ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/erf.c
Revision: 3.1
Committed: Sat Feb 22 02:07:22 2003 UTC (21 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1, rad4R1, rad4R0, rad3R5, rad3R6, rad3R6P1, rad3R8, rad3R9
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# User Rev Content
1 greg 3.1 #ifndef lint
2     static const char RCSid[] = "$Id$";
3     #endif
4     #ifndef lint
5     static char sccsid[] = "@(#)erf.c 1.1 87/12/21 SMI"; /* from UCB 4.1 12/25/82 */
6     #endif
7    
8     /*
9     C program for floating point error function
10    
11     erf(x) returns the error function of its argument
12     erfc(x) returns 1.0-erf(x)
13    
14     erf(x) is defined by
15     ${2 over sqrt(pi)} int from 0 to x e sup {-t sup 2} dt$
16    
17     the entry for erfc is provided because of the
18     extreme loss of relative accuracy if erf(x) is
19     called for large x and the result subtracted
20     from 1. (e.g. for x= 10, 12 places are lost).
21    
22     There are no error returns.
23    
24     Calls exp.
25    
26     Coefficients for large x are #5667 from Hart & Cheney (18.72D).
27     */
28    
29     #define M 7
30     #define N 9
31     static double torp = 1.1283791670955125738961589031;
32     static double p1[] = {
33     0.804373630960840172832162e5,
34     0.740407142710151470082064e4,
35     0.301782788536507577809226e4,
36     0.380140318123903008244444e2,
37     0.143383842191748205576712e2,
38     -.288805137207594084924010e0,
39     0.007547728033418631287834e0,
40     };
41     static double q1[] = {
42     0.804373630960840172826266e5,
43     0.342165257924628539769006e5,
44     0.637960017324428279487120e4,
45     0.658070155459240506326937e3,
46     0.380190713951939403753468e2,
47     0.100000000000000000000000e1,
48     0.0,
49     };
50     static double p2[] = {
51     0.18263348842295112592168999e4,
52     0.28980293292167655611275846e4,
53     0.2320439590251635247384768711e4,
54     0.1143262070703886173606073338e4,
55     0.3685196154710010637133875746e3,
56     0.7708161730368428609781633646e2,
57     0.9675807882987265400604202961e1,
58     0.5641877825507397413087057563e0,
59     0.0,
60     };
61     static double q2[] = {
62     0.18263348842295112595576438e4,
63     0.495882756472114071495438422e4,
64     0.60895424232724435504633068e4,
65     0.4429612803883682726711528526e4,
66     0.2094384367789539593790281779e4,
67     0.6617361207107653469211984771e3,
68     0.1371255960500622202878443578e3,
69     0.1714980943627607849376131193e2,
70     1.0,
71     };
72    
73     double
74     erf(arg) double arg;{
75     double erfc();
76     int sign;
77     double argsq;
78     double d, n;
79     int i;
80    
81     sign = 1;
82     if(arg < 0.){
83     arg = -arg;
84     sign = -1;
85     }
86     if(arg < 0.5){
87     argsq = arg*arg;
88     for(n=0,d=0,i=M-1; i>=0; i--){
89     n = n*argsq + p1[i];
90     d = d*argsq + q1[i];
91     }
92     return(sign*torp*arg*n/d);
93     }
94     if(arg >= 10.)
95     return(sign*1.);
96     return(sign*(1. - erfc(arg)));
97     }
98    
99     double
100     erfc(arg) double arg;{
101     double erf();
102     double exp();
103     double n, d;
104     int i;
105    
106     if(arg < 0.)
107     return(2. - erfc(-arg));
108     /*
109     if(arg < 0.5)
110     return(1. - erf(arg));
111     */
112     if(arg >= 10.)
113     return(0.);
114    
115     for(n=0,d=0,i=N-1; i>=0; i--){
116     n = n*arg + p2[i];
117     d = d*arg + q2[i];
118     }
119     return(exp(-arg*arg)*n/d);
120     }