ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.22
Committed: Thu May 21 05:54:54 2015 UTC (9 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.21: +33 -9 lines
Log Message:
Made axis randomization optional in getperpendicular()

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: fvect.c,v 2.21 2014/12/08 23:51:12 greg Exp $";
3 #endif
4 /*
5 * fvect.c - routines for floating-point vector calculations
6 */
7
8 #include "copyright.h"
9
10 #define _USE_MATH_DEFINES
11 #include <math.h>
12 #include "fvect.h"
13 #include "random.h"
14
15 double
16 Acos(double x) /* insurance for touchy math library */
17 {
18 if (x <= -1.+FTINY*FTINY)
19 return(M_PI);
20 if (x >= 1.-FTINY*FTINY)
21 return(.0);
22 return(acos(x));
23 }
24
25 double
26 Asin(double x) /* insurance for touchy math library */
27 {
28 if (x <= -1.+FTINY*FTINY)
29 return(-M_PI/2.);
30 if (x >= 1.-FTINY*FTINY)
31 return(M_PI/2);
32 return(asin(x));
33 }
34
35 double
36 fdot( /* return the dot product of two vectors */
37 const FVECT v1,
38 const FVECT v2
39 )
40 {
41 return(DOT(v1,v2));
42 }
43
44
45 double
46 dist2( /* return square of distance between points */
47 const FVECT p1,
48 const FVECT p2
49 )
50 {
51 FVECT delta;
52
53 VSUB(delta, p2, p1);
54
55 return(DOT(delta, delta));
56 }
57
58
59 double
60 dist2line( /* return square of distance to line */
61 const FVECT p, /* the point */
62 const FVECT ep1,
63 const FVECT ep2 /* points on the line */
64 )
65 {
66 double d, d1, d2;
67
68 d = dist2(ep1, ep2);
69 d1 = dist2(ep1, p);
70 d2 = d + d1 - dist2(ep2, p);
71
72 return(d1 - 0.25*d2*d2/d);
73 }
74
75
76 double
77 dist2lseg( /* return square of distance to line segment */
78 const FVECT p, /* the point */
79 const FVECT ep1,
80 const FVECT ep2 /* the end points */
81 )
82 {
83 double d, d1, d2;
84
85 d = dist2(ep1, ep2);
86 d1 = dist2(ep1, p);
87 d2 = dist2(ep2, p);
88
89 if (d2 > d1) { /* check if past endpoints */
90 if (d2 - d1 > d)
91 return(d1);
92 } else {
93 if (d1 - d2 > d)
94 return(d2);
95 }
96 d2 = d + d1 - d2;
97
98 return(d1 - 0.25*d2*d2/d); /* distance to line */
99 }
100
101
102 void
103 fcross( /* vres = v1 X v2 */
104 FVECT vres,
105 const FVECT v1,
106 const FVECT v2
107 )
108 {
109 if ((vres == v1) | (vres == v2)) {
110 FVECT vtmp;
111 VCROSS(vtmp, v1, v2);
112 VCOPY(vres, vtmp);
113 return;
114 }
115 VCROSS(vres, v1, v2);
116 }
117
118
119 void
120 fvsum( /* vres = v0 + f*v1 */
121 FVECT vres,
122 const FVECT v0,
123 const FVECT v1,
124 double f
125 )
126 {
127 VSUM(vres, v0, v1, f);
128 }
129
130
131 double
132 normalize( /* normalize a vector, return old magnitude */
133 FVECT v
134 )
135 {
136 double len, d;
137
138 d = DOT(v, v);
139
140 if (d == 0.0)
141 return(0.0);
142
143 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
144 len = 0.5 + 0.5*d; /* first order approximation */
145 d = 2.0 - len;
146 } else {
147 len = sqrt(d);
148 d = 1.0/len;
149 }
150 v[0] *= d;
151 v[1] *= d;
152 v[2] *= d;
153
154 return(len);
155 }
156
157
158 int
159 getperpendicular( /* choose perpedicular direction */
160 FVECT vp, /* returns normalized */
161 const FVECT v, /* input vector must be normalized */
162 int randomize /* randomize orientation */
163 )
164 {
165 int ord[3];
166 FVECT v1;
167 int i;
168
169 if (randomize) { /* randomize coordinates? */
170 v1[0] = 0.5 - frandom();
171 v1[1] = 0.5 - frandom();
172 v1[2] = 0.5 - frandom();
173 switch (ord[0] = (int)(frandom()*2.99999)) {
174 case 0:
175 ord[1] = 1 + (frandom() > .5);
176 ord[2] = 2 - ord[1];
177 break;
178 case 1:
179 ord[1] = 2*(frandom() > .5);
180 ord[2] = 2 - ord[1];
181 break;
182 case 2:
183 ord[1] = (frandom() > .5);
184 ord[2] = 1 - ord[1];
185 break;
186 }
187 } else {
188 v1[0] = v1[1] = v1[2] = .0;
189 ord[0] = 0; ord[1] = 1; ord[2] = 2;
190 }
191
192 for (i = 3; i--; )
193 if ((-0.6 < v[ord[i]]) & (v[ord[i]] < 0.6))
194 break;
195 if (i < 0)
196 return(0);
197
198 v1[ord[i]] = 1.0;
199 fcross(vp, v1, v);
200
201 return(normalize(vp) > 0.0);
202 }
203
204
205 int
206 closestapproach( /* closest approach of two rays */
207 RREAL t[2], /* returned distances along each ray */
208 const FVECT rorg0, /* first origin */
209 const FVECT rdir0, /* first direction (normalized) */
210 const FVECT rorg1, /* second origin */
211 const FVECT rdir1 /* second direction (normalized) */
212 )
213 {
214 double dotprod = DOT(rdir0, rdir1);
215 double denom = 1. - dotprod*dotprod;
216 double o1o2_d1;
217 FVECT o0o1;
218
219 if (denom <= FTINY) { /* check if lines are parallel */
220 t[0] = t[1] = 0.0;
221 return(0);
222 }
223 VSUB(o0o1, rorg0, rorg1);
224 o1o2_d1 = DOT(o0o1, rdir1);
225 t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
226 t[1] = o1o2_d1 + t[0]*dotprod;
227 return(1);
228 }
229
230
231 void
232 spinvector( /* rotate vector around normal */
233 FVECT vres, /* returned vector (same magnitude as vorig) */
234 const FVECT vorig, /* original vector */
235 const FVECT vnorm, /* normalized vector for rotation */
236 double theta /* right-hand radians */
237 )
238 {
239 double sint, cost, normprod;
240 FVECT vperp;
241 int i;
242
243 if (theta == 0.0) {
244 if (vres != vorig)
245 VCOPY(vres, vorig);
246 return;
247 }
248 cost = cos(theta);
249 sint = sin(theta);
250 normprod = DOT(vorig, vnorm)*(1.-cost);
251 VCROSS(vperp, vnorm, vorig);
252 for (i = 0; i < 3; i++)
253 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
254 }
255
256 double
257 geodesic( /* rotate vector on great circle towards target */
258 FVECT vres, /* returned vector (same magnitude as vorig) */
259 const FVECT vorig, /* original vector */
260 const FVECT vtarg, /* vector we are rotating towards */
261 double t, /* amount along arc directed towards vtarg */
262 int meas /* distance measure (radians, absolute, relative) */
263 )
264 {
265 FVECT normtarg;
266 double volen, dotprod, sintr, cost;
267 int i;
268
269 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
270 if (vres != vorig)
271 VCOPY(vres, vorig);
272 if (t == 0.0)
273 return(VLEN(vres)); /* no rotation requested */
274 if ((volen = normalize(vres)) == 0.0)
275 return(0.0);
276 if (normalize(normtarg) == 0.0)
277 return(0.0); /* target vector is zero */
278 dotprod = DOT(vres, normtarg);
279 /* check for colinear */
280 if (dotprod >= 1.0-FTINY*FTINY) {
281 if (meas != GEOD_REL)
282 return(0.0);
283 vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
284 return(volen);
285 }
286 if (dotprod <= -1.0+FTINY*FTINY)
287 return(0.0);
288 if (meas == GEOD_ABS)
289 t /= volen;
290 else if (meas == GEOD_REL)
291 t *= acos(dotprod);
292 cost = cos(t);
293 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
294 for (i = 0; i < 3; i++)
295 vres[i] = volen*( cost*vres[i] +
296 sintr*(normtarg[i] - dotprod*vres[i]) );
297
298 return(volen); /* return vector length */
299 }