2 |
|
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
4 |
|
/* |
5 |
< |
* Compute 4-byte direction code (assume this fits into int) |
5 |
> |
* Compute a 4-byte direction code (externals defined in rtmath.h). |
6 |
> |
* |
7 |
> |
* Mean accuracy is 0.0022 degrees, with a maximum error of 0.0058 degrees. |
8 |
|
*/ |
9 |
|
|
10 |
< |
#include "standard.h" |
10 |
> |
#include "rtmath.h" |
11 |
|
|
12 |
|
#define DCSCALE 11585.2 /* (1<<13)*sqrt(2) */ |
13 |
|
#define FXNEG 01 |
19 |
|
#define F2SFT 18 |
20 |
|
#define FMASK 0x1fff |
21 |
|
|
22 |
< |
int4 |
23 |
< |
encodedir(dv) /* encode a normalized direction vector */ |
22 |
< |
FVECT dv; |
22 |
> |
int32 |
23 |
> |
encodedir(FVECT dv) /* encode a normalized direction vector */ |
24 |
|
{ |
25 |
< |
register int4 dc = 0; |
25 |
> |
int32 dc = 0; |
26 |
|
int cd[3], cm; |
27 |
< |
register int i; |
27 |
> |
int i; |
28 |
|
|
29 |
|
for (i = 0; i < 3; i++) |
30 |
|
if (dv[i] < 0.) { |
31 |
< |
cd[i] = dv[i] * -DCSCALE; |
31 |
> |
cd[i] = (int)(dv[i] * -DCSCALE); |
32 |
|
dc |= FXNEG<<i; |
33 |
|
} else |
34 |
< |
cd[i] = dv[i] * DCSCALE; |
34 |
> |
cd[i] = (int)(dv[i] * DCSCALE); |
35 |
> |
if (!(cd[0] | cd[1] | cd[2])) |
36 |
> |
return(0); /* zero normal */ |
37 |
|
if (cd[0] <= cd[1]) { |
38 |
|
dc |= F1X | cd[0] << F1SFT; |
39 |
|
cm = cd[1]; |
45 |
|
dc |= F2Z | cd[2] << F2SFT; |
46 |
|
else |
47 |
|
dc |= cm << F2SFT; |
48 |
< |
if (!dc) /* don't generate 0 code */ |
48 |
> |
if (!dc) /* don't generate 0 code normally */ |
49 |
|
dc = F1X; |
50 |
|
return(dc); |
51 |
|
} |
52 |
|
|
53 |
+ |
#if 0 /* original version for reference */ |
54 |
|
|
55 |
|
void |
56 |
< |
decodedir(dv, dc) /* decode a normalized direction vector */ |
53 |
< |
register FVECT dv; /* returned */ |
54 |
< |
register int4 dc; |
56 |
> |
decodedir(FVECT dv, int32 dc) /* decode a normalized direction vector */ |
57 |
|
{ |
58 |
|
double d1, d2, der; |
59 |
|
|
60 |
+ |
if (!dc) { /* special code for zero normal */ |
61 |
+ |
dv[0] = dv[1] = dv[2] = 0.; |
62 |
+ |
return; |
63 |
+ |
} |
64 |
|
d1 = ((dc>>F1SFT & FMASK)+.5)*(1./DCSCALE); |
65 |
|
d2 = ((dc>>F2SFT & FMASK)+.5)*(1./DCSCALE); |
66 |
|
der = sqrt(1. - d1*d1 - d2*d2); |
78 |
|
if (dc & FZNEG) dv[2] = -dv[2]; |
79 |
|
} |
80 |
|
|
81 |
+ |
#else |
82 |
|
|
83 |
+ |
void |
84 |
+ |
decodedir(FVECT dv, int32 dc) /* decode a normalized direction vector */ |
85 |
+ |
{ |
86 |
+ |
static const short itab[4][3] = { |
87 |
+ |
{1,0,2},{0,1,2},{1,2,0},{0,2,1} |
88 |
+ |
}; |
89 |
+ |
static const RREAL neg[2] = {1., -1.}; |
90 |
+ |
const int ndx = ((dc & F2Z) != 0)<<1 | ((dc & F1X) != 0); |
91 |
+ |
double d1, d2, der; |
92 |
+ |
|
93 |
+ |
if (!dc) { /* special code for zero normal */ |
94 |
+ |
dv[0] = dv[1] = dv[2] = 0.; |
95 |
+ |
return; |
96 |
+ |
} |
97 |
+ |
d1 = ((dc>>F1SFT & FMASK)+.5)*(1./DCSCALE); |
98 |
+ |
d2 = ((dc>>F2SFT & FMASK)+.5)*(1./DCSCALE); |
99 |
+ |
der = sqrt(1. - d1*d1 - d2*d2); |
100 |
+ |
dv[itab[ndx][0]] = d1; |
101 |
+ |
dv[itab[ndx][1]] = d2; |
102 |
+ |
dv[itab[ndx][2]] = der; |
103 |
+ |
dv[0] *= neg[(dc&FXNEG)!=0]; |
104 |
+ |
dv[1] *= neg[(dc&FYNEG)!=0]; |
105 |
+ |
dv[2] *= neg[(dc&FZNEG)!=0]; |
106 |
+ |
} |
107 |
+ |
|
108 |
+ |
#endif |
109 |
+ |
|
110 |
|
double |
111 |
< |
dir2diff(dc1, dc2) /* approx. radians^2 between directions */ |
78 |
< |
int4 dc1, dc2; |
111 |
> |
dir2diff(int32 dc1, int32 dc2) /* approx. radians^2 between directions */ |
112 |
|
{ |
113 |
|
FVECT v1, v2; |
114 |
|
|
115 |
+ |
if (dc1 == dc2) |
116 |
+ |
return 0.; |
117 |
+ |
|
118 |
|
decodedir(v1, dc1); |
119 |
|
decodedir(v2, dc2); |
120 |
|
|
121 |
|
return(2. - 2.*DOT(v1,v2)); |
122 |
|
} |
123 |
|
|
88 |
– |
|
124 |
|
double |
125 |
< |
fdir2diff(dc1, v2) /* approx. radians^2 between directions */ |
91 |
< |
int4 dc1; |
92 |
< |
register FVECT v2; |
125 |
> |
fdir2diff(int32 dc1, FVECT v2) /* approx. radians^2 between directions */ |
126 |
|
{ |
127 |
|
FVECT v1; |
128 |
|
|