32 |
|
|
33 |
|
|
34 |
|
FACE * |
35 |
< |
getface(o) /* get arguments for a face */ |
36 |
< |
OBJREC *o; |
35 |
> |
getface( /* get arguments for a face */ |
36 |
> |
OBJREC *o |
37 |
> |
) |
38 |
|
{ |
39 |
|
double d1; |
40 |
|
int smalloff, badvert; |
41 |
|
FVECT v1, v2, v3; |
42 |
< |
register FACE *f; |
43 |
< |
register int i; |
42 |
> |
FACE *f; |
43 |
> |
int i; |
44 |
|
|
45 |
|
if ((f = (FACE *)o->os) != NULL) |
46 |
|
return(f); /* already done */ |
57 |
|
f->va = o->oargs.farg; |
58 |
|
f->nv = o->oargs.nfargs / 3; |
59 |
|
/* check for last==first */ |
60 |
< |
if (dist2(VERTEX(f,0),VERTEX(f,f->nv-1)) <= FTINY*FTINY) |
60 |
> |
if (f->nv > 3 && dist2(VERTEX(f,0),VERTEX(f,f->nv-1)) <= FTINY*FTINY) |
61 |
|
f->nv--; |
62 |
|
/* compute area and normal */ |
63 |
|
f->norm[0] = f->norm[1] = f->norm[2] = 0.0; |
98 |
|
if (f->nv > 3 && badvert) |
99 |
|
objerror(o, WARNING, "non-planar vertex"); |
100 |
|
/* find axis */ |
101 |
< |
f->ax = fabs(f->norm[0]) > fabs(f->norm[1]) ? 0 : 1; |
101 |
> |
f->ax = (fabs(f->norm[0]) > fabs(f->norm[1])); |
102 |
|
if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) |
103 |
|
f->ax = 2; |
104 |
|
|
107 |
|
|
108 |
|
|
109 |
|
void |
110 |
< |
freeface(o) /* free memory associated with face */ |
111 |
< |
OBJREC *o; |
110 |
> |
freeface( /* free memory associated with face */ |
111 |
> |
OBJREC *o |
112 |
> |
) |
113 |
|
{ |
114 |
|
if (o->os == NULL) |
115 |
|
return; |
119 |
|
|
120 |
|
|
121 |
|
int |
122 |
< |
inface(p, f) /* determine if point is in face */ |
123 |
< |
FVECT p; |
124 |
< |
FACE *f; |
122 |
> |
inface( /* determine if point is in face */ |
123 |
> |
FVECT p, |
124 |
> |
FACE *f |
125 |
> |
) |
126 |
|
{ |
127 |
|
int ncross, n; |
128 |
|
double x, y; |
129 |
|
int tst; |
130 |
< |
register int xi, yi; |
131 |
< |
register FLOAT *p0, *p1; |
130 |
> |
int xi, yi; |
131 |
> |
RREAL *p0, *p1; |
132 |
|
|
133 |
< |
xi = (f->ax+1)%3; |
134 |
< |
yi = (f->ax+2)%3; |
133 |
> |
if ((xi = f->ax + 1) >= 3) xi -= 3; |
134 |
> |
if ((yi = xi + 1) >= 3) yi -= 3; |
135 |
|
x = p[xi]; |
136 |
|
y = p[yi]; |
137 |
|
n = f->nv; |
144 |
|
tst = (p0[xi] > x) + (p1[xi] > x); |
145 |
|
if (tst == 2) |
146 |
|
ncross++; |
147 |
< |
else if (tst) |
148 |
< |
ncross += (p1[yi] > p0[yi]) ^ |
149 |
< |
((p0[yi]-y)*(p1[xi]-x) > |
150 |
< |
(p0[xi]-x)*(p1[yi]-y)); |
151 |
< |
} |
147 |
> |
else if (tst) { |
148 |
> |
double prodA = (p0[yi]-y)*(p1[xi]-x); |
149 |
> |
double prodB = (p0[xi]-x)*(p1[yi]-y); |
150 |
> |
if (FRELEQ(prodA, prodB)) |
151 |
> |
return(1); /* edge case #1 */ |
152 |
> |
ncross += (p1[yi] > p0[yi]) ^ (prodA > prodB); |
153 |
> |
} else if (FRELEQ(p0[xi], x) && FRELEQ(p1[xi], x)) |
154 |
> |
return(1); /* edge case #2 */ |
155 |
> |
} else if (FRELEQ(p0[yi], y) && FRELEQ(p1[yi], y) && |
156 |
> |
(p0[xi] > x) ^ (p1[xi] > x)) |
157 |
> |
return(1); /* edge case #3 */ |
158 |
|
p0 = p1; |
159 |
|
p1 += 3; |
160 |
|
} |