radians */ cost = cos(theta); sint = sin(theta); normprod = DOT(vorig, vnorm)*(1.-cost); - fcross(vperp, vnorm, vorig); + VCROSS(vperp, vnorm, vorig); for (i = 0; i < 3; i++) vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; +} + +double +geodesic( /* rotate vector on great circle towards target */ +FVECT vres, /* returned vector (same magnitude as vorig) */ +const FVECT vorig, /* original vector */ +const FVECT vtarg, /* vector we are rotating towards */ +double t, /* amount along arc directed towards vtarg */ +int meas /* distance measure (radians, absolute, relative) */ +) +{ + FVECT normtarg; + double volen, dotprod, sintr, cost; + int i; + + VCOPY(normtarg, vtarg); /* in case vtarg==vres */ + if (vres != vorig) + VCOPY(vres, vorig); + if (t == 0.0) + return(VLEN(vres)); /* no rotation requested */ + if ((volen = normalize(vres)) == 0.0) + return(0.0); + if (normalize(normtarg) == 0.0) + return(0.0); /* target vector is zero */ + dotprod = DOT(vres, normtarg); + /* check for colinear */ + if (dotprod >= 1.0-FTINY*FTINY) { + if (meas != GEOD_REL) + return(0.0); + vres[0] *= volen; vres[1] *= volen; vres[2] *= volen; + return(volen); + } + if (dotprod <= -1.0+FTINY*FTINY) + return(0.0); + if (meas == GEOD_ABS) + t /= volen; + else if (meas == GEOD_REL) + t *= acos(dotprod); + cost = cos(t); + sintr = sin(t) / sqrt(1. - dotprod*dotprod); + for (i = 0; i < 3; i++) + vres[i] = volen*( cost*vres[i] + + sintr*(normtarg[i] - dotprod*vres[i]) ); + + return(volen); /* return vector length */ }