ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.24
Committed: Thu Jul 23 18:22:26 2015 UTC (8 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad5R0, rad5R1, rad5R3
Changes since 2.23: +3 -3 lines
Log Message:
Made it so we'll never generate another segfault from this code

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.24 static const char RCSid[] = "$Id: fvect.c,v 2.23 2015/05/21 07:02:23 greg Exp $";
3 greg 1.1 #endif
4 greg 2.6 /*
5     * fvect.c - routines for floating-point vector calculations
6     */
7 greg 1.1
8 greg 2.7 #include "copyright.h"
9 greg 1.1
10 greg 2.19 #define _USE_MATH_DEFINES
11 greg 2.2 #include <math.h>
12 greg 1.1 #include "fvect.h"
13 greg 2.20 #include "random.h"
14 greg 1.1
15 greg 2.19 double
16     Acos(double x) /* insurance for touchy math library */
17     {
18     if (x <= -1.+FTINY*FTINY)
19     return(M_PI);
20     if (x >= 1.-FTINY*FTINY)
21     return(.0);
22     return(acos(x));
23     }
24    
25     double
26     Asin(double x) /* insurance for touchy math library */
27     {
28     if (x <= -1.+FTINY*FTINY)
29     return(-M_PI/2.);
30     if (x >= 1.-FTINY*FTINY)
31     return(M_PI/2);
32     return(asin(x));
33     }
34 greg 1.1
35     double
36 greg 2.8 fdot( /* return the dot product of two vectors */
37 greg 2.13 const FVECT v1,
38     const FVECT v2
39 greg 2.8 )
40 greg 1.1 {
41     return(DOT(v1,v2));
42     }
43    
44    
45     double
46 greg 2.8 dist2( /* return square of distance between points */
47 greg 2.13 const FVECT p1,
48     const FVECT p2
49 greg 2.8 )
50 greg 1.1 {
51 gwlarson 2.4 FVECT delta;
52 greg 1.1
53 greg 2.18 VSUB(delta, p2, p1);
54 gwlarson 2.5
55 greg 1.1 return(DOT(delta, delta));
56     }
57    
58    
59     double
60 greg 2.8 dist2line( /* return square of distance to line */
61 greg 2.13 const FVECT p, /* the point */
62     const FVECT ep1,
63     const FVECT ep2 /* points on the line */
64 greg 2.8 )
65 greg 1.1 {
66 greg 2.11 double d, d1, d2;
67 greg 1.1
68     d = dist2(ep1, ep2);
69     d1 = dist2(ep1, p);
70 gwlarson 2.5 d2 = d + d1 - dist2(ep2, p);
71 greg 1.1
72 gwlarson 2.5 return(d1 - 0.25*d2*d2/d);
73 greg 1.1 }
74    
75    
76     double
77 greg 2.8 dist2lseg( /* return square of distance to line segment */
78 greg 2.13 const FVECT p, /* the point */
79     const FVECT ep1,
80     const FVECT ep2 /* the end points */
81 greg 2.8 )
82 greg 1.1 {
83 greg 2.11 double d, d1, d2;
84 greg 1.1
85     d = dist2(ep1, ep2);
86     d1 = dist2(ep1, p);
87     d2 = dist2(ep2, p);
88    
89     if (d2 > d1) { /* check if past endpoints */
90     if (d2 - d1 > d)
91     return(d1);
92     } else {
93     if (d1 - d2 > d)
94     return(d2);
95     }
96 gwlarson 2.5 d2 = d + d1 - d2;
97 greg 1.1
98 gwlarson 2.5 return(d1 - 0.25*d2*d2/d); /* distance to line */
99 greg 1.1 }
100    
101    
102 greg 2.6 void
103 greg 2.8 fcross( /* vres = v1 X v2 */
104 greg 2.11 FVECT vres,
105 greg 2.13 const FVECT v1,
106     const FVECT v2
107 greg 2.8 )
108 greg 1.1 {
109 greg 2.21 if ((vres == v1) | (vres == v2)) {
110     FVECT vtmp;
111     VCROSS(vtmp, v1, v2);
112     VCOPY(vres, vtmp);
113     return;
114     }
115 greg 2.18 VCROSS(vres, v1, v2);
116 greg 1.1 }
117    
118    
119 greg 2.6 void
120 greg 2.8 fvsum( /* vres = v0 + f*v1 */
121 greg 2.11 FVECT vres,
122 greg 2.13 const FVECT v0,
123     const FVECT v1,
124 greg 2.11 double f
125 greg 2.8 )
126 greg 1.4 {
127 greg 2.18 VSUM(vres, v0, v1, f);
128 greg 1.4 }
129    
130    
131 greg 1.1 double
132 greg 2.8 normalize( /* normalize a vector, return old magnitude */
133 greg 2.11 FVECT v
134 greg 2.8 )
135 greg 1.1 {
136 greg 2.11 double len, d;
137 greg 1.1
138 gwlarson 2.5 d = DOT(v, v);
139 greg 1.1
140 greg 2.10 if (d == 0.0)
141 greg 1.1 return(0.0);
142    
143 greg 2.15 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
144 gwlarson 2.5 len = 0.5 + 0.5*d; /* first order approximation */
145 greg 2.12 d = 2.0 - len;
146     } else {
147 gwlarson 2.5 len = sqrt(d);
148 greg 2.12 d = 1.0/len;
149     }
150     v[0] *= d;
151 gwlarson 2.5 v[1] *= d;
152     v[2] *= d;
153 greg 2.3
154 greg 1.1 return(len);
155     }
156 greg 1.5
157    
158 greg 2.8 int
159 greg 2.22 getperpendicular( /* choose perpedicular direction */
160 greg 2.21 FVECT vp, /* returns normalized */
161 greg 2.22 const FVECT v, /* input vector must be normalized */
162     int randomize /* randomize orientation */
163 greg 2.20 )
164     {
165 greg 2.22 int ord[3];
166 greg 2.20 FVECT v1;
167     int i;
168 greg 2.22
169     if (randomize) { /* randomize coordinates? */
170     v1[0] = 0.5 - frandom();
171     v1[1] = 0.5 - frandom();
172     v1[2] = 0.5 - frandom();
173 greg 2.24 switch ((int)(frandom()*6.)) {
174 greg 2.23 case 0: ord[0] = 0; ord[1] = 1; ord[2] = 2; break;
175     case 1: ord[0] = 0; ord[1] = 2; ord[2] = 1; break;
176     case 2: ord[0] = 1; ord[1] = 0; ord[2] = 2; break;
177     case 3: ord[0] = 1; ord[1] = 2; ord[2] = 0; break;
178     case 4: ord[0] = 2; ord[1] = 0; ord[2] = 1; break;
179 greg 2.24 default: ord[0] = 2; ord[1] = 1; ord[2] = 0; break;
180 greg 2.22 }
181     } else {
182 greg 2.23 v1[0] = v1[1] = v1[2] = 0.0;
183 greg 2.22 ord[0] = 0; ord[1] = 1; ord[2] = 2;
184     }
185    
186 greg 2.20 for (i = 3; i--; )
187 greg 2.22 if ((-0.6 < v[ord[i]]) & (v[ord[i]] < 0.6))
188 greg 2.20 break;
189     if (i < 0)
190     return(0);
191 greg 2.22
192     v1[ord[i]] = 1.0;
193 greg 2.21 fcross(vp, v1, v);
194 greg 2.22
195 greg 2.20 return(normalize(vp) > 0.0);
196     }
197    
198 greg 2.21
199 greg 2.20 int
200 greg 2.8 closestapproach( /* closest approach of two rays */
201     RREAL t[2], /* returned distances along each ray */
202 greg 2.13 const FVECT rorg0, /* first origin */
203     const FVECT rdir0, /* first direction (normalized) */
204     const FVECT rorg1, /* second origin */
205     const FVECT rdir1 /* second direction (normalized) */
206 greg 2.8 )
207     {
208     double dotprod = DOT(rdir0, rdir1);
209     double denom = 1. - dotprod*dotprod;
210     double o1o2_d1;
211     FVECT o0o1;
212    
213     if (denom <= FTINY) { /* check if lines are parallel */
214     t[0] = t[1] = 0.0;
215     return(0);
216     }
217     VSUB(o0o1, rorg0, rorg1);
218     o1o2_d1 = DOT(o0o1, rdir1);
219     t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
220     t[1] = o1o2_d1 + t[0]*dotprod;
221     return(1);
222     }
223    
224    
225 greg 2.6 void
226 greg 2.8 spinvector( /* rotate vector around normal */
227 greg 2.15 FVECT vres, /* returned vector (same magnitude as vorig) */
228 greg 2.13 const FVECT vorig, /* original vector */
229     const FVECT vnorm, /* normalized vector for rotation */
230 greg 2.14 double theta /* right-hand radians */
231 greg 2.8 )
232 greg 1.5 {
233 greg 1.6 double sint, cost, normprod;
234 greg 1.5 FVECT vperp;
235 greg 2.11 int i;
236 greg 1.5
237     if (theta == 0.0) {
238 greg 1.6 if (vres != vorig)
239     VCOPY(vres, vorig);
240 greg 1.5 return;
241     }
242 greg 1.6 cost = cos(theta);
243 greg 1.5 sint = sin(theta);
244 greg 1.6 normprod = DOT(vorig, vnorm)*(1.-cost);
245 greg 2.18 VCROSS(vperp, vnorm, vorig);
246 greg 1.5 for (i = 0; i < 3; i++)
247 greg 1.6 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
248 greg 1.5 }
249 greg 2.15
250     double
251     geodesic( /* rotate vector on great circle towards target */
252     FVECT vres, /* returned vector (same magnitude as vorig) */
253     const FVECT vorig, /* original vector */
254     const FVECT vtarg, /* vector we are rotating towards */
255     double t, /* amount along arc directed towards vtarg */
256     int meas /* distance measure (radians, absolute, relative) */
257     )
258     {
259     FVECT normtarg;
260 greg 2.17 double volen, dotprod, sintr, cost;
261 greg 2.15 int i;
262    
263 greg 2.16 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
264 greg 2.15 if (vres != vorig)
265     VCOPY(vres, vorig);
266     if (t == 0.0)
267     return(VLEN(vres)); /* no rotation requested */
268     if ((volen = normalize(vres)) == 0.0)
269     return(0.0);
270     if (normalize(normtarg) == 0.0)
271     return(0.0); /* target vector is zero */
272     dotprod = DOT(vres, normtarg);
273     /* check for colinear */
274     if (dotprod >= 1.0-FTINY*FTINY) {
275     if (meas != GEOD_REL)
276     return(0.0);
277     vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
278     return(volen);
279     }
280     if (dotprod <= -1.0+FTINY*FTINY)
281     return(0.0);
282     if (meas == GEOD_ABS)
283     t /= volen;
284     else if (meas == GEOD_REL)
285     t *= acos(dotprod);
286     cost = cos(t);
287 greg 2.17 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
288 greg 2.15 for (i = 0; i < 3; i++)
289     vres[i] = volen*( cost*vres[i] +
290 greg 2.17 sintr*(normtarg[i] - dotprod*vres[i]) );
291 greg 2.15
292     return(volen); /* return vector length */
293     }