ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.18
Committed: Wed Apr 3 00:22:12 2013 UTC (11 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.17: +5 -11 lines
Log Message:
Added more use of macros

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.18 static const char RCSid[] = "$Id: fvect.c,v 2.17 2012/11/22 06:07:17 greg Exp $";
3 greg 1.1 #endif
4 greg 2.6 /*
5     * fvect.c - routines for floating-point vector calculations
6     */
7 greg 1.1
8 greg 2.7 #include "copyright.h"
9 greg 1.1
10 greg 2.2 #include <math.h>
11 greg 1.1 #include "fvect.h"
12    
13    
14     double
15 greg 2.8 fdot( /* return the dot product of two vectors */
16 greg 2.13 const FVECT v1,
17     const FVECT v2
18 greg 2.8 )
19 greg 1.1 {
20     return(DOT(v1,v2));
21     }
22    
23    
24     double
25 greg 2.8 dist2( /* return square of distance between points */
26 greg 2.13 const FVECT p1,
27     const FVECT p2
28 greg 2.8 )
29 greg 1.1 {
30 gwlarson 2.4 FVECT delta;
31 greg 1.1
32 greg 2.18 VSUB(delta, p2, p1);
33 gwlarson 2.5
34 greg 1.1 return(DOT(delta, delta));
35     }
36    
37    
38     double
39 greg 2.8 dist2line( /* return square of distance to line */
40 greg 2.13 const FVECT p, /* the point */
41     const FVECT ep1,
42     const FVECT ep2 /* points on the line */
43 greg 2.8 )
44 greg 1.1 {
45 greg 2.11 double d, d1, d2;
46 greg 1.1
47     d = dist2(ep1, ep2);
48     d1 = dist2(ep1, p);
49 gwlarson 2.5 d2 = d + d1 - dist2(ep2, p);
50 greg 1.1
51 gwlarson 2.5 return(d1 - 0.25*d2*d2/d);
52 greg 1.1 }
53    
54    
55     double
56 greg 2.8 dist2lseg( /* return square of distance to line segment */
57 greg 2.13 const FVECT p, /* the point */
58     const FVECT ep1,
59     const FVECT ep2 /* the end points */
60 greg 2.8 )
61 greg 1.1 {
62 greg 2.11 double d, d1, d2;
63 greg 1.1
64     d = dist2(ep1, ep2);
65     d1 = dist2(ep1, p);
66     d2 = dist2(ep2, p);
67    
68     if (d2 > d1) { /* check if past endpoints */
69     if (d2 - d1 > d)
70     return(d1);
71     } else {
72     if (d1 - d2 > d)
73     return(d2);
74     }
75 gwlarson 2.5 d2 = d + d1 - d2;
76 greg 1.1
77 gwlarson 2.5 return(d1 - 0.25*d2*d2/d); /* distance to line */
78 greg 1.1 }
79    
80    
81 greg 2.6 void
82 greg 2.8 fcross( /* vres = v1 X v2 */
83 greg 2.11 FVECT vres,
84 greg 2.13 const FVECT v1,
85     const FVECT v2
86 greg 2.8 )
87 greg 1.1 {
88 greg 2.18 VCROSS(vres, v1, v2);
89 greg 1.1 }
90    
91    
92 greg 2.6 void
93 greg 2.8 fvsum( /* vres = v0 + f*v1 */
94 greg 2.11 FVECT vres,
95 greg 2.13 const FVECT v0,
96     const FVECT v1,
97 greg 2.11 double f
98 greg 2.8 )
99 greg 1.4 {
100 greg 2.18 VSUM(vres, v0, v1, f);
101 greg 1.4 }
102    
103    
104 greg 1.1 double
105 greg 2.8 normalize( /* normalize a vector, return old magnitude */
106 greg 2.11 FVECT v
107 greg 2.8 )
108 greg 1.1 {
109 greg 2.11 double len, d;
110 greg 1.1
111 gwlarson 2.5 d = DOT(v, v);
112 greg 1.1
113 greg 2.10 if (d == 0.0)
114 greg 1.1 return(0.0);
115    
116 greg 2.15 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
117 gwlarson 2.5 len = 0.5 + 0.5*d; /* first order approximation */
118 greg 2.12 d = 2.0 - len;
119     } else {
120 gwlarson 2.5 len = sqrt(d);
121 greg 2.12 d = 1.0/len;
122     }
123     v[0] *= d;
124 gwlarson 2.5 v[1] *= d;
125     v[2] *= d;
126 greg 2.3
127 greg 1.1 return(len);
128     }
129 greg 1.5
130    
131 greg 2.8 int
132     closestapproach( /* closest approach of two rays */
133     RREAL t[2], /* returned distances along each ray */
134 greg 2.13 const FVECT rorg0, /* first origin */
135     const FVECT rdir0, /* first direction (normalized) */
136     const FVECT rorg1, /* second origin */
137     const FVECT rdir1 /* second direction (normalized) */
138 greg 2.8 )
139     {
140     double dotprod = DOT(rdir0, rdir1);
141     double denom = 1. - dotprod*dotprod;
142     double o1o2_d1;
143     FVECT o0o1;
144    
145     if (denom <= FTINY) { /* check if lines are parallel */
146     t[0] = t[1] = 0.0;
147     return(0);
148     }
149     VSUB(o0o1, rorg0, rorg1);
150     o1o2_d1 = DOT(o0o1, rdir1);
151     t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
152     t[1] = o1o2_d1 + t[0]*dotprod;
153     return(1);
154     }
155    
156    
157 greg 2.6 void
158 greg 2.8 spinvector( /* rotate vector around normal */
159 greg 2.15 FVECT vres, /* returned vector (same magnitude as vorig) */
160 greg 2.13 const FVECT vorig, /* original vector */
161     const FVECT vnorm, /* normalized vector for rotation */
162 greg 2.14 double theta /* right-hand radians */
163 greg 2.8 )
164 greg 1.5 {
165 greg 1.6 double sint, cost, normprod;
166 greg 1.5 FVECT vperp;
167 greg 2.11 int i;
168 greg 1.5
169     if (theta == 0.0) {
170 greg 1.6 if (vres != vorig)
171     VCOPY(vres, vorig);
172 greg 1.5 return;
173     }
174 greg 1.6 cost = cos(theta);
175 greg 1.5 sint = sin(theta);
176 greg 1.6 normprod = DOT(vorig, vnorm)*(1.-cost);
177 greg 2.18 VCROSS(vperp, vnorm, vorig);
178 greg 1.5 for (i = 0; i < 3; i++)
179 greg 1.6 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
180 greg 1.5 }
181 greg 2.15
182     double
183     geodesic( /* rotate vector on great circle towards target */
184     FVECT vres, /* returned vector (same magnitude as vorig) */
185     const FVECT vorig, /* original vector */
186     const FVECT vtarg, /* vector we are rotating towards */
187     double t, /* amount along arc directed towards vtarg */
188     int meas /* distance measure (radians, absolute, relative) */
189     )
190     {
191     FVECT normtarg;
192 greg 2.17 double volen, dotprod, sintr, cost;
193 greg 2.15 int i;
194    
195 greg 2.16 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
196 greg 2.15 if (vres != vorig)
197     VCOPY(vres, vorig);
198     if (t == 0.0)
199     return(VLEN(vres)); /* no rotation requested */
200     if ((volen = normalize(vres)) == 0.0)
201     return(0.0);
202     if (normalize(normtarg) == 0.0)
203     return(0.0); /* target vector is zero */
204     dotprod = DOT(vres, normtarg);
205     /* check for colinear */
206     if (dotprod >= 1.0-FTINY*FTINY) {
207     if (meas != GEOD_REL)
208     return(0.0);
209     vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
210     return(volen);
211     }
212     if (dotprod <= -1.0+FTINY*FTINY)
213     return(0.0);
214     if (meas == GEOD_ABS)
215     t /= volen;
216     else if (meas == GEOD_REL)
217     t *= acos(dotprod);
218     cost = cos(t);
219 greg 2.17 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
220 greg 2.15 for (i = 0; i < 3; i++)
221     vres[i] = volen*( cost*vres[i] +
222 greg 2.17 sintr*(normtarg[i] - dotprod*vres[i]) );
223 greg 2.15
224     return(volen); /* return vector length */
225     }