| 1 |
greg |
3.1 |
#ifndef lint
|
| 2 |
greg |
3.2 |
static const char RCSid[] = "$Id: erf.c,v 3.1 2003/02/22 02:07:22 greg Exp $";
|
| 3 |
greg |
3.1 |
#endif
|
| 4 |
|
|
#ifndef lint
|
| 5 |
|
|
static char sccsid[] = "@(#)erf.c 1.1 87/12/21 SMI"; /* from UCB 4.1 12/25/82 */
|
| 6 |
|
|
#endif
|
| 7 |
|
|
|
| 8 |
greg |
3.2 |
#include "rtmath.h"
|
| 9 |
|
|
|
| 10 |
greg |
3.1 |
/*
|
| 11 |
|
|
C program for floating point error function
|
| 12 |
|
|
|
| 13 |
|
|
erf(x) returns the error function of its argument
|
| 14 |
|
|
erfc(x) returns 1.0-erf(x)
|
| 15 |
|
|
|
| 16 |
|
|
erf(x) is defined by
|
| 17 |
|
|
${2 over sqrt(pi)} int from 0 to x e sup {-t sup 2} dt$
|
| 18 |
|
|
|
| 19 |
|
|
the entry for erfc is provided because of the
|
| 20 |
|
|
extreme loss of relative accuracy if erf(x) is
|
| 21 |
|
|
called for large x and the result subtracted
|
| 22 |
|
|
from 1. (e.g. for x= 10, 12 places are lost).
|
| 23 |
|
|
|
| 24 |
|
|
There are no error returns.
|
| 25 |
|
|
|
| 26 |
|
|
Calls exp.
|
| 27 |
|
|
|
| 28 |
|
|
Coefficients for large x are #5667 from Hart & Cheney (18.72D).
|
| 29 |
|
|
*/
|
| 30 |
|
|
|
| 31 |
|
|
#define M 7
|
| 32 |
|
|
#define N 9
|
| 33 |
|
|
static double torp = 1.1283791670955125738961589031;
|
| 34 |
|
|
static double p1[] = {
|
| 35 |
|
|
0.804373630960840172832162e5,
|
| 36 |
|
|
0.740407142710151470082064e4,
|
| 37 |
|
|
0.301782788536507577809226e4,
|
| 38 |
|
|
0.380140318123903008244444e2,
|
| 39 |
|
|
0.143383842191748205576712e2,
|
| 40 |
|
|
-.288805137207594084924010e0,
|
| 41 |
|
|
0.007547728033418631287834e0,
|
| 42 |
|
|
};
|
| 43 |
|
|
static double q1[] = {
|
| 44 |
|
|
0.804373630960840172826266e5,
|
| 45 |
|
|
0.342165257924628539769006e5,
|
| 46 |
|
|
0.637960017324428279487120e4,
|
| 47 |
|
|
0.658070155459240506326937e3,
|
| 48 |
|
|
0.380190713951939403753468e2,
|
| 49 |
|
|
0.100000000000000000000000e1,
|
| 50 |
|
|
0.0,
|
| 51 |
|
|
};
|
| 52 |
|
|
static double p2[] = {
|
| 53 |
|
|
0.18263348842295112592168999e4,
|
| 54 |
|
|
0.28980293292167655611275846e4,
|
| 55 |
|
|
0.2320439590251635247384768711e4,
|
| 56 |
|
|
0.1143262070703886173606073338e4,
|
| 57 |
|
|
0.3685196154710010637133875746e3,
|
| 58 |
|
|
0.7708161730368428609781633646e2,
|
| 59 |
|
|
0.9675807882987265400604202961e1,
|
| 60 |
|
|
0.5641877825507397413087057563e0,
|
| 61 |
|
|
0.0,
|
| 62 |
|
|
};
|
| 63 |
|
|
static double q2[] = {
|
| 64 |
|
|
0.18263348842295112595576438e4,
|
| 65 |
|
|
0.495882756472114071495438422e4,
|
| 66 |
|
|
0.60895424232724435504633068e4,
|
| 67 |
|
|
0.4429612803883682726711528526e4,
|
| 68 |
|
|
0.2094384367789539593790281779e4,
|
| 69 |
|
|
0.6617361207107653469211984771e3,
|
| 70 |
|
|
0.1371255960500622202878443578e3,
|
| 71 |
|
|
0.1714980943627607849376131193e2,
|
| 72 |
|
|
1.0,
|
| 73 |
|
|
};
|
| 74 |
|
|
|
| 75 |
|
|
double
|
| 76 |
greg |
3.2 |
erf(double arg) {
|
| 77 |
greg |
3.1 |
int sign;
|
| 78 |
|
|
double argsq;
|
| 79 |
|
|
double d, n;
|
| 80 |
|
|
int i;
|
| 81 |
|
|
|
| 82 |
|
|
sign = 1;
|
| 83 |
|
|
if(arg < 0.){
|
| 84 |
|
|
arg = -arg;
|
| 85 |
|
|
sign = -1;
|
| 86 |
|
|
}
|
| 87 |
|
|
if(arg < 0.5){
|
| 88 |
|
|
argsq = arg*arg;
|
| 89 |
|
|
for(n=0,d=0,i=M-1; i>=0; i--){
|
| 90 |
|
|
n = n*argsq + p1[i];
|
| 91 |
|
|
d = d*argsq + q1[i];
|
| 92 |
|
|
}
|
| 93 |
|
|
return(sign*torp*arg*n/d);
|
| 94 |
|
|
}
|
| 95 |
|
|
if(arg >= 10.)
|
| 96 |
|
|
return(sign*1.);
|
| 97 |
|
|
return(sign*(1. - erfc(arg)));
|
| 98 |
|
|
}
|
| 99 |
|
|
|
| 100 |
|
|
double
|
| 101 |
greg |
3.2 |
erfc(double arg) {
|
| 102 |
greg |
3.1 |
double n, d;
|
| 103 |
|
|
int i;
|
| 104 |
|
|
|
| 105 |
|
|
if(arg < 0.)
|
| 106 |
|
|
return(2. - erfc(-arg));
|
| 107 |
|
|
/*
|
| 108 |
|
|
if(arg < 0.5)
|
| 109 |
|
|
return(1. - erf(arg));
|
| 110 |
|
|
*/
|
| 111 |
|
|
if(arg >= 10.)
|
| 112 |
|
|
return(0.);
|
| 113 |
|
|
|
| 114 |
|
|
for(n=0,d=0,i=N-1; i>=0; i--){
|
| 115 |
|
|
n = n*arg + p2[i];
|
| 116 |
|
|
d = d*arg + q2[i];
|
| 117 |
|
|
}
|
| 118 |
|
|
return(exp(-arg*arg)*n/d);
|
| 119 |
|
|
}
|