| 13 |
|
|
| 14 |
|
double |
| 15 |
|
fdot( /* return the dot product of two vectors */ |
| 16 |
< |
register FVECT v1, |
| 17 |
< |
register FVECT v2 |
| 16 |
> |
FVECT v1, |
| 17 |
> |
FVECT v2 |
| 18 |
|
) |
| 19 |
|
{ |
| 20 |
|
return(DOT(v1,v2)); |
| 23 |
|
|
| 24 |
|
double |
| 25 |
|
dist2( /* return square of distance between points */ |
| 26 |
< |
register FVECT p1, |
| 27 |
< |
register FVECT p2 |
| 26 |
> |
FVECT p1, |
| 27 |
> |
FVECT p2 |
| 28 |
|
) |
| 29 |
|
{ |
| 30 |
|
FVECT delta; |
| 44 |
|
FVECT ep2 /* points on the line */ |
| 45 |
|
) |
| 46 |
|
{ |
| 47 |
< |
register double d, d1, d2; |
| 47 |
> |
double d, d1, d2; |
| 48 |
|
|
| 49 |
|
d = dist2(ep1, ep2); |
| 50 |
|
d1 = dist2(ep1, p); |
| 61 |
|
FVECT ep2 /* the end points */ |
| 62 |
|
) |
| 63 |
|
{ |
| 64 |
< |
register double d, d1, d2; |
| 64 |
> |
double d, d1, d2; |
| 65 |
|
|
| 66 |
|
d = dist2(ep1, ep2); |
| 67 |
|
d1 = dist2(ep1, p); |
| 82 |
|
|
| 83 |
|
void |
| 84 |
|
fcross( /* vres = v1 X v2 */ |
| 85 |
< |
register FVECT vres, |
| 86 |
< |
register FVECT v1, |
| 87 |
< |
register FVECT v2 |
| 85 |
> |
FVECT vres, |
| 86 |
> |
FVECT v1, |
| 87 |
> |
FVECT v2 |
| 88 |
|
) |
| 89 |
|
{ |
| 90 |
|
vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
| 95 |
|
|
| 96 |
|
void |
| 97 |
|
fvsum( /* vres = v0 + f*v1 */ |
| 98 |
< |
register FVECT vres, |
| 99 |
< |
register FVECT v0, |
| 100 |
< |
register FVECT v1, |
| 101 |
< |
register double f |
| 98 |
> |
FVECT vres, |
| 99 |
> |
FVECT v0, |
| 100 |
> |
FVECT v1, |
| 101 |
> |
double f |
| 102 |
|
) |
| 103 |
|
{ |
| 104 |
|
vres[0] = v0[0] + f*v1[0]; |
| 109 |
|
|
| 110 |
|
double |
| 111 |
|
normalize( /* normalize a vector, return old magnitude */ |
| 112 |
< |
register FVECT v |
| 112 |
> |
FVECT v |
| 113 |
|
) |
| 114 |
|
{ |
| 115 |
< |
register double len, d; |
| 115 |
> |
double len, d; |
| 116 |
|
|
| 117 |
|
d = DOT(v, v); |
| 118 |
|
|
| 158 |
|
} |
| 159 |
|
|
| 160 |
|
|
| 161 |
– |
#if 0 |
| 162 |
– |
int |
| 163 |
– |
closestapproach( /* closest approach of two rays */ |
| 164 |
– |
RREAL t[2], /* returned distances along each ray */ |
| 165 |
– |
FVECT rorg0, /* first origin */ |
| 166 |
– |
FVECT rdir0, /* first direction (unnormalized) */ |
| 167 |
– |
FVECT rorg1, /* second origin */ |
| 168 |
– |
FVECT rdir1 /* second direction (unnormalized) */ |
| 169 |
– |
) |
| 170 |
– |
{ |
| 171 |
– |
double dotprod = DOT(rdir0, rdir1); |
| 172 |
– |
double d0n2 = DOT(rdir0, rdir0); |
| 173 |
– |
double d1n2 = DOT(rdir1, rdir1); |
| 174 |
– |
double denom = d0n2*d1n2 - dotprod*dotprod; |
| 175 |
– |
double o1o2_d1; |
| 176 |
– |
FVECT o0o1; |
| 177 |
– |
|
| 178 |
– |
if (denom <= FTINY) { /* check if lines are parallel */ |
| 179 |
– |
t[0] = t[1] = 0.0; |
| 180 |
– |
return(0); |
| 181 |
– |
} |
| 182 |
– |
VSUB(o0o1, rorg0, rorg1); |
| 183 |
– |
o1o2_d1 = DOT(o0o1, rdir1); |
| 184 |
– |
t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)*d1n2) / denom; |
| 185 |
– |
t[1] = (o1o2_d1 + t[0]*dotprod) / d1n2; |
| 186 |
– |
return(1); |
| 187 |
– |
} |
| 188 |
– |
#endif |
| 189 |
– |
|
| 190 |
– |
|
| 161 |
|
void |
| 162 |
|
spinvector( /* rotate vector around normal */ |
| 163 |
|
FVECT vres, /* returned vector */ |
| 168 |
|
{ |
| 169 |
|
double sint, cost, normprod; |
| 170 |
|
FVECT vperp; |
| 171 |
< |
register int i; |
| 171 |
> |
int i; |
| 172 |
|
|
| 173 |
|
if (theta == 0.0) { |
| 174 |
|
if (vres != vorig) |