| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: fvect.c,v 2.23 2015/05/21 07:02:23 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* fvect.c - routines for floating-point vector calculations
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "copyright.h"
|
| 9 |
|
| 10 |
#define _USE_MATH_DEFINES
|
| 11 |
#include <math.h>
|
| 12 |
#include "fvect.h"
|
| 13 |
#include "random.h"
|
| 14 |
|
| 15 |
double
|
| 16 |
Acos(double x) /* insurance for touchy math library */
|
| 17 |
{
|
| 18 |
if (x <= -1.+FTINY*FTINY)
|
| 19 |
return(M_PI);
|
| 20 |
if (x >= 1.-FTINY*FTINY)
|
| 21 |
return(.0);
|
| 22 |
return(acos(x));
|
| 23 |
}
|
| 24 |
|
| 25 |
double
|
| 26 |
Asin(double x) /* insurance for touchy math library */
|
| 27 |
{
|
| 28 |
if (x <= -1.+FTINY*FTINY)
|
| 29 |
return(-M_PI/2.);
|
| 30 |
if (x >= 1.-FTINY*FTINY)
|
| 31 |
return(M_PI/2);
|
| 32 |
return(asin(x));
|
| 33 |
}
|
| 34 |
|
| 35 |
double
|
| 36 |
fdot( /* return the dot product of two vectors */
|
| 37 |
const FVECT v1,
|
| 38 |
const FVECT v2
|
| 39 |
)
|
| 40 |
{
|
| 41 |
return(DOT(v1,v2));
|
| 42 |
}
|
| 43 |
|
| 44 |
|
| 45 |
double
|
| 46 |
dist2( /* return square of distance between points */
|
| 47 |
const FVECT p1,
|
| 48 |
const FVECT p2
|
| 49 |
)
|
| 50 |
{
|
| 51 |
FVECT delta;
|
| 52 |
|
| 53 |
VSUB(delta, p2, p1);
|
| 54 |
|
| 55 |
return(DOT(delta, delta));
|
| 56 |
}
|
| 57 |
|
| 58 |
|
| 59 |
double
|
| 60 |
dist2line( /* return square of distance to line */
|
| 61 |
const FVECT p, /* the point */
|
| 62 |
const FVECT ep1,
|
| 63 |
const FVECT ep2 /* points on the line */
|
| 64 |
)
|
| 65 |
{
|
| 66 |
double d, d1, d2;
|
| 67 |
|
| 68 |
d = dist2(ep1, ep2);
|
| 69 |
d1 = dist2(ep1, p);
|
| 70 |
d2 = d + d1 - dist2(ep2, p);
|
| 71 |
|
| 72 |
return(d1 - 0.25*d2*d2/d);
|
| 73 |
}
|
| 74 |
|
| 75 |
|
| 76 |
double
|
| 77 |
dist2lseg( /* return square of distance to line segment */
|
| 78 |
const FVECT p, /* the point */
|
| 79 |
const FVECT ep1,
|
| 80 |
const FVECT ep2 /* the end points */
|
| 81 |
)
|
| 82 |
{
|
| 83 |
double d, d1, d2;
|
| 84 |
|
| 85 |
d = dist2(ep1, ep2);
|
| 86 |
d1 = dist2(ep1, p);
|
| 87 |
d2 = dist2(ep2, p);
|
| 88 |
|
| 89 |
if (d2 > d1) { /* check if past endpoints */
|
| 90 |
if (d2 - d1 > d)
|
| 91 |
return(d1);
|
| 92 |
} else {
|
| 93 |
if (d1 - d2 > d)
|
| 94 |
return(d2);
|
| 95 |
}
|
| 96 |
d2 = d + d1 - d2;
|
| 97 |
|
| 98 |
return(d1 - 0.25*d2*d2/d); /* distance to line */
|
| 99 |
}
|
| 100 |
|
| 101 |
|
| 102 |
void
|
| 103 |
fcross( /* vres = v1 X v2 */
|
| 104 |
FVECT vres,
|
| 105 |
const FVECT v1,
|
| 106 |
const FVECT v2
|
| 107 |
)
|
| 108 |
{
|
| 109 |
if ((vres == v1) | (vres == v2)) {
|
| 110 |
FVECT vtmp;
|
| 111 |
VCROSS(vtmp, v1, v2);
|
| 112 |
VCOPY(vres, vtmp);
|
| 113 |
return;
|
| 114 |
}
|
| 115 |
VCROSS(vres, v1, v2);
|
| 116 |
}
|
| 117 |
|
| 118 |
|
| 119 |
void
|
| 120 |
fvsum( /* vres = v0 + f*v1 */
|
| 121 |
FVECT vres,
|
| 122 |
const FVECT v0,
|
| 123 |
const FVECT v1,
|
| 124 |
double f
|
| 125 |
)
|
| 126 |
{
|
| 127 |
VSUM(vres, v0, v1, f);
|
| 128 |
}
|
| 129 |
|
| 130 |
|
| 131 |
double
|
| 132 |
normalize( /* normalize a vector, return old magnitude */
|
| 133 |
FVECT v
|
| 134 |
)
|
| 135 |
{
|
| 136 |
double len, d;
|
| 137 |
|
| 138 |
d = DOT(v, v);
|
| 139 |
|
| 140 |
if (d == 0.0)
|
| 141 |
return(0.0);
|
| 142 |
|
| 143 |
if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
|
| 144 |
len = 0.5 + 0.5*d; /* first order approximation */
|
| 145 |
d = 2.0 - len;
|
| 146 |
} else {
|
| 147 |
len = sqrt(d);
|
| 148 |
d = 1.0/len;
|
| 149 |
}
|
| 150 |
v[0] *= d;
|
| 151 |
v[1] *= d;
|
| 152 |
v[2] *= d;
|
| 153 |
|
| 154 |
return(len);
|
| 155 |
}
|
| 156 |
|
| 157 |
|
| 158 |
int
|
| 159 |
getperpendicular( /* choose perpedicular direction */
|
| 160 |
FVECT vp, /* returns normalized */
|
| 161 |
const FVECT v, /* input vector must be normalized */
|
| 162 |
int randomize /* randomize orientation */
|
| 163 |
)
|
| 164 |
{
|
| 165 |
int ord[3];
|
| 166 |
FVECT v1;
|
| 167 |
int i;
|
| 168 |
|
| 169 |
if (randomize) { /* randomize coordinates? */
|
| 170 |
v1[0] = 0.5 - frandom();
|
| 171 |
v1[1] = 0.5 - frandom();
|
| 172 |
v1[2] = 0.5 - frandom();
|
| 173 |
switch ((int)(frandom()*6.)) {
|
| 174 |
case 0: ord[0] = 0; ord[1] = 1; ord[2] = 2; break;
|
| 175 |
case 1: ord[0] = 0; ord[1] = 2; ord[2] = 1; break;
|
| 176 |
case 2: ord[0] = 1; ord[1] = 0; ord[2] = 2; break;
|
| 177 |
case 3: ord[0] = 1; ord[1] = 2; ord[2] = 0; break;
|
| 178 |
case 4: ord[0] = 2; ord[1] = 0; ord[2] = 1; break;
|
| 179 |
default: ord[0] = 2; ord[1] = 1; ord[2] = 0; break;
|
| 180 |
}
|
| 181 |
} else {
|
| 182 |
v1[0] = v1[1] = v1[2] = 0.0;
|
| 183 |
ord[0] = 0; ord[1] = 1; ord[2] = 2;
|
| 184 |
}
|
| 185 |
|
| 186 |
for (i = 3; i--; )
|
| 187 |
if ((-0.6 < v[ord[i]]) & (v[ord[i]] < 0.6))
|
| 188 |
break;
|
| 189 |
if (i < 0)
|
| 190 |
return(0);
|
| 191 |
|
| 192 |
v1[ord[i]] = 1.0;
|
| 193 |
fcross(vp, v1, v);
|
| 194 |
|
| 195 |
return(normalize(vp) > 0.0);
|
| 196 |
}
|
| 197 |
|
| 198 |
|
| 199 |
int
|
| 200 |
closestapproach( /* closest approach of two rays */
|
| 201 |
RREAL t[2], /* returned distances along each ray */
|
| 202 |
const FVECT rorg0, /* first origin */
|
| 203 |
const FVECT rdir0, /* first direction (normalized) */
|
| 204 |
const FVECT rorg1, /* second origin */
|
| 205 |
const FVECT rdir1 /* second direction (normalized) */
|
| 206 |
)
|
| 207 |
{
|
| 208 |
double dotprod = DOT(rdir0, rdir1);
|
| 209 |
double denom = 1. - dotprod*dotprod;
|
| 210 |
double o1o2_d1;
|
| 211 |
FVECT o0o1;
|
| 212 |
|
| 213 |
if (denom <= FTINY) { /* check if lines are parallel */
|
| 214 |
t[0] = t[1] = 0.0;
|
| 215 |
return(0);
|
| 216 |
}
|
| 217 |
VSUB(o0o1, rorg0, rorg1);
|
| 218 |
o1o2_d1 = DOT(o0o1, rdir1);
|
| 219 |
t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
|
| 220 |
t[1] = o1o2_d1 + t[0]*dotprod;
|
| 221 |
return(1);
|
| 222 |
}
|
| 223 |
|
| 224 |
|
| 225 |
void
|
| 226 |
spinvector( /* rotate vector around normal */
|
| 227 |
FVECT vres, /* returned vector (same magnitude as vorig) */
|
| 228 |
const FVECT vorig, /* original vector */
|
| 229 |
const FVECT vnorm, /* normalized vector for rotation */
|
| 230 |
double theta /* right-hand radians */
|
| 231 |
)
|
| 232 |
{
|
| 233 |
double sint, cost, normprod;
|
| 234 |
FVECT vperp;
|
| 235 |
int i;
|
| 236 |
|
| 237 |
if (theta == 0.0) {
|
| 238 |
if (vres != vorig)
|
| 239 |
VCOPY(vres, vorig);
|
| 240 |
return;
|
| 241 |
}
|
| 242 |
cost = cos(theta);
|
| 243 |
sint = sin(theta);
|
| 244 |
normprod = DOT(vorig, vnorm)*(1.-cost);
|
| 245 |
VCROSS(vperp, vnorm, vorig);
|
| 246 |
for (i = 0; i < 3; i++)
|
| 247 |
vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
|
| 248 |
}
|
| 249 |
|
| 250 |
double
|
| 251 |
geodesic( /* rotate vector on great circle towards target */
|
| 252 |
FVECT vres, /* returned vector (same magnitude as vorig) */
|
| 253 |
const FVECT vorig, /* original vector */
|
| 254 |
const FVECT vtarg, /* vector we are rotating towards */
|
| 255 |
double t, /* amount along arc directed towards vtarg */
|
| 256 |
int meas /* distance measure (radians, absolute, relative) */
|
| 257 |
)
|
| 258 |
{
|
| 259 |
FVECT normtarg;
|
| 260 |
double volen, dotprod, sintr, cost;
|
| 261 |
int i;
|
| 262 |
|
| 263 |
VCOPY(normtarg, vtarg); /* in case vtarg==vres */
|
| 264 |
if (vres != vorig)
|
| 265 |
VCOPY(vres, vorig);
|
| 266 |
if (t == 0.0)
|
| 267 |
return(VLEN(vres)); /* no rotation requested */
|
| 268 |
if ((volen = normalize(vres)) == 0.0)
|
| 269 |
return(0.0);
|
| 270 |
if (normalize(normtarg) == 0.0)
|
| 271 |
return(0.0); /* target vector is zero */
|
| 272 |
dotprod = DOT(vres, normtarg);
|
| 273 |
/* check for colinear */
|
| 274 |
if (dotprod >= 1.0-FTINY*FTINY) {
|
| 275 |
if (meas != GEOD_REL)
|
| 276 |
return(0.0);
|
| 277 |
vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
|
| 278 |
return(volen);
|
| 279 |
}
|
| 280 |
if (dotprod <= -1.0+FTINY*FTINY)
|
| 281 |
return(0.0);
|
| 282 |
if (meas == GEOD_ABS)
|
| 283 |
t /= volen;
|
| 284 |
else if (meas == GEOD_REL)
|
| 285 |
t *= acos(dotprod);
|
| 286 |
cost = cos(t);
|
| 287 |
sintr = sin(t) / sqrt(1. - dotprod*dotprod);
|
| 288 |
for (i = 0; i < 3; i++)
|
| 289 |
vres[i] = volen*( cost*vres[i] +
|
| 290 |
sintr*(normtarg[i] - dotprod*vres[i]) );
|
| 291 |
|
| 292 |
return(volen); /* return vector length */
|
| 293 |
}
|