#ifndef lint static const char RCSid[] = "$Id: face.c,v 2.11 2003/06/26 00:58:09 schorsch Exp $"; #endif /* * face.c - routines dealing with polygonal faces. */ #include "copyright.h" #include "standard.h" #include "object.h" #include "face.h" /* * A face is given as a list of 3D vertices. The normal * direction and therefore the surface orientation is determined * by the ordering of the vertices. Looking in the direction opposite * the normal (at the front of the face), the vertices will be * listed in counter-clockwise order. * There is no checking done to insure that the edges do not cross * one another. This was considered too expensive and should be unnecessary. * The last vertex is automatically connected to the first. */ #ifdef SMLFLT #define VERTEPS 1e-3 /* allowed vertex error */ #else #define VERTEPS 1e-5 /* allowed vertex error */ #endif FACE * getface(o) /* get arguments for a face */ OBJREC *o; { double d1; int smalloff, badvert; FVECT v1, v2, v3; register FACE *f; register int i; if ((f = (FACE *)o->os) != NULL) return(f); /* already done */ f = (FACE *)malloc(sizeof(FACE)); if (f == NULL) error(SYSTEM, "out of memory in makeface"); if (o->oargs.nfargs < 9 || o->oargs.nfargs % 3) objerror(o, USER, "bad # arguments"); o->os = (char *)f; /* save face */ f->va = o->oargs.farg; f->nv = o->oargs.nfargs / 3; /* check for last==first */ if (dist2(VERTEX(f,0),VERTEX(f,f->nv-1)) <= FTINY*FTINY) f->nv--; /* compute area and normal */ f->norm[0] = f->norm[1] = f->norm[2] = 0.0; v1[0] = VERTEX(f,1)[0] - VERTEX(f,0)[0]; v1[1] = VERTEX(f,1)[1] - VERTEX(f,0)[1]; v1[2] = VERTEX(f,1)[2] - VERTEX(f,0)[2]; for (i = 2; i < f->nv; i++) { v2[0] = VERTEX(f,i)[0] - VERTEX(f,0)[0]; v2[1] = VERTEX(f,i)[1] - VERTEX(f,0)[1]; v2[2] = VERTEX(f,i)[2] - VERTEX(f,0)[2]; fcross(v3, v1, v2); f->norm[0] += v3[0]; f->norm[1] += v3[1]; f->norm[2] += v3[2]; VCOPY(v1, v2); } f->area = normalize(f->norm); if (f->area == 0.0) { objerror(o, WARNING, "zero area"); /* used to be fatal */ f->offset = 0.0; f->ax = 0; return(f); } f->area *= 0.5; /* compute offset */ badvert = 0; f->offset = DOT(f->norm, VERTEX(f,0)); smalloff = fabs(f->offset) <= VERTEPS; for (i = 1; i < f->nv; i++) { d1 = DOT(f->norm, VERTEX(f,i)); if (smalloff) badvert += fabs(d1 - f->offset/i) > VERTEPS; else badvert += fabs(1.0 - d1*i/f->offset) > VERTEPS; f->offset += d1; } f->offset /= (double)f->nv; if (f->nv > 3 && badvert) objerror(o, WARNING, "non-planar vertex"); /* find axis */ f->ax = fabs(f->norm[0]) > fabs(f->norm[1]) ? 0 : 1; if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) f->ax = 2; return(f); } void freeface(o) /* free memory associated with face */ OBJREC *o; { if (o->os == NULL) return; free(o->os); o->os = NULL; } int inface(p, f) /* determine if point is in face */ FVECT p; FACE *f; { int ncross, n; double x, y; int tst; register int xi, yi; register RREAL *p0, *p1; xi = (f->ax+1)%3; yi = (f->ax+2)%3; x = p[xi]; y = p[yi]; n = f->nv; p0 = f->va + 3*(n-1); /* connect last to first */ p1 = f->va; ncross = 0; /* positive x axis cross test */ while (n--) { if ((p0[yi] > y) ^ (p1[yi] > y)) { tst = (p0[xi] > x) + (p1[xi] > x); if (tst == 2) ncross++; else if (tst) ncross += (p1[yi] > p0[yi]) ^ ((p0[yi]-y)*(p1[xi]-x) > (p0[xi]-x)*(p1[yi]-y)); } p0 = p1; p1 += 3; } return(ncross & 01); }