1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id$"; |
3 |
#endif |
4 |
/* |
5 |
* face.c - routines dealing with polygonal faces. |
6 |
*/ |
7 |
|
8 |
#include "copyright.h" |
9 |
|
10 |
#include "standard.h" |
11 |
|
12 |
#include "object.h" |
13 |
|
14 |
#include "face.h" |
15 |
|
16 |
/* |
17 |
* A face is given as a list of 3D vertices. The normal |
18 |
* direction and therefore the surface orientation is determined |
19 |
* by the ordering of the vertices. Looking in the direction opposite |
20 |
* the normal (at the front of the face), the vertices will be |
21 |
* listed in counter-clockwise order. |
22 |
* There is no checking done to insure that the edges do not cross |
23 |
* one another. This was considered too expensive and should be unnecessary. |
24 |
* The last vertex is automatically connected to the first. |
25 |
*/ |
26 |
|
27 |
#ifdef SMLFLT |
28 |
#define VERTEPS 1e-3 /* allowed vertex error */ |
29 |
#else |
30 |
#define VERTEPS 1e-5 /* allowed vertex error */ |
31 |
#endif |
32 |
|
33 |
|
34 |
FACE * |
35 |
getface(o) /* get arguments for a face */ |
36 |
OBJREC *o; |
37 |
{ |
38 |
double d1; |
39 |
int badvert; |
40 |
FVECT v1, v2, v3; |
41 |
register FACE *f; |
42 |
register int i; |
43 |
|
44 |
if ((f = (FACE *)o->os) != NULL) |
45 |
return(f); /* already done */ |
46 |
|
47 |
f = (FACE *)malloc(sizeof(FACE)); |
48 |
if (f == NULL) |
49 |
error(SYSTEM, "out of memory in makeface"); |
50 |
|
51 |
if (o->oargs.nfargs < 9 || o->oargs.nfargs % 3) |
52 |
objerror(o, USER, "bad # arguments"); |
53 |
|
54 |
o->os = (char *)f; /* save face */ |
55 |
|
56 |
f->va = o->oargs.farg; |
57 |
f->nv = o->oargs.nfargs / 3; |
58 |
/* check for last==first */ |
59 |
if (dist2(VERTEX(f,0),VERTEX(f,f->nv-1)) <= FTINY*FTINY) |
60 |
f->nv--; |
61 |
/* compute area and normal */ |
62 |
f->norm[0] = f->norm[1] = f->norm[2] = 0.0; |
63 |
v1[0] = VERTEX(f,1)[0] - VERTEX(f,0)[0]; |
64 |
v1[1] = VERTEX(f,1)[1] - VERTEX(f,0)[1]; |
65 |
v1[2] = VERTEX(f,1)[2] - VERTEX(f,0)[2]; |
66 |
for (i = 2; i < f->nv; i++) { |
67 |
v2[0] = VERTEX(f,i)[0] - VERTEX(f,0)[0]; |
68 |
v2[1] = VERTEX(f,i)[1] - VERTEX(f,0)[1]; |
69 |
v2[2] = VERTEX(f,i)[2] - VERTEX(f,0)[2]; |
70 |
fcross(v3, v1, v2); |
71 |
f->norm[0] += v3[0]; |
72 |
f->norm[1] += v3[1]; |
73 |
f->norm[2] += v3[2]; |
74 |
VCOPY(v1, v2); |
75 |
} |
76 |
f->area = normalize(f->norm); |
77 |
if (f->area == 0.0) { |
78 |
objerror(o, WARNING, "zero area"); /* used to be fatal */ |
79 |
f->offset = 0.0; |
80 |
f->ax = 0; |
81 |
return(f); |
82 |
} |
83 |
f->area *= 0.5; |
84 |
/* compute offset */ |
85 |
badvert = 0; |
86 |
f->offset = DOT(f->norm, VERTEX(f,0)); |
87 |
for (i = 1; i < f->nv; i++) { |
88 |
d1 = DOT(f->norm, VERTEX(f,i)); |
89 |
badvert += fabs(1.0 - d1*i/f->offset) > VERTEPS; |
90 |
f->offset += d1; |
91 |
} |
92 |
f->offset /= (double)f->nv; |
93 |
if (f->nv > 3 && badvert) |
94 |
objerror(o, WARNING, "non-planar vertex"); |
95 |
/* find axis */ |
96 |
f->ax = fabs(f->norm[0]) > fabs(f->norm[1]) ? 0 : 1; |
97 |
if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) |
98 |
f->ax = 2; |
99 |
|
100 |
return(f); |
101 |
} |
102 |
|
103 |
|
104 |
void |
105 |
freeface(o) /* free memory associated with face */ |
106 |
OBJREC *o; |
107 |
{ |
108 |
if (o->os == NULL) |
109 |
return; |
110 |
free(o->os); |
111 |
o->os = NULL; |
112 |
} |
113 |
|
114 |
|
115 |
int |
116 |
inface(p, f) /* determine if point is in face */ |
117 |
FVECT p; |
118 |
FACE *f; |
119 |
{ |
120 |
int ncross, n; |
121 |
double x, y; |
122 |
int tst; |
123 |
register int xi, yi; |
124 |
register FLOAT *p0, *p1; |
125 |
|
126 |
xi = (f->ax+1)%3; |
127 |
yi = (f->ax+2)%3; |
128 |
x = p[xi]; |
129 |
y = p[yi]; |
130 |
n = f->nv; |
131 |
p0 = f->va + 3*(n-1); /* connect last to first */ |
132 |
p1 = f->va; |
133 |
ncross = 0; |
134 |
/* positive x axis cross test */ |
135 |
while (n--) { |
136 |
if ((p0[yi] > y) ^ (p1[yi] > y)) { |
137 |
tst = (p0[xi] > x) + (p1[xi] > x); |
138 |
if (tst == 2) |
139 |
ncross++; |
140 |
else if (tst) |
141 |
ncross += (p1[yi] > p0[yi]) ^ |
142 |
((p0[yi]-y)*(p1[xi]-x) > |
143 |
(p0[xi]-x)*(p1[yi]-y)); |
144 |
} |
145 |
p0 = p1; |
146 |
p1 += 3; |
147 |
} |
148 |
return(ncross & 01); |
149 |
} |