ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
(Generate patch)

Comparing ray/src/common/fvect.c (file contents):
Revision 2.6 by greg, Sat Feb 22 02:07:22 2003 UTC vs.
Revision 2.14 by greg, Tue Apr 19 21:31:22 2011 UTC

# Line 5 | Line 5 | static const char      RCSid[] = "$Id$";
5   *  fvect.c - routines for floating-point vector calculations
6   */
7  
8 < /* ====================================================================
9 < * The Radiance Software License, Version 1.0
10 < *
11 < * Copyright (c) 1990 - 2002 The Regents of the University of California,
12 < * through Lawrence Berkeley National Laboratory.   All rights reserved.
13 < *
14 < * Redistribution and use in source and binary forms, with or without
15 < * modification, are permitted provided that the following conditions
16 < * are met:
17 < *
18 < * 1. Redistributions of source code must retain the above copyright
19 < *         notice, this list of conditions and the following disclaimer.
20 < *
21 < * 2. Redistributions in binary form must reproduce the above copyright
22 < *       notice, this list of conditions and the following disclaimer in
23 < *       the documentation and/or other materials provided with the
24 < *       distribution.
25 < *
26 < * 3. The end-user documentation included with the redistribution,
27 < *           if any, must include the following acknowledgment:
28 < *             "This product includes Radiance software
29 < *                 (http://radsite.lbl.gov/)
30 < *                 developed by the Lawrence Berkeley National Laboratory
31 < *               (http://www.lbl.gov/)."
32 < *       Alternately, this acknowledgment may appear in the software itself,
33 < *       if and wherever such third-party acknowledgments normally appear.
34 < *
35 < * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
36 < *       and "The Regents of the University of California" must
37 < *       not be used to endorse or promote products derived from this
38 < *       software without prior written permission. For written
39 < *       permission, please contact [email protected].
40 < *
41 < * 5. Products derived from this software may not be called "Radiance",
42 < *       nor may "Radiance" appear in their name, without prior written
43 < *       permission of Lawrence Berkeley National Laboratory.
44 < *
45 < * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
46 < * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
47 < * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
48 < * DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
49 < * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50 < * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51 < * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
52 < * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
53 < * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
54 < * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
55 < * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 < * SUCH DAMAGE.
57 < * ====================================================================
58 < *
59 < * This software consists of voluntary contributions made by many
60 < * individuals on behalf of Lawrence Berkeley National Laboratory.   For more
61 < * information on Lawrence Berkeley National Laboratory, please see
62 < * <http://www.lbl.gov/>.
63 < */
8 > #include "copyright.h"
9  
10   #include  <math.h>
11   #include  "fvect.h"
12  
13  
14   double
15 < fdot(v1, v2)                    /* return the dot product of two vectors */
16 < register FVECT  v1, v2;
15 > fdot(                           /* return the dot product of two vectors */
16 > const FVECT v1,
17 > const FVECT v2
18 > )
19   {
20          return(DOT(v1,v2));
21   }
22  
23  
24   double
25 < dist2(p1, p2)                   /* return square of distance between points */
26 < register FVECT  p1, p2;
25 > dist2(                          /* return square of distance between points */
26 > const FVECT p1,
27 > const FVECT p2
28 > )
29   {
30          FVECT  delta;
31  
# Line 89 | Line 38 | register FVECT  p1, p2;
38  
39  
40   double
41 < dist2line(p, ep1, ep2)          /* return square of distance to line */
42 < FVECT  p;               /* the point */
43 < FVECT  ep1, ep2;        /* points on the line */
41 > dist2line(                      /* return square of distance to line */
42 > const FVECT p,          /* the point */
43 > const FVECT ep1,
44 > const FVECT ep2         /* points on the line */
45 > )
46   {
47 <        register double  d, d1, d2;
47 >        double  d, d1, d2;
48  
49          d = dist2(ep1, ep2);
50          d1 = dist2(ep1, p);
# Line 104 | Line 55 | FVECT  ep1, ep2;       /* points on the line */
55  
56  
57   double
58 < dist2lseg(p, ep1, ep2)          /* return square of distance to line segment */
59 < FVECT  p;               /* the point */
60 < FVECT  ep1, ep2;        /* the end points */
58 > dist2lseg(                      /* return square of distance to line segment */
59 > const FVECT p,          /* the point */
60 > const FVECT ep1,
61 > const FVECT ep2         /* the end points */
62 > )
63   {
64 <        register double  d, d1, d2;
64 >        double  d, d1, d2;
65  
66          d = dist2(ep1, ep2);
67          d1 = dist2(ep1, p);
# Line 128 | Line 81 | FVECT  ep1, ep2;       /* the end points */
81  
82  
83   void
84 < fcross(vres, v1, v2)            /* vres = v1 X v2 */
85 < register FVECT  vres, v1, v2;
84 > fcross(                         /* vres = v1 X v2 */
85 > FVECT vres,
86 > const FVECT v1,
87 > const FVECT v2
88 > )
89   {
90          vres[0] = v1[1]*v2[2] - v1[2]*v2[1];
91          vres[1] = v1[2]*v2[0] - v1[0]*v2[2];
# Line 138 | Line 94 | register FVECT  vres, v1, v2;
94  
95  
96   void
97 < fvsum(vres, v0, v1, f)          /* vres = v0 + f*v1 */
98 < register FVECT  vres, v0, v1;
99 < register double  f;
97 > fvsum(                          /* vres = v0 + f*v1 */
98 > FVECT vres,
99 > const FVECT v0,
100 > const FVECT v1,
101 > double f
102 > )
103   {
104          vres[0] = v0[0] + f*v1[0];
105          vres[1] = v0[1] + f*v1[1];
# Line 149 | Line 108 | register double  f;
108  
109  
110   double
111 < normalize(v)                    /* normalize a vector, return old magnitude */
112 < register FVECT  v;
111 > normalize(                      /* normalize a vector, return old magnitude */
112 > FVECT  v
113 > )
114   {
115 <        register double  len, d;
115 >        double  len, d;
116          
117          d = DOT(v, v);
118          
119 <        if (d <= 0.0)
119 >        if (d == 0.0)
120                  return(0.0);
121          
122 <        if (d <= 1.0+FTINY && d >= 1.0-FTINY)
122 >        if (d <= 1.0+FTINY && d >= 1.0-FTINY) {
123                  len = 0.5 + 0.5*d;      /* first order approximation */
124 <        else
124 >                d = 2.0 - len;
125 >        } else {
126                  len = sqrt(d);
127 <
128 <        v[0] *= d = 1.0/len;
127 >                d = 1.0/len;
128 >        }
129 >        v[0] *= d;
130          v[1] *= d;
131          v[2] *= d;
132  
# Line 172 | Line 134 | register FVECT  v;
134   }
135  
136  
137 + int
138 + closestapproach(                        /* closest approach of two rays */
139 + RREAL t[2],             /* returned distances along each ray */
140 + const FVECT rorg0,              /* first origin */
141 + const FVECT rdir0,              /* first direction (normalized) */
142 + const FVECT rorg1,              /* second origin */
143 + const FVECT rdir1               /* second direction (normalized) */
144 + )
145 + {
146 +        double  dotprod = DOT(rdir0, rdir1);
147 +        double  denom = 1. - dotprod*dotprod;
148 +        double  o1o2_d1;
149 +        FVECT   o0o1;
150 +
151 +        if (denom <= FTINY) {           /* check if lines are parallel */
152 +                t[0] = t[1] = 0.0;
153 +                return(0);
154 +        }
155 +        VSUB(o0o1, rorg0, rorg1);
156 +        o1o2_d1 = DOT(o0o1, rdir1);
157 +        t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
158 +        t[1] = o1o2_d1 + t[0]*dotprod;
159 +        return(1);
160 + }
161 +
162 +
163   void
164 < spinvector(vres, vorig, vnorm, theta)   /* rotate vector around normal */
165 < FVECT  vres, vorig, vnorm;
166 < double  theta;
164 > spinvector(                             /* rotate vector around normal */
165 > FVECT vres,             /* returned vector */
166 > const FVECT vorig,              /* original vector */
167 > const FVECT vnorm,              /* normalized vector for rotation */
168 > double theta            /* right-hand radians */
169 > )
170   {
171          double  sint, cost, normprod;
172          FVECT  vperp;
173 <        register int  i;
173 >        int  i;
174          
175          if (theta == 0.0) {
176                  if (vres != vorig)

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines