| 1 |
greg |
1.1 |
#ifndef lint
|
| 2 |
greg |
2.9 |
static const char RCSid[] = "$Id: fvect.c,v 2.8 2003/09/16 06:30:20 greg Exp $";
|
| 3 |
greg |
1.1 |
#endif
|
| 4 |
greg |
2.6 |
/*
|
| 5 |
|
|
* fvect.c - routines for floating-point vector calculations
|
| 6 |
|
|
*/
|
| 7 |
greg |
1.1 |
|
| 8 |
greg |
2.7 |
#include "copyright.h"
|
| 9 |
greg |
1.1 |
|
| 10 |
greg |
2.2 |
#include <math.h>
|
| 11 |
greg |
1.1 |
#include "fvect.h"
|
| 12 |
|
|
|
| 13 |
|
|
|
| 14 |
|
|
double
|
| 15 |
greg |
2.8 |
fdot( /* return the dot product of two vectors */
|
| 16 |
|
|
register FVECT v1,
|
| 17 |
|
|
register FVECT v2
|
| 18 |
|
|
)
|
| 19 |
greg |
1.1 |
{
|
| 20 |
|
|
return(DOT(v1,v2));
|
| 21 |
|
|
}
|
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
double
|
| 25 |
greg |
2.8 |
dist2( /* return square of distance between points */
|
| 26 |
|
|
register FVECT p1,
|
| 27 |
|
|
register FVECT p2
|
| 28 |
|
|
)
|
| 29 |
greg |
1.1 |
{
|
| 30 |
gwlarson |
2.4 |
FVECT delta;
|
| 31 |
greg |
1.1 |
|
| 32 |
|
|
delta[0] = p2[0] - p1[0];
|
| 33 |
|
|
delta[1] = p2[1] - p1[1];
|
| 34 |
|
|
delta[2] = p2[2] - p1[2];
|
| 35 |
gwlarson |
2.5 |
|
| 36 |
greg |
1.1 |
return(DOT(delta, delta));
|
| 37 |
|
|
}
|
| 38 |
|
|
|
| 39 |
|
|
|
| 40 |
|
|
double
|
| 41 |
greg |
2.8 |
dist2line( /* return square of distance to line */
|
| 42 |
|
|
FVECT p, /* the point */
|
| 43 |
|
|
FVECT ep1,
|
| 44 |
|
|
FVECT ep2 /* points on the line */
|
| 45 |
|
|
)
|
| 46 |
greg |
1.1 |
{
|
| 47 |
gwlarson |
2.4 |
register double d, d1, d2;
|
| 48 |
greg |
1.1 |
|
| 49 |
|
|
d = dist2(ep1, ep2);
|
| 50 |
|
|
d1 = dist2(ep1, p);
|
| 51 |
gwlarson |
2.5 |
d2 = d + d1 - dist2(ep2, p);
|
| 52 |
greg |
1.1 |
|
| 53 |
gwlarson |
2.5 |
return(d1 - 0.25*d2*d2/d);
|
| 54 |
greg |
1.1 |
}
|
| 55 |
|
|
|
| 56 |
|
|
|
| 57 |
|
|
double
|
| 58 |
greg |
2.8 |
dist2lseg( /* return square of distance to line segment */
|
| 59 |
|
|
FVECT p, /* the point */
|
| 60 |
|
|
FVECT ep1,
|
| 61 |
|
|
FVECT ep2 /* the end points */
|
| 62 |
|
|
)
|
| 63 |
greg |
1.1 |
{
|
| 64 |
gwlarson |
2.4 |
register double d, d1, d2;
|
| 65 |
greg |
1.1 |
|
| 66 |
|
|
d = dist2(ep1, ep2);
|
| 67 |
|
|
d1 = dist2(ep1, p);
|
| 68 |
|
|
d2 = dist2(ep2, p);
|
| 69 |
|
|
|
| 70 |
|
|
if (d2 > d1) { /* check if past endpoints */
|
| 71 |
|
|
if (d2 - d1 > d)
|
| 72 |
|
|
return(d1);
|
| 73 |
|
|
} else {
|
| 74 |
|
|
if (d1 - d2 > d)
|
| 75 |
|
|
return(d2);
|
| 76 |
|
|
}
|
| 77 |
gwlarson |
2.5 |
d2 = d + d1 - d2;
|
| 78 |
greg |
1.1 |
|
| 79 |
gwlarson |
2.5 |
return(d1 - 0.25*d2*d2/d); /* distance to line */
|
| 80 |
greg |
1.1 |
}
|
| 81 |
|
|
|
| 82 |
|
|
|
| 83 |
greg |
2.6 |
void
|
| 84 |
greg |
2.8 |
fcross( /* vres = v1 X v2 */
|
| 85 |
|
|
register FVECT vres,
|
| 86 |
|
|
register FVECT v1,
|
| 87 |
|
|
register FVECT v2
|
| 88 |
|
|
)
|
| 89 |
greg |
1.1 |
{
|
| 90 |
|
|
vres[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
| 91 |
|
|
vres[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
| 92 |
|
|
vres[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
| 93 |
|
|
}
|
| 94 |
|
|
|
| 95 |
|
|
|
| 96 |
greg |
2.6 |
void
|
| 97 |
greg |
2.8 |
fvsum( /* vres = v0 + f*v1 */
|
| 98 |
|
|
register FVECT vres,
|
| 99 |
|
|
register FVECT v0,
|
| 100 |
|
|
register FVECT v1,
|
| 101 |
|
|
register double f
|
| 102 |
|
|
)
|
| 103 |
greg |
1.4 |
{
|
| 104 |
|
|
vres[0] = v0[0] + f*v1[0];
|
| 105 |
|
|
vres[1] = v0[1] + f*v1[1];
|
| 106 |
|
|
vres[2] = v0[2] + f*v1[2];
|
| 107 |
|
|
}
|
| 108 |
|
|
|
| 109 |
|
|
|
| 110 |
greg |
1.1 |
double
|
| 111 |
greg |
2.8 |
normalize( /* normalize a vector, return old magnitude */
|
| 112 |
|
|
register FVECT v
|
| 113 |
|
|
)
|
| 114 |
greg |
1.1 |
{
|
| 115 |
gwlarson |
2.5 |
register double len, d;
|
| 116 |
greg |
1.1 |
|
| 117 |
gwlarson |
2.5 |
d = DOT(v, v);
|
| 118 |
greg |
1.1 |
|
| 119 |
greg |
2.9 |
if (d <= FTINY*FTINY)
|
| 120 |
greg |
1.1 |
return(0.0);
|
| 121 |
|
|
|
| 122 |
gwlarson |
2.5 |
if (d <= 1.0+FTINY && d >= 1.0-FTINY)
|
| 123 |
|
|
len = 0.5 + 0.5*d; /* first order approximation */
|
| 124 |
greg |
2.3 |
else
|
| 125 |
gwlarson |
2.5 |
len = sqrt(d);
|
| 126 |
greg |
1.1 |
|
| 127 |
gwlarson |
2.5 |
v[0] *= d = 1.0/len;
|
| 128 |
|
|
v[1] *= d;
|
| 129 |
|
|
v[2] *= d;
|
| 130 |
greg |
2.3 |
|
| 131 |
greg |
1.1 |
return(len);
|
| 132 |
|
|
}
|
| 133 |
greg |
1.5 |
|
| 134 |
|
|
|
| 135 |
greg |
2.8 |
int
|
| 136 |
|
|
closestapproach( /* closest approach of two rays */
|
| 137 |
|
|
RREAL t[2], /* returned distances along each ray */
|
| 138 |
|
|
FVECT rorg0, /* first origin */
|
| 139 |
|
|
FVECT rdir0, /* first direction (normalized) */
|
| 140 |
|
|
FVECT rorg1, /* second origin */
|
| 141 |
|
|
FVECT rdir1 /* second direction (normalized) */
|
| 142 |
|
|
)
|
| 143 |
|
|
{
|
| 144 |
|
|
double dotprod = DOT(rdir0, rdir1);
|
| 145 |
|
|
double denom = 1. - dotprod*dotprod;
|
| 146 |
|
|
double o1o2_d1;
|
| 147 |
|
|
FVECT o0o1;
|
| 148 |
|
|
|
| 149 |
|
|
if (denom <= FTINY) { /* check if lines are parallel */
|
| 150 |
|
|
t[0] = t[1] = 0.0;
|
| 151 |
|
|
return(0);
|
| 152 |
|
|
}
|
| 153 |
|
|
VSUB(o0o1, rorg0, rorg1);
|
| 154 |
|
|
o1o2_d1 = DOT(o0o1, rdir1);
|
| 155 |
|
|
t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
|
| 156 |
|
|
t[1] = o1o2_d1 + t[0]*dotprod;
|
| 157 |
|
|
return(1);
|
| 158 |
|
|
}
|
| 159 |
|
|
|
| 160 |
|
|
|
| 161 |
|
|
#if 0
|
| 162 |
|
|
int
|
| 163 |
|
|
closestapproach( /* closest approach of two rays */
|
| 164 |
|
|
RREAL t[2], /* returned distances along each ray */
|
| 165 |
|
|
FVECT rorg0, /* first origin */
|
| 166 |
|
|
FVECT rdir0, /* first direction (unnormalized) */
|
| 167 |
|
|
FVECT rorg1, /* second origin */
|
| 168 |
|
|
FVECT rdir1 /* second direction (unnormalized) */
|
| 169 |
|
|
)
|
| 170 |
|
|
{
|
| 171 |
|
|
double dotprod = DOT(rdir0, rdir1);
|
| 172 |
|
|
double d0n2 = DOT(rdir0, rdir0);
|
| 173 |
|
|
double d1n2 = DOT(rdir1, rdir1);
|
| 174 |
|
|
double denom = d0n2*d1n2 - dotprod*dotprod;
|
| 175 |
|
|
double o1o2_d1;
|
| 176 |
|
|
FVECT o0o1;
|
| 177 |
|
|
|
| 178 |
|
|
if (denom <= FTINY) { /* check if lines are parallel */
|
| 179 |
|
|
t[0] = t[1] = 0.0;
|
| 180 |
|
|
return(0);
|
| 181 |
|
|
}
|
| 182 |
|
|
VSUB(o0o1, rorg0, rorg1);
|
| 183 |
|
|
o1o2_d1 = DOT(o0o1, rdir1);
|
| 184 |
|
|
t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)*d1n2) / denom;
|
| 185 |
|
|
t[1] = (o1o2_d1 + t[0]*dotprod) / d1n2;
|
| 186 |
|
|
return(1);
|
| 187 |
|
|
}
|
| 188 |
|
|
#endif
|
| 189 |
|
|
|
| 190 |
|
|
|
| 191 |
greg |
2.6 |
void
|
| 192 |
greg |
2.8 |
spinvector( /* rotate vector around normal */
|
| 193 |
|
|
FVECT vres, /* returned vector */
|
| 194 |
|
|
FVECT vorig, /* original vector */
|
| 195 |
|
|
FVECT vnorm, /* normalized vector for rotation */
|
| 196 |
|
|
double theta /* left-hand radians */
|
| 197 |
|
|
)
|
| 198 |
greg |
1.5 |
{
|
| 199 |
greg |
1.6 |
double sint, cost, normprod;
|
| 200 |
greg |
1.5 |
FVECT vperp;
|
| 201 |
|
|
register int i;
|
| 202 |
|
|
|
| 203 |
|
|
if (theta == 0.0) {
|
| 204 |
greg |
1.6 |
if (vres != vorig)
|
| 205 |
|
|
VCOPY(vres, vorig);
|
| 206 |
greg |
1.5 |
return;
|
| 207 |
|
|
}
|
| 208 |
greg |
1.6 |
cost = cos(theta);
|
| 209 |
greg |
1.5 |
sint = sin(theta);
|
| 210 |
greg |
1.6 |
normprod = DOT(vorig, vnorm)*(1.-cost);
|
| 211 |
greg |
1.5 |
fcross(vperp, vnorm, vorig);
|
| 212 |
|
|
for (i = 0; i < 3; i++)
|
| 213 |
greg |
1.6 |
vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
|
| 214 |
greg |
1.5 |
}
|