ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.20
Committed: Thu Dec 4 05:26:27 2014 UTC (9 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.19: +24 -1 lines
Log Message:
Improved behavior of anisotropic reflections

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: fvect.c,v 2.19 2013/06/29 21:03:44 greg Exp $";
3 #endif
4 /*
5 * fvect.c - routines for floating-point vector calculations
6 */
7
8 #include "copyright.h"
9
10 #define _USE_MATH_DEFINES
11 #include <math.h>
12 #include "fvect.h"
13 #include "random.h"
14
15 double
16 Acos(double x) /* insurance for touchy math library */
17 {
18 if (x <= -1.+FTINY*FTINY)
19 return(M_PI);
20 if (x >= 1.-FTINY*FTINY)
21 return(.0);
22 return(acos(x));
23 }
24
25 double
26 Asin(double x) /* insurance for touchy math library */
27 {
28 if (x <= -1.+FTINY*FTINY)
29 return(-M_PI/2.);
30 if (x >= 1.-FTINY*FTINY)
31 return(M_PI/2);
32 return(asin(x));
33 }
34
35 double
36 fdot( /* return the dot product of two vectors */
37 const FVECT v1,
38 const FVECT v2
39 )
40 {
41 return(DOT(v1,v2));
42 }
43
44
45 double
46 dist2( /* return square of distance between points */
47 const FVECT p1,
48 const FVECT p2
49 )
50 {
51 FVECT delta;
52
53 VSUB(delta, p2, p1);
54
55 return(DOT(delta, delta));
56 }
57
58
59 double
60 dist2line( /* return square of distance to line */
61 const FVECT p, /* the point */
62 const FVECT ep1,
63 const FVECT ep2 /* points on the line */
64 )
65 {
66 double d, d1, d2;
67
68 d = dist2(ep1, ep2);
69 d1 = dist2(ep1, p);
70 d2 = d + d1 - dist2(ep2, p);
71
72 return(d1 - 0.25*d2*d2/d);
73 }
74
75
76 double
77 dist2lseg( /* return square of distance to line segment */
78 const FVECT p, /* the point */
79 const FVECT ep1,
80 const FVECT ep2 /* the end points */
81 )
82 {
83 double d, d1, d2;
84
85 d = dist2(ep1, ep2);
86 d1 = dist2(ep1, p);
87 d2 = dist2(ep2, p);
88
89 if (d2 > d1) { /* check if past endpoints */
90 if (d2 - d1 > d)
91 return(d1);
92 } else {
93 if (d1 - d2 > d)
94 return(d2);
95 }
96 d2 = d + d1 - d2;
97
98 return(d1 - 0.25*d2*d2/d); /* distance to line */
99 }
100
101
102 void
103 fcross( /* vres = v1 X v2 */
104 FVECT vres,
105 const FVECT v1,
106 const FVECT v2
107 )
108 {
109 VCROSS(vres, v1, v2);
110 }
111
112
113 void
114 fvsum( /* vres = v0 + f*v1 */
115 FVECT vres,
116 const FVECT v0,
117 const FVECT v1,
118 double f
119 )
120 {
121 VSUM(vres, v0, v1, f);
122 }
123
124
125 double
126 normalize( /* normalize a vector, return old magnitude */
127 FVECT v
128 )
129 {
130 double len, d;
131
132 d = DOT(v, v);
133
134 if (d == 0.0)
135 return(0.0);
136
137 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
138 len = 0.5 + 0.5*d; /* first order approximation */
139 d = 2.0 - len;
140 } else {
141 len = sqrt(d);
142 d = 1.0/len;
143 }
144 v[0] *= d;
145 v[1] *= d;
146 v[2] *= d;
147
148 return(len);
149 }
150
151
152 int
153 getperpendicular( /* choose random perpedicular direction */
154 FVECT vp, /* returns normalized */
155 const FVECT v /* input vector must be normalized */
156 )
157 {
158 FVECT v1;
159 int i;
160 /* randomize other coordinates */
161 v1[0] = 0.5 - frandom();
162 v1[1] = 0.5 - frandom();
163 v1[2] = 0.5 - frandom();
164 for (i = 3; i--; )
165 if ((-0.6 < v[i]) & (v[i] < 0.6))
166 break;
167 if (i < 0)
168 return(0);
169 v1[i] = 1.0;
170 VCROSS(vp, v1, v);
171 return(normalize(vp) > 0.0);
172 }
173
174 int
175 closestapproach( /* closest approach of two rays */
176 RREAL t[2], /* returned distances along each ray */
177 const FVECT rorg0, /* first origin */
178 const FVECT rdir0, /* first direction (normalized) */
179 const FVECT rorg1, /* second origin */
180 const FVECT rdir1 /* second direction (normalized) */
181 )
182 {
183 double dotprod = DOT(rdir0, rdir1);
184 double denom = 1. - dotprod*dotprod;
185 double o1o2_d1;
186 FVECT o0o1;
187
188 if (denom <= FTINY) { /* check if lines are parallel */
189 t[0] = t[1] = 0.0;
190 return(0);
191 }
192 VSUB(o0o1, rorg0, rorg1);
193 o1o2_d1 = DOT(o0o1, rdir1);
194 t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
195 t[1] = o1o2_d1 + t[0]*dotprod;
196 return(1);
197 }
198
199
200 void
201 spinvector( /* rotate vector around normal */
202 FVECT vres, /* returned vector (same magnitude as vorig) */
203 const FVECT vorig, /* original vector */
204 const FVECT vnorm, /* normalized vector for rotation */
205 double theta /* right-hand radians */
206 )
207 {
208 double sint, cost, normprod;
209 FVECT vperp;
210 int i;
211
212 if (theta == 0.0) {
213 if (vres != vorig)
214 VCOPY(vres, vorig);
215 return;
216 }
217 cost = cos(theta);
218 sint = sin(theta);
219 normprod = DOT(vorig, vnorm)*(1.-cost);
220 VCROSS(vperp, vnorm, vorig);
221 for (i = 0; i < 3; i++)
222 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
223 }
224
225 double
226 geodesic( /* rotate vector on great circle towards target */
227 FVECT vres, /* returned vector (same magnitude as vorig) */
228 const FVECT vorig, /* original vector */
229 const FVECT vtarg, /* vector we are rotating towards */
230 double t, /* amount along arc directed towards vtarg */
231 int meas /* distance measure (radians, absolute, relative) */
232 )
233 {
234 FVECT normtarg;
235 double volen, dotprod, sintr, cost;
236 int i;
237
238 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
239 if (vres != vorig)
240 VCOPY(vres, vorig);
241 if (t == 0.0)
242 return(VLEN(vres)); /* no rotation requested */
243 if ((volen = normalize(vres)) == 0.0)
244 return(0.0);
245 if (normalize(normtarg) == 0.0)
246 return(0.0); /* target vector is zero */
247 dotprod = DOT(vres, normtarg);
248 /* check for colinear */
249 if (dotprod >= 1.0-FTINY*FTINY) {
250 if (meas != GEOD_REL)
251 return(0.0);
252 vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
253 return(volen);
254 }
255 if (dotprod <= -1.0+FTINY*FTINY)
256 return(0.0);
257 if (meas == GEOD_ABS)
258 t /= volen;
259 else if (meas == GEOD_REL)
260 t *= acos(dotprod);
261 cost = cos(t);
262 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
263 for (i = 0; i < 3; i++)
264 vres[i] = volen*( cost*vres[i] +
265 sintr*(normtarg[i] - dotprod*vres[i]) );
266
267 return(volen); /* return vector length */
268 }