ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.20
Committed: Thu Dec 4 05:26:27 2014 UTC (9 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.19: +24 -1 lines
Log Message:
Improved behavior of anisotropic reflections

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.20 static const char RCSid[] = "$Id: fvect.c,v 2.19 2013/06/29 21:03:44 greg Exp $";
3 greg 1.1 #endif
4 greg 2.6 /*
5     * fvect.c - routines for floating-point vector calculations
6     */
7 greg 1.1
8 greg 2.7 #include "copyright.h"
9 greg 1.1
10 greg 2.19 #define _USE_MATH_DEFINES
11 greg 2.2 #include <math.h>
12 greg 1.1 #include "fvect.h"
13 greg 2.20 #include "random.h"
14 greg 1.1
15 greg 2.19 double
16     Acos(double x) /* insurance for touchy math library */
17     {
18     if (x <= -1.+FTINY*FTINY)
19     return(M_PI);
20     if (x >= 1.-FTINY*FTINY)
21     return(.0);
22     return(acos(x));
23     }
24    
25     double
26     Asin(double x) /* insurance for touchy math library */
27     {
28     if (x <= -1.+FTINY*FTINY)
29     return(-M_PI/2.);
30     if (x >= 1.-FTINY*FTINY)
31     return(M_PI/2);
32     return(asin(x));
33     }
34 greg 1.1
35     double
36 greg 2.8 fdot( /* return the dot product of two vectors */
37 greg 2.13 const FVECT v1,
38     const FVECT v2
39 greg 2.8 )
40 greg 1.1 {
41     return(DOT(v1,v2));
42     }
43    
44    
45     double
46 greg 2.8 dist2( /* return square of distance between points */
47 greg 2.13 const FVECT p1,
48     const FVECT p2
49 greg 2.8 )
50 greg 1.1 {
51 gwlarson 2.4 FVECT delta;
52 greg 1.1
53 greg 2.18 VSUB(delta, p2, p1);
54 gwlarson 2.5
55 greg 1.1 return(DOT(delta, delta));
56     }
57    
58    
59     double
60 greg 2.8 dist2line( /* return square of distance to line */
61 greg 2.13 const FVECT p, /* the point */
62     const FVECT ep1,
63     const FVECT ep2 /* points on the line */
64 greg 2.8 )
65 greg 1.1 {
66 greg 2.11 double d, d1, d2;
67 greg 1.1
68     d = dist2(ep1, ep2);
69     d1 = dist2(ep1, p);
70 gwlarson 2.5 d2 = d + d1 - dist2(ep2, p);
71 greg 1.1
72 gwlarson 2.5 return(d1 - 0.25*d2*d2/d);
73 greg 1.1 }
74    
75    
76     double
77 greg 2.8 dist2lseg( /* return square of distance to line segment */
78 greg 2.13 const FVECT p, /* the point */
79     const FVECT ep1,
80     const FVECT ep2 /* the end points */
81 greg 2.8 )
82 greg 1.1 {
83 greg 2.11 double d, d1, d2;
84 greg 1.1
85     d = dist2(ep1, ep2);
86     d1 = dist2(ep1, p);
87     d2 = dist2(ep2, p);
88    
89     if (d2 > d1) { /* check if past endpoints */
90     if (d2 - d1 > d)
91     return(d1);
92     } else {
93     if (d1 - d2 > d)
94     return(d2);
95     }
96 gwlarson 2.5 d2 = d + d1 - d2;
97 greg 1.1
98 gwlarson 2.5 return(d1 - 0.25*d2*d2/d); /* distance to line */
99 greg 1.1 }
100    
101    
102 greg 2.6 void
103 greg 2.8 fcross( /* vres = v1 X v2 */
104 greg 2.11 FVECT vres,
105 greg 2.13 const FVECT v1,
106     const FVECT v2
107 greg 2.8 )
108 greg 1.1 {
109 greg 2.18 VCROSS(vres, v1, v2);
110 greg 1.1 }
111    
112    
113 greg 2.6 void
114 greg 2.8 fvsum( /* vres = v0 + f*v1 */
115 greg 2.11 FVECT vres,
116 greg 2.13 const FVECT v0,
117     const FVECT v1,
118 greg 2.11 double f
119 greg 2.8 )
120 greg 1.4 {
121 greg 2.18 VSUM(vres, v0, v1, f);
122 greg 1.4 }
123    
124    
125 greg 1.1 double
126 greg 2.8 normalize( /* normalize a vector, return old magnitude */
127 greg 2.11 FVECT v
128 greg 2.8 )
129 greg 1.1 {
130 greg 2.11 double len, d;
131 greg 1.1
132 gwlarson 2.5 d = DOT(v, v);
133 greg 1.1
134 greg 2.10 if (d == 0.0)
135 greg 1.1 return(0.0);
136    
137 greg 2.15 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
138 gwlarson 2.5 len = 0.5 + 0.5*d; /* first order approximation */
139 greg 2.12 d = 2.0 - len;
140     } else {
141 gwlarson 2.5 len = sqrt(d);
142 greg 2.12 d = 1.0/len;
143     }
144     v[0] *= d;
145 gwlarson 2.5 v[1] *= d;
146     v[2] *= d;
147 greg 2.3
148 greg 1.1 return(len);
149     }
150 greg 1.5
151    
152 greg 2.8 int
153 greg 2.20 getperpendicular( /* choose random perpedicular direction */
154     FVECT vp, /* returns normalized */
155     const FVECT v /* input vector must be normalized */
156     )
157     {
158     FVECT v1;
159     int i;
160     /* randomize other coordinates */
161     v1[0] = 0.5 - frandom();
162     v1[1] = 0.5 - frandom();
163     v1[2] = 0.5 - frandom();
164     for (i = 3; i--; )
165     if ((-0.6 < v[i]) & (v[i] < 0.6))
166     break;
167     if (i < 0)
168     return(0);
169     v1[i] = 1.0;
170     VCROSS(vp, v1, v);
171     return(normalize(vp) > 0.0);
172     }
173    
174     int
175 greg 2.8 closestapproach( /* closest approach of two rays */
176     RREAL t[2], /* returned distances along each ray */
177 greg 2.13 const FVECT rorg0, /* first origin */
178     const FVECT rdir0, /* first direction (normalized) */
179     const FVECT rorg1, /* second origin */
180     const FVECT rdir1 /* second direction (normalized) */
181 greg 2.8 )
182     {
183     double dotprod = DOT(rdir0, rdir1);
184     double denom = 1. - dotprod*dotprod;
185     double o1o2_d1;
186     FVECT o0o1;
187    
188     if (denom <= FTINY) { /* check if lines are parallel */
189     t[0] = t[1] = 0.0;
190     return(0);
191     }
192     VSUB(o0o1, rorg0, rorg1);
193     o1o2_d1 = DOT(o0o1, rdir1);
194     t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
195     t[1] = o1o2_d1 + t[0]*dotprod;
196     return(1);
197     }
198    
199    
200 greg 2.6 void
201 greg 2.8 spinvector( /* rotate vector around normal */
202 greg 2.15 FVECT vres, /* returned vector (same magnitude as vorig) */
203 greg 2.13 const FVECT vorig, /* original vector */
204     const FVECT vnorm, /* normalized vector for rotation */
205 greg 2.14 double theta /* right-hand radians */
206 greg 2.8 )
207 greg 1.5 {
208 greg 1.6 double sint, cost, normprod;
209 greg 1.5 FVECT vperp;
210 greg 2.11 int i;
211 greg 1.5
212     if (theta == 0.0) {
213 greg 1.6 if (vres != vorig)
214     VCOPY(vres, vorig);
215 greg 1.5 return;
216     }
217 greg 1.6 cost = cos(theta);
218 greg 1.5 sint = sin(theta);
219 greg 1.6 normprod = DOT(vorig, vnorm)*(1.-cost);
220 greg 2.18 VCROSS(vperp, vnorm, vorig);
221 greg 1.5 for (i = 0; i < 3; i++)
222 greg 1.6 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
223 greg 1.5 }
224 greg 2.15
225     double
226     geodesic( /* rotate vector on great circle towards target */
227     FVECT vres, /* returned vector (same magnitude as vorig) */
228     const FVECT vorig, /* original vector */
229     const FVECT vtarg, /* vector we are rotating towards */
230     double t, /* amount along arc directed towards vtarg */
231     int meas /* distance measure (radians, absolute, relative) */
232     )
233     {
234     FVECT normtarg;
235 greg 2.17 double volen, dotprod, sintr, cost;
236 greg 2.15 int i;
237    
238 greg 2.16 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
239 greg 2.15 if (vres != vorig)
240     VCOPY(vres, vorig);
241     if (t == 0.0)
242     return(VLEN(vres)); /* no rotation requested */
243     if ((volen = normalize(vres)) == 0.0)
244     return(0.0);
245     if (normalize(normtarg) == 0.0)
246     return(0.0); /* target vector is zero */
247     dotprod = DOT(vres, normtarg);
248     /* check for colinear */
249     if (dotprod >= 1.0-FTINY*FTINY) {
250     if (meas != GEOD_REL)
251     return(0.0);
252     vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
253     return(volen);
254     }
255     if (dotprod <= -1.0+FTINY*FTINY)
256     return(0.0);
257     if (meas == GEOD_ABS)
258     t /= volen;
259     else if (meas == GEOD_REL)
260     t *= acos(dotprod);
261     cost = cos(t);
262 greg 2.17 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
263 greg 2.15 for (i = 0; i < 3; i++)
264     vres[i] = volen*( cost*vres[i] +
265 greg 2.17 sintr*(normtarg[i] - dotprod*vres[i]) );
266 greg 2.15
267     return(volen); /* return vector length */
268     }