| 1 | 
#ifndef lint | 
| 2 | 
static const char RCSid[] = "$Id: dircode.c,v 2.12 2020/03/06 19:05:19 greg Exp $"; | 
| 3 | 
#endif | 
| 4 | 
/* | 
| 5 | 
 * Compute a 4-byte direction code (externals defined in rtmath.h). | 
| 6 | 
 * | 
| 7 | 
 * Mean accuracy is 0.0022 degrees, with a maximum error of 0.0058 degrees. | 
| 8 | 
 */ | 
| 9 | 
 | 
| 10 | 
#include "rtmath.h" | 
| 11 | 
 | 
| 12 | 
#define DCSCALE         11584.5         /* ((1<<13)-.5)*sqrt(2) */ | 
| 13 | 
#define FXNEG           01 | 
| 14 | 
#define FYNEG           02 | 
| 15 | 
#define FZNEG           04 | 
| 16 | 
#define F1X             010 | 
| 17 | 
#define F2Z             020 | 
| 18 | 
#define F1SFT           5 | 
| 19 | 
#define F2SFT           18 | 
| 20 | 
#define FMASK           0x1fff | 
| 21 | 
 | 
| 22 | 
int32 | 
| 23 | 
encodedir(FVECT dv)             /* encode a normalized direction vector */ | 
| 24 | 
{ | 
| 25 | 
        int32   dc = 0; | 
| 26 | 
        int     cd[3], cm; | 
| 27 | 
        int     i; | 
| 28 | 
 | 
| 29 | 
        for (i = 0; i < 3; i++) | 
| 30 | 
                if (dv[i] < 0.) { | 
| 31 | 
                        cd[i] = (int)(dv[i] * -DCSCALE + .5); | 
| 32 | 
                        dc |= FXNEG<<i; | 
| 33 | 
                } else | 
| 34 | 
                        cd[i] = (int)(dv[i] * DCSCALE + .5); | 
| 35 | 
        if (!(cd[0] | cd[1] | cd[2])) | 
| 36 | 
                return(0);              /* zero normal */ | 
| 37 | 
        if (cd[0] <= cd[1]) { | 
| 38 | 
                dc |= F1X | cd[0] << F1SFT; | 
| 39 | 
                cm = cd[1]; | 
| 40 | 
        } else { | 
| 41 | 
                dc |= cd[1] << F1SFT; | 
| 42 | 
                cm = cd[0]; | 
| 43 | 
        } | 
| 44 | 
        if (cd[2] <= cm) | 
| 45 | 
                dc |= F2Z | cd[2] << F2SFT; | 
| 46 | 
        else | 
| 47 | 
                dc |= cm << F2SFT; | 
| 48 | 
        if (!dc)        /* don't generate 0 code normally */ | 
| 49 | 
                dc = F1X; | 
| 50 | 
        return(dc); | 
| 51 | 
} | 
| 52 | 
 | 
| 53 | 
#if 0           /* original version for reference */ | 
| 54 | 
 | 
| 55 | 
void | 
| 56 | 
decodedir(FVECT dv, int32 dc)   /* decode a normalized direction vector */ | 
| 57 | 
{ | 
| 58 | 
        double  d1, d2, der; | 
| 59 | 
 | 
| 60 | 
        if (!dc) {              /* special code for zero normal */ | 
| 61 | 
                dv[0] = dv[1] = dv[2] = 0.; | 
| 62 | 
                return; | 
| 63 | 
        } | 
| 64 | 
        d1 = (dc>>F1SFT & FMASK)*(1./DCSCALE); | 
| 65 | 
        d2 = (dc>>F2SFT & FMASK)*(1./DCSCALE); | 
| 66 | 
        der = sqrt(1. - d1*d1 - d2*d2); | 
| 67 | 
        if (dc & F1X) { | 
| 68 | 
                dv[0] = d1; | 
| 69 | 
                if (dc & F2Z) { dv[1] = der; dv[2] = d2; } | 
| 70 | 
                else { dv[1] = d2; dv[2] = der; } | 
| 71 | 
        } else { | 
| 72 | 
                dv[1] = d1; | 
| 73 | 
                if (dc & F2Z) { dv[0] = der; dv[2] = d2; } | 
| 74 | 
                else { dv[0] = d2; dv[2] = der; } | 
| 75 | 
        } | 
| 76 | 
        if (dc & FXNEG) dv[0] = -dv[0]; | 
| 77 | 
        if (dc & FYNEG) dv[1] = -dv[1]; | 
| 78 | 
        if (dc & FZNEG) dv[2] = -dv[2]; | 
| 79 | 
} | 
| 80 | 
 | 
| 81 | 
#else    | 
| 82 | 
 | 
| 83 | 
void | 
| 84 | 
decodedir(FVECT dv, int32 dc)   /* decode a normalized direction vector */ | 
| 85 | 
{ | 
| 86 | 
        static const short      itab[4][3] = { | 
| 87 | 
                                        {1,0,2},{0,1,2},{1,2,0},{0,2,1} | 
| 88 | 
                                }; | 
| 89 | 
        static const RREAL      neg[2] = {1., -1.}; | 
| 90 | 
        const int               ndx = ((dc & F2Z) != 0)<<1 | ((dc & F1X) != 0); | 
| 91 | 
        double                  d1, d2, der; | 
| 92 | 
 | 
| 93 | 
        if (!dc) {              /* special code for zero normal */ | 
| 94 | 
                dv[0] = dv[1] = dv[2] = 0.; | 
| 95 | 
                return; | 
| 96 | 
        } | 
| 97 | 
        d1 = (dc>>F1SFT & FMASK)*(1./DCSCALE); | 
| 98 | 
        d2 = (dc>>F2SFT & FMASK)*(1./DCSCALE); | 
| 99 | 
        der = sqrt(1. - d1*d1 - d2*d2); | 
| 100 | 
        dv[itab[ndx][0]] = d1; | 
| 101 | 
        dv[itab[ndx][1]] = d2; | 
| 102 | 
        dv[itab[ndx][2]] = der; | 
| 103 | 
        dv[0] *= neg[(dc&FXNEG)!=0]; | 
| 104 | 
        dv[1] *= neg[(dc&FYNEG)!=0]; | 
| 105 | 
        dv[2] *= neg[(dc&FZNEG)!=0]; | 
| 106 | 
} | 
| 107 | 
 | 
| 108 | 
#endif | 
| 109 | 
 | 
| 110 | 
double | 
| 111 | 
dir2diff(int32 dc1, int32 dc2)  /* approx. radians^2 between directions */ | 
| 112 | 
{ | 
| 113 | 
        FVECT   v1, v2; | 
| 114 | 
 | 
| 115 | 
        if (dc1 == dc2) | 
| 116 | 
                return 0.; | 
| 117 | 
 | 
| 118 | 
        decodedir(v1, dc1); | 
| 119 | 
        decodedir(v2, dc2); | 
| 120 | 
 | 
| 121 | 
        return(2. - 2.*DOT(v1,v2)); | 
| 122 | 
} | 
| 123 | 
 | 
| 124 | 
double | 
| 125 | 
fdir2diff(int32 dc1, FVECT v2)  /* approx. radians^2 between directions */ | 
| 126 | 
{ | 
| 127 | 
        FVECT   v1; | 
| 128 | 
 | 
| 129 | 
        decodedir(v1, dc1); | 
| 130 | 
 | 
| 131 | 
        return(2. - 2.*DOT(v1,v2)); | 
| 132 | 
} |