| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: dircode.c,v 2.9 2019/05/14 17:21:50 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Compute a 4-byte direction code (externals defined in rtmath.h).
|
| 6 |
*
|
| 7 |
* Mean accuracy is 0.0022 degrees, with a maximum error of 0.0058 degrees.
|
| 8 |
*/
|
| 9 |
|
| 10 |
#include "rtmath.h"
|
| 11 |
|
| 12 |
#define DCSCALE 11585.2 /* (1<<13)*sqrt(2) */
|
| 13 |
#define FXNEG 01
|
| 14 |
#define FYNEG 02
|
| 15 |
#define FZNEG 04
|
| 16 |
#define F1X 010
|
| 17 |
#define F2Z 020
|
| 18 |
#define F1SFT 5
|
| 19 |
#define F2SFT 18
|
| 20 |
#define FMASK 0x1fff
|
| 21 |
|
| 22 |
int32
|
| 23 |
encodedir(FVECT dv) /* encode a normalized direction vector */
|
| 24 |
{
|
| 25 |
int32 dc = 0;
|
| 26 |
int cd[3], cm;
|
| 27 |
int i;
|
| 28 |
|
| 29 |
for (i = 0; i < 3; i++)
|
| 30 |
if (dv[i] < 0.) {
|
| 31 |
cd[i] = (int)(dv[i] * -DCSCALE);
|
| 32 |
dc |= FXNEG<<i;
|
| 33 |
} else
|
| 34 |
cd[i] = (int)(dv[i] * DCSCALE);
|
| 35 |
if (!(cd[0] | cd[1] | cd[2]))
|
| 36 |
return(0); /* zero normal */
|
| 37 |
if (cd[0] <= cd[1]) {
|
| 38 |
dc |= F1X | cd[0] << F1SFT;
|
| 39 |
cm = cd[1];
|
| 40 |
} else {
|
| 41 |
dc |= cd[1] << F1SFT;
|
| 42 |
cm = cd[0];
|
| 43 |
}
|
| 44 |
if (cd[2] <= cm)
|
| 45 |
dc |= F2Z | cd[2] << F2SFT;
|
| 46 |
else
|
| 47 |
dc |= cm << F2SFT;
|
| 48 |
if (!dc) /* don't generate 0 code normally */
|
| 49 |
dc = F1X;
|
| 50 |
return(dc);
|
| 51 |
}
|
| 52 |
|
| 53 |
#if 0 /* original version for reference */
|
| 54 |
|
| 55 |
void
|
| 56 |
decodedir(FVECT dv, int32 dc) /* decode a normalized direction vector */
|
| 57 |
{
|
| 58 |
double d1, d2, der;
|
| 59 |
|
| 60 |
if (!dc) { /* special code for zero normal */
|
| 61 |
dv[0] = dv[1] = dv[2] = 0.;
|
| 62 |
return;
|
| 63 |
}
|
| 64 |
d1 = ((dc>>F1SFT & FMASK)+.5)*(1./DCSCALE);
|
| 65 |
d2 = ((dc>>F2SFT & FMASK)+.5)*(1./DCSCALE);
|
| 66 |
der = sqrt(1. - d1*d1 - d2*d2);
|
| 67 |
if (dc & F1X) {
|
| 68 |
dv[0] = d1;
|
| 69 |
if (dc & F2Z) { dv[1] = der; dv[2] = d2; }
|
| 70 |
else { dv[1] = d2; dv[2] = der; }
|
| 71 |
} else {
|
| 72 |
dv[1] = d1;
|
| 73 |
if (dc & F2Z) { dv[0] = der; dv[2] = d2; }
|
| 74 |
else { dv[0] = d2; dv[2] = der; }
|
| 75 |
}
|
| 76 |
if (dc & FXNEG) dv[0] = -dv[0];
|
| 77 |
if (dc & FYNEG) dv[1] = -dv[1];
|
| 78 |
if (dc & FZNEG) dv[2] = -dv[2];
|
| 79 |
}
|
| 80 |
|
| 81 |
#else
|
| 82 |
|
| 83 |
void
|
| 84 |
decodedir(FVECT dv, int32 dc) /* decode a normalized direction vector */
|
| 85 |
{
|
| 86 |
static const short itab[4][3] = {
|
| 87 |
{1,0,2},{0,1,2},{1,2,0},{0,2,1}
|
| 88 |
};
|
| 89 |
static const RREAL neg[2] = {1., -1.};
|
| 90 |
const int ndx = ((dc & F2Z) != 0)<<1 | ((dc & F1X) != 0);
|
| 91 |
double d1, d2, der;
|
| 92 |
|
| 93 |
if (!dc) { /* special code for zero normal */
|
| 94 |
dv[0] = dv[1] = dv[2] = 0.;
|
| 95 |
return;
|
| 96 |
}
|
| 97 |
d1 = ((dc>>F1SFT & FMASK)+.5)*(1./DCSCALE);
|
| 98 |
d2 = ((dc>>F2SFT & FMASK)+.5)*(1./DCSCALE);
|
| 99 |
der = sqrt(1. - d1*d1 - d2*d2);
|
| 100 |
dv[itab[ndx][0]] = d1;
|
| 101 |
dv[itab[ndx][1]] = d2;
|
| 102 |
dv[itab[ndx][2]] = der;
|
| 103 |
dv[0] *= neg[(dc&FXNEG)!=0];
|
| 104 |
dv[1] *= neg[(dc&FYNEG)!=0];
|
| 105 |
dv[2] *= neg[(dc&FZNEG)!=0];
|
| 106 |
}
|
| 107 |
|
| 108 |
#endif
|
| 109 |
|
| 110 |
double
|
| 111 |
dir2diff(int32 dc1, int32 dc2) /* approx. radians^2 between directions */
|
| 112 |
{
|
| 113 |
FVECT v1, v2;
|
| 114 |
|
| 115 |
if (dc1 == dc2)
|
| 116 |
return 0.;
|
| 117 |
|
| 118 |
decodedir(v1, dc1);
|
| 119 |
decodedir(v2, dc2);
|
| 120 |
|
| 121 |
return(2. - 2.*DOT(v1,v2));
|
| 122 |
}
|
| 123 |
|
| 124 |
double
|
| 125 |
fdir2diff(int32 dc1, FVECT v2) /* approx. radians^2 between directions */
|
| 126 |
{
|
| 127 |
FVECT v1;
|
| 128 |
|
| 129 |
decodedir(v1, dc1);
|
| 130 |
|
| 131 |
return(2. - 2.*DOT(v1,v2));
|
| 132 |
}
|