7 |
|
|
8 |
|
#include "copyright.h" |
9 |
|
|
10 |
+ |
#define _USE_MATH_DEFINES |
11 |
|
#include <math.h> |
12 |
|
#include "fvect.h" |
13 |
+ |
#include "random.h" |
14 |
|
|
15 |
+ |
double |
16 |
+ |
Acos(double x) /* insurance for touchy math library */ |
17 |
+ |
{ |
18 |
+ |
if (x <= -1.+FTINY*FTINY) |
19 |
+ |
return(M_PI); |
20 |
+ |
if (x >= 1.-FTINY*FTINY) |
21 |
+ |
return(.0); |
22 |
+ |
return(acos(x)); |
23 |
+ |
} |
24 |
|
|
25 |
|
double |
26 |
+ |
Asin(double x) /* insurance for touchy math library */ |
27 |
+ |
{ |
28 |
+ |
if (x <= -1.+FTINY*FTINY) |
29 |
+ |
return(-M_PI/2.); |
30 |
+ |
if (x >= 1.-FTINY*FTINY) |
31 |
+ |
return(M_PI/2); |
32 |
+ |
return(asin(x)); |
33 |
+ |
} |
34 |
+ |
|
35 |
+ |
double |
36 |
|
fdot( /* return the dot product of two vectors */ |
37 |
< |
FVECT v1, |
38 |
< |
FVECT v2 |
37 |
> |
const FVECT v1, |
38 |
> |
const FVECT v2 |
39 |
|
) |
40 |
|
{ |
41 |
|
return(DOT(v1,v2)); |
44 |
|
|
45 |
|
double |
46 |
|
dist2( /* return square of distance between points */ |
47 |
< |
FVECT p1, |
48 |
< |
FVECT p2 |
47 |
> |
const FVECT p1, |
48 |
> |
const FVECT p2 |
49 |
|
) |
50 |
|
{ |
51 |
|
FVECT delta; |
52 |
|
|
53 |
< |
delta[0] = p2[0] - p1[0]; |
33 |
< |
delta[1] = p2[1] - p1[1]; |
34 |
< |
delta[2] = p2[2] - p1[2]; |
53 |
> |
VSUB(delta, p2, p1); |
54 |
|
|
55 |
|
return(DOT(delta, delta)); |
56 |
|
} |
58 |
|
|
59 |
|
double |
60 |
|
dist2line( /* return square of distance to line */ |
61 |
< |
FVECT p, /* the point */ |
62 |
< |
FVECT ep1, |
63 |
< |
FVECT ep2 /* points on the line */ |
61 |
> |
const FVECT p, /* the point */ |
62 |
> |
const FVECT ep1, |
63 |
> |
const FVECT ep2 /* points on the line */ |
64 |
|
) |
65 |
|
{ |
66 |
|
double d, d1, d2; |
75 |
|
|
76 |
|
double |
77 |
|
dist2lseg( /* return square of distance to line segment */ |
78 |
< |
FVECT p, /* the point */ |
79 |
< |
FVECT ep1, |
80 |
< |
FVECT ep2 /* the end points */ |
78 |
> |
const FVECT p, /* the point */ |
79 |
> |
const FVECT ep1, |
80 |
> |
const FVECT ep2 /* the end points */ |
81 |
|
) |
82 |
|
{ |
83 |
|
double d, d1, d2; |
102 |
|
void |
103 |
|
fcross( /* vres = v1 X v2 */ |
104 |
|
FVECT vres, |
105 |
< |
FVECT v1, |
106 |
< |
FVECT v2 |
105 |
> |
const FVECT v1, |
106 |
> |
const FVECT v2 |
107 |
|
) |
108 |
|
{ |
109 |
< |
vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
91 |
< |
vres[1] = v1[2]*v2[0] - v1[0]*v2[2]; |
92 |
< |
vres[2] = v1[0]*v2[1] - v1[1]*v2[0]; |
109 |
> |
VCROSS(vres, v1, v2); |
110 |
|
} |
111 |
|
|
112 |
|
|
113 |
|
void |
114 |
|
fvsum( /* vres = v0 + f*v1 */ |
115 |
|
FVECT vres, |
116 |
< |
FVECT v0, |
117 |
< |
FVECT v1, |
116 |
> |
const FVECT v0, |
117 |
> |
const FVECT v1, |
118 |
|
double f |
119 |
|
) |
120 |
|
{ |
121 |
< |
vres[0] = v0[0] + f*v1[0]; |
105 |
< |
vres[1] = v0[1] + f*v1[1]; |
106 |
< |
vres[2] = v0[2] + f*v1[2]; |
121 |
> |
VSUM(vres, v0, v1, f); |
122 |
|
} |
123 |
|
|
124 |
|
|
134 |
|
if (d == 0.0) |
135 |
|
return(0.0); |
136 |
|
|
137 |
< |
if (d <= 1.0+FTINY && d >= 1.0-FTINY) |
137 |
> |
if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) { |
138 |
|
len = 0.5 + 0.5*d; /* first order approximation */ |
139 |
< |
else |
139 |
> |
d = 2.0 - len; |
140 |
> |
} else { |
141 |
|
len = sqrt(d); |
142 |
< |
|
143 |
< |
v[0] *= d = 1.0/len; |
142 |
> |
d = 1.0/len; |
143 |
> |
} |
144 |
> |
v[0] *= d; |
145 |
|
v[1] *= d; |
146 |
|
v[2] *= d; |
147 |
|
|
150 |
|
|
151 |
|
|
152 |
|
int |
153 |
+ |
getperpendicular( /* choose random perpedicular direction */ |
154 |
+ |
FVECT vp, /* returns normalized */ |
155 |
+ |
const FVECT v /* input vector must be normalized */ |
156 |
+ |
) |
157 |
+ |
{ |
158 |
+ |
FVECT v1; |
159 |
+ |
int i; |
160 |
+ |
/* randomize other coordinates */ |
161 |
+ |
v1[0] = 0.5 - frandom(); |
162 |
+ |
v1[1] = 0.5 - frandom(); |
163 |
+ |
v1[2] = 0.5 - frandom(); |
164 |
+ |
for (i = 3; i--; ) |
165 |
+ |
if ((-0.6 < v[i]) & (v[i] < 0.6)) |
166 |
+ |
break; |
167 |
+ |
if (i < 0) |
168 |
+ |
return(0); |
169 |
+ |
v1[i] = 1.0; |
170 |
+ |
VCROSS(vp, v1, v); |
171 |
+ |
return(normalize(vp) > 0.0); |
172 |
+ |
} |
173 |
+ |
|
174 |
+ |
int |
175 |
|
closestapproach( /* closest approach of two rays */ |
176 |
|
RREAL t[2], /* returned distances along each ray */ |
177 |
< |
FVECT rorg0, /* first origin */ |
178 |
< |
FVECT rdir0, /* first direction (normalized) */ |
179 |
< |
FVECT rorg1, /* second origin */ |
180 |
< |
FVECT rdir1 /* second direction (normalized) */ |
177 |
> |
const FVECT rorg0, /* first origin */ |
178 |
> |
const FVECT rdir0, /* first direction (normalized) */ |
179 |
> |
const FVECT rorg1, /* second origin */ |
180 |
> |
const FVECT rdir1 /* second direction (normalized) */ |
181 |
|
) |
182 |
|
{ |
183 |
|
double dotprod = DOT(rdir0, rdir1); |
199 |
|
|
200 |
|
void |
201 |
|
spinvector( /* rotate vector around normal */ |
202 |
< |
FVECT vres, /* returned vector */ |
203 |
< |
FVECT vorig, /* original vector */ |
204 |
< |
FVECT vnorm, /* normalized vector for rotation */ |
205 |
< |
double theta /* left-hand radians */ |
202 |
> |
FVECT vres, /* returned vector (same magnitude as vorig) */ |
203 |
> |
const FVECT vorig, /* original vector */ |
204 |
> |
const FVECT vnorm, /* normalized vector for rotation */ |
205 |
> |
double theta /* right-hand radians */ |
206 |
|
) |
207 |
|
{ |
208 |
|
double sint, cost, normprod; |
217 |
|
cost = cos(theta); |
218 |
|
sint = sin(theta); |
219 |
|
normprod = DOT(vorig, vnorm)*(1.-cost); |
220 |
< |
fcross(vperp, vnorm, vorig); |
220 |
> |
VCROSS(vperp, vnorm, vorig); |
221 |
|
for (i = 0; i < 3; i++) |
222 |
|
vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; |
223 |
+ |
} |
224 |
+ |
|
225 |
+ |
double |
226 |
+ |
geodesic( /* rotate vector on great circle towards target */ |
227 |
+ |
FVECT vres, /* returned vector (same magnitude as vorig) */ |
228 |
+ |
const FVECT vorig, /* original vector */ |
229 |
+ |
const FVECT vtarg, /* vector we are rotating towards */ |
230 |
+ |
double t, /* amount along arc directed towards vtarg */ |
231 |
+ |
int meas /* distance measure (radians, absolute, relative) */ |
232 |
+ |
) |
233 |
+ |
{ |
234 |
+ |
FVECT normtarg; |
235 |
+ |
double volen, dotprod, sintr, cost; |
236 |
+ |
int i; |
237 |
+ |
|
238 |
+ |
VCOPY(normtarg, vtarg); /* in case vtarg==vres */ |
239 |
+ |
if (vres != vorig) |
240 |
+ |
VCOPY(vres, vorig); |
241 |
+ |
if (t == 0.0) |
242 |
+ |
return(VLEN(vres)); /* no rotation requested */ |
243 |
+ |
if ((volen = normalize(vres)) == 0.0) |
244 |
+ |
return(0.0); |
245 |
+ |
if (normalize(normtarg) == 0.0) |
246 |
+ |
return(0.0); /* target vector is zero */ |
247 |
+ |
dotprod = DOT(vres, normtarg); |
248 |
+ |
/* check for colinear */ |
249 |
+ |
if (dotprod >= 1.0-FTINY*FTINY) { |
250 |
+ |
if (meas != GEOD_REL) |
251 |
+ |
return(0.0); |
252 |
+ |
vres[0] *= volen; vres[1] *= volen; vres[2] *= volen; |
253 |
+ |
return(volen); |
254 |
+ |
} |
255 |
+ |
if (dotprod <= -1.0+FTINY*FTINY) |
256 |
+ |
return(0.0); |
257 |
+ |
if (meas == GEOD_ABS) |
258 |
+ |
t /= volen; |
259 |
+ |
else if (meas == GEOD_REL) |
260 |
+ |
t *= acos(dotprod); |
261 |
+ |
cost = cos(t); |
262 |
+ |
sintr = sin(t) / sqrt(1. - dotprod*dotprod); |
263 |
+ |
for (i = 0; i < 3; i++) |
264 |
+ |
vres[i] = volen*( cost*vres[i] + |
265 |
+ |
sintr*(normtarg[i] - dotprod*vres[i]) ); |
266 |
+ |
|
267 |
+ |
return(volen); /* return vector length */ |
268 |
|
} |