/* Copyright (c) 1986 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * face.c - routines dealing with polygonal faces. * * 8/30/85 */ #include "standard.h" #include "object.h" #include "face.h" /* * A face is given as a list of 3D vertices. The normal * direction and therefore the surface orientation is determined * by the ordering of the vertices. Looking in the direction opposite * the normal (at the front of the face), the vertices will be * listed in counter-clockwise order. * There is no checking done to insure that the edges do not cross * one another. This was considered too expensive and should be unnecessary. * The last vertex is automatically connected to the first. */ #define VERTEPS 1e-4 /* allowed vertex error */ FACE * getface(o) /* get arguments for a face */ OBJREC *o; { double fabs(); double d1; int badvert; FVECT v1, v2, v3; register FACE *f; register int i; if ((f = (FACE *)o->os) != NULL) return(f); /* already done */ f = (FACE *)malloc(sizeof(FACE)); if (f == NULL) error(SYSTEM, "out of memory in makeface"); if (o->oargs.nfargs < 9 || o->oargs.nfargs % 3) objerror(o, USER, "bad # arguments"); f->va = o->oargs.farg; f->nv = o->oargs.nfargs / 3; /* compute area and normal */ f->norm[0] = f->norm[1] = f->norm[2] = 0.0; v1[0] = v1[1] = v1[2] = 0.0; for (i = 1; i < f->nv; i++) { v2[0] = VERTEX(f,i)[0] - VERTEX(f,0)[0]; v2[1] = VERTEX(f,i)[1] - VERTEX(f,0)[1]; v2[2] = VERTEX(f,i)[2] - VERTEX(f,0)[2]; fcross(v3, v1, v2); f->norm[0] += v3[0]; f->norm[1] += v3[1]; f->norm[2] += v3[2]; VCOPY(v1, v2); } f->area = normalize(f->norm); if (f->area == 0.0) { objerror(o, WARNING, "zero area"); /* used to be fatal */ f->offset = 0.0; f->ax = 0; return(f); } f->area *= 0.5; /* compute offset */ badvert = 0; f->offset = DOT(f->norm, VERTEX(f,0)); for (i = 1; i < f->nv; i++) { d1 = DOT(f->norm, VERTEX(f,i)); badvert += fabs(d1 - f->offset/i) > VERTEPS; f->offset += d1; } f->offset /= f->nv; if (badvert) objerror(o, WARNING, "non-planar vertex"); /* find axis */ f->ax = fabs(f->norm[0]) > fabs(f->norm[1]) ? 0 : 1; if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) f->ax = 2; o->os = (char *)f; /* save face */ return(f); } freeface(o) /* free memory associated with face */ OBJREC *o; { free(o->os); o->os = NULL; } inface(p, f) /* determine if point is in face */ FVECT p; FACE *f; { int ncross, n; double x, y; register int xi, yi; register double *p0, *p1; xi = (f->ax+1)%3; yi = (f->ax+2)%3; x = p[xi]; y = p[yi]; n = f->nv; p0 = f->va + 3*(n-1); /* connect last to first */ p1 = f->va; ncross = 0; /* positive x axis cross test */ while (n--) { if ((p0[yi] > y) ^ (p1[yi] > y)) if (p0[xi] > x && p1[xi] > x) ncross++; else if (p0[xi] > x || p1[xi] > x) ncross += (p1[yi] > p0[yi]) ^ ((p0[yi]-y)*(p1[xi]-x) > (p0[xi]-x)*(p1[yi]-y)); p0 = p1; p1 += 3; } return(ncross & 01); }