1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: data.c,v 2.4 2025/03/09 19:11:51 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* data.c - routines dealing with interpolated data. |
6 |
*/ |
7 |
|
8 |
#include "copyright.h" |
9 |
|
10 |
#include <time.h> |
11 |
|
12 |
#include "platform.h" |
13 |
#include "standard.h" |
14 |
#include "color.h" |
15 |
#include "view.h" |
16 |
#include "data.h" |
17 |
|
18 |
/* picture memory usage before warning */ |
19 |
#ifndef PSIZWARN |
20 |
#ifdef SMLMEM |
21 |
#define PSIZWARN 3000000 |
22 |
#else |
23 |
#define PSIZWARN 50000000 |
24 |
#endif |
25 |
#endif |
26 |
|
27 |
#ifndef TABSIZ |
28 |
#define TABSIZ 997 /* table size (prime) */ |
29 |
#endif |
30 |
|
31 |
#define hash(s) (shash(s)%TABSIZ) |
32 |
|
33 |
|
34 |
static DATARRAY *dtab[TABSIZ]; /* data array list */ |
35 |
|
36 |
static gethfunc headaspect; |
37 |
|
38 |
|
39 |
DATARRAY * |
40 |
getdata( /* get data array dname */ |
41 |
char *dname |
42 |
) |
43 |
{ |
44 |
char *dfname; |
45 |
FILE *fp; |
46 |
int asize=0; |
47 |
int i, j; |
48 |
DATARRAY *dp; |
49 |
/* look for array in list */ |
50 |
for (dp = dtab[hash(dname)]; dp != NULL; dp = dp->next) |
51 |
if (!strcmp(dname, dp->name)) |
52 |
return(dp); /* found! */ |
53 |
/* |
54 |
* If we haven't loaded the data already, we will look |
55 |
* for it in the directories specified by the library path. |
56 |
* |
57 |
* The file has the following format: |
58 |
* |
59 |
* N |
60 |
* beg0 end0 n0 |
61 |
* beg1 end1 n1 |
62 |
* . . . |
63 |
* begN endN nN |
64 |
* data, later dimensions changing faster |
65 |
* . . . |
66 |
* |
67 |
* For irregularly spaced points, the following can be |
68 |
* substituted for begi endi ni: |
69 |
* |
70 |
* 0 0 ni p0i p1i .. pni |
71 |
*/ |
72 |
|
73 |
if ((dfname = getpath(dname, getrlibpath(), R_OK)) == NULL) { |
74 |
sprintf(errmsg, "cannot find data file \"%s\"", dname); |
75 |
error(SYSTEM, errmsg); |
76 |
} |
77 |
if ((fp = fopen(dfname, "r")) == NULL) { |
78 |
sprintf(errmsg, "cannot open data file \"%s\"", dfname); |
79 |
error(SYSTEM, errmsg); |
80 |
} |
81 |
/* get dimensions */ |
82 |
if (fgetval(fp, 'i', &asize) <= 0) |
83 |
goto scanerr; |
84 |
if ((asize <= 0) | (asize > MAXDDIM)) { |
85 |
sprintf(errmsg, "bad number of dimensions for \"%s\"", dname); |
86 |
error(USER, errmsg); |
87 |
} |
88 |
if ((dp = (DATARRAY *)malloc(sizeof(DATARRAY))) == NULL) |
89 |
goto memerr; |
90 |
dp->name = savestr(dname); |
91 |
dp->type = DATATY; |
92 |
dp->nd = asize; |
93 |
asize = 1; |
94 |
for (i = 0; i < dp->nd; i++) { |
95 |
if (fgetval(fp, DATATY, &dp->dim[i].org) <= 0) |
96 |
goto scanerr; |
97 |
if (fgetval(fp, DATATY, &dp->dim[i].siz) <= 0) |
98 |
goto scanerr; |
99 |
if (fgetval(fp, 'i', &dp->dim[i].ne) <= 0) |
100 |
goto scanerr; |
101 |
if (dp->dim[i].ne < 2) |
102 |
goto scanerr; |
103 |
asize *= dp->dim[i].ne; |
104 |
if ((dp->dim[i].siz -= dp->dim[i].org) == 0) { |
105 |
dp->dim[i].p = (DATATYPE *) |
106 |
malloc(dp->dim[i].ne*sizeof(DATATYPE)); |
107 |
if (dp->dim[i].p == NULL) |
108 |
goto memerr; |
109 |
for (j = 0; j < dp->dim[i].ne; j++) |
110 |
if (fgetval(fp, DATATY, &dp->dim[i].p[j]) <= 0) |
111 |
goto scanerr; |
112 |
for (j = 1; j < dp->dim[i].ne-1; j++) |
113 |
if ((dp->dim[i].p[j-1] < dp->dim[i].p[j]) != |
114 |
(dp->dim[i].p[j] < dp->dim[i].p[j+1])) |
115 |
goto scanerr; |
116 |
dp->dim[i].org = dp->dim[i].p[0]; |
117 |
dp->dim[i].siz = dp->dim[i].p[dp->dim[i].ne-1] |
118 |
- dp->dim[i].p[0]; |
119 |
} else |
120 |
dp->dim[i].p = NULL; |
121 |
} |
122 |
if ((dp->arr.d = (DATATYPE *)malloc(asize*sizeof(DATATYPE))) == NULL) |
123 |
goto memerr; |
124 |
|
125 |
for (i = 0; i < asize; i++) |
126 |
if (fgetval(fp, DATATY, &dp->arr.d[i]) <= 0) |
127 |
goto scanerr; |
128 |
fclose(fp); |
129 |
i = hash(dname); |
130 |
dp->next = dtab[i]; |
131 |
return(dtab[i] = dp); |
132 |
memerr: |
133 |
error(SYSTEM, "out of memory in getdata"); |
134 |
scanerr: |
135 |
sprintf(errmsg, "%s in data file \"%s\"", |
136 |
feof(fp) ? "unexpected EOF" : "bad format", dfname); |
137 |
error(USER, errmsg); |
138 |
return NULL; /* pro forma return */ |
139 |
} |
140 |
|
141 |
|
142 |
static int |
143 |
headaspect( /* check string for aspect ratio */ |
144 |
char *s, |
145 |
void *iap |
146 |
) |
147 |
{ |
148 |
char fmt[MAXFMTLEN]; |
149 |
|
150 |
if (isaspect(s)) |
151 |
*(double*)iap *= aspectval(s); |
152 |
else if (formatval(fmt, s) && strcmp(fmt, COLRFMT)) |
153 |
*(double*)iap = 0.0; |
154 |
return(0); |
155 |
} |
156 |
|
157 |
DATARRAY * |
158 |
getpict( /* get picture pname */ |
159 |
char *pname |
160 |
) |
161 |
{ |
162 |
double inpaspect; |
163 |
char *pfname; |
164 |
FILE *fp; |
165 |
COLR *scanin; |
166 |
int sl, ns; |
167 |
RESOLU inpres; |
168 |
RREAL loc[2]; |
169 |
int y; |
170 |
int x, i; |
171 |
DATARRAY *pp; |
172 |
/* look for array in list */ |
173 |
for (pp = dtab[hash(pname)]; pp != NULL; pp = pp->next) |
174 |
if (!strcmp(pname, pp->name)) |
175 |
return(pp); /* found! */ |
176 |
|
177 |
if ((pfname = getpath(pname, getrlibpath(), R_OK)) == NULL) { |
178 |
sprintf(errmsg, "cannot find picture file \"%s\"", pname); |
179 |
error(SYSTEM, errmsg); |
180 |
} |
181 |
if ((pp = (DATARRAY *)malloc(3*sizeof(DATARRAY))) == NULL) |
182 |
goto memerr; |
183 |
|
184 |
pp[0].name = savestr(pname); |
185 |
|
186 |
if ((fp = fopen(pfname, "rb")) == NULL) { |
187 |
sprintf(errmsg, "cannot open picture file \"%s\"", pfname); |
188 |
error(SYSTEM, errmsg); |
189 |
} |
190 |
/* get dimensions */ |
191 |
inpaspect = 1.0; |
192 |
getheader(fp, headaspect, &inpaspect); |
193 |
if (inpaspect <= FTINY || !fgetsresolu(&inpres, fp)) |
194 |
goto readerr; |
195 |
pp[0].nd = 2; |
196 |
pp[0].dim[0].ne = inpres.yr; |
197 |
pp[0].dim[1].ne = inpres.xr; |
198 |
pp[0].dim[0].org = |
199 |
pp[0].dim[1].org = 0.0; |
200 |
if (inpres.xr <= inpres.yr*inpaspect) { |
201 |
pp[0].dim[0].siz = inpaspect * |
202 |
(double)inpres.yr/inpres.xr; |
203 |
pp[0].dim[1].siz = 1.0; |
204 |
} else { |
205 |
pp[0].dim[0].siz = 1.0; |
206 |
pp[0].dim[1].siz = (double)inpres.xr/inpres.yr / |
207 |
inpaspect; |
208 |
} |
209 |
pp[0].dim[0].p = pp[0].dim[1].p = NULL; |
210 |
sl = scanlen(&inpres); /* allocate array */ |
211 |
ns = numscans(&inpres); |
212 |
i = ns*sl*sizeof(COLR); |
213 |
#if PSIZWARN |
214 |
if (i > PSIZWARN) { /* memory warning */ |
215 |
sprintf(errmsg, "picture file \"%s\" using %.1f MB of memory", |
216 |
pname, i*(1.0/(1024*1024))); |
217 |
error(WARNING, errmsg); |
218 |
} |
219 |
#endif |
220 |
if ((pp[0].arr.c = (COLR *)malloc(i)) == NULL) |
221 |
goto memerr; |
222 |
/* load picture */ |
223 |
if ((scanin = (COLR *)malloc(sl*sizeof(COLR))) == NULL) |
224 |
goto memerr; |
225 |
for (y = 0; y < ns; y++) { |
226 |
if (freadcolrs(scanin, sl, fp) < 0) |
227 |
goto readerr; |
228 |
for (x = 0; x < sl; x++) { |
229 |
pix2loc(loc, &inpres, x, y); |
230 |
i = (int)(loc[1]*inpres.yr)*inpres.xr + |
231 |
(int)(loc[0]*inpres.xr); |
232 |
copycolr(pp[0].arr.c[i], scanin[x]); |
233 |
} |
234 |
} |
235 |
free(scanin); |
236 |
fclose(fp); |
237 |
i = hash(pname); |
238 |
pp[0].next = dtab[i]; /* link into picture list */ |
239 |
pp[1] = pp[0]; |
240 |
pp[2] = pp[0]; |
241 |
pp[0].type = RED; /* differentiate RGB records */ |
242 |
pp[1].type = GRN; |
243 |
pp[2].type = BLU; |
244 |
return(dtab[i] = pp); |
245 |
memerr: |
246 |
error(SYSTEM, "out of memory in getpict"); |
247 |
readerr: |
248 |
sprintf(errmsg, "bad picture file \"%s\"", pfname); |
249 |
error(USER, errmsg); |
250 |
return NULL; /* pro forma return */ |
251 |
} |
252 |
|
253 |
|
254 |
/* header info type for hyperspectral image */ |
255 |
typedef struct { |
256 |
float wlpart[4]; /* wavelength partitions */ |
257 |
int nc; /* number of components */ |
258 |
double inpaspect; /* pixel aspect ratio */ |
259 |
} SPECINFO; |
260 |
|
261 |
static int |
262 |
specheadline( /* get info for spectral image */ |
263 |
char *s, |
264 |
void *cdp |
265 |
) |
266 |
{ |
267 |
SPECINFO *sip = (SPECINFO *)cdp; |
268 |
char fmt[MAXFMTLEN]; |
269 |
|
270 |
if (isaspect(s)) |
271 |
sip->inpaspect *= aspectval(s); |
272 |
else if (isncomp(s)) |
273 |
sip->nc = ncompval(s); |
274 |
else if (iswlsplit(s)) |
275 |
wlsplitval(sip->wlpart, s); |
276 |
else if (formatval(fmt, s) && strcmp(fmt, SPECFMT)) |
277 |
return(-1); |
278 |
return(0); |
279 |
} |
280 |
|
281 |
DATARRAY * |
282 |
getspec( /* load hyperspectral image as data */ |
283 |
char *sname |
284 |
) |
285 |
{ |
286 |
SPECINFO si; |
287 |
char *pfname; |
288 |
FILE *fp; |
289 |
int sl, ns; |
290 |
int y, i; |
291 |
DATARRAY *pp; |
292 |
/* look for array in list */ |
293 |
for (pp = dtab[hash(sname)]; pp != NULL; pp = pp->next) |
294 |
if (!strcmp(sname, pp->name)) |
295 |
return(pp); /* found! */ |
296 |
|
297 |
if ((pfname = getpath(sname, getrlibpath(), R_OK)) == NULL) { |
298 |
sprintf(errmsg, "cannot find hyperspectral image \"%s\"", sname); |
299 |
error(SYSTEM, errmsg); |
300 |
} |
301 |
if ((fp = fopen(pfname, "rb")) == NULL) { |
302 |
sprintf(errmsg, "cannot open hyperspectral image \"%s\"", pfname); |
303 |
error(SYSTEM, errmsg); |
304 |
} |
305 |
si.wlpart[3] = 0; |
306 |
si.nc = 0; |
307 |
si.inpaspect = 1.0; |
308 |
if (getheader(fp, specheadline, &si) < 0 || |
309 |
(si.nc <= 3) | (si.nc > MAXCSAMP) | (si.wlpart[3] < 1) || |
310 |
!fscnresolu(&sl, &ns, fp)) |
311 |
goto readerr; |
312 |
|
313 |
if ((pp = (DATARRAY *)malloc(sizeof(DATARRAY))) == NULL) |
314 |
goto memerr; |
315 |
|
316 |
pp->name = savestr(sname); |
317 |
pp->type = SPECTY; |
318 |
pp->nd = 3; |
319 |
pp->dim[0].ne = ns; |
320 |
pp->dim[1].ne = sl; |
321 |
pp->dim[0].org = |
322 |
pp->dim[1].org = 0.0; |
323 |
if (sl <= ns*si.inpaspect) { |
324 |
pp->dim[0].siz = si.inpaspect * (double)ns/sl; |
325 |
pp->dim[1].siz = 1.0; |
326 |
} else { |
327 |
pp->dim[0].siz = 1.0; |
328 |
pp->dim[1].siz = (double)sl/ns / si.inpaspect; |
329 |
} |
330 |
pp->dim[2].ne = si.nc; |
331 |
pp->dim[2].siz = si.wlpart[3] - si.wlpart[0]; |
332 |
pp->dim[2].org = si.wlpart[0] + 0.5*pp->dim[2].siz/si.nc; |
333 |
pp->dim[2].siz *= (si.nc - 1.0)/si.nc; |
334 |
pp->dim[0].p = pp->dim[1].p = pp->dim[2].p = NULL; |
335 |
i = ns*sl*(si.nc+1); |
336 |
#if PSIZWARN |
337 |
if (i > PSIZWARN) { /* memory warning */ |
338 |
sprintf(errmsg, "hyperspectral image \"%s\" using %.1f MB of memory", |
339 |
sname, i*(1.0/(1024*1024))); |
340 |
error(WARNING, errmsg); |
341 |
} |
342 |
#endif |
343 |
if ((pp->arr.s = (uby8 *)malloc(i)) == NULL) |
344 |
goto memerr; |
345 |
for (y = ns; y-- > 0; ) /* read each scanline */ |
346 |
if (freadscolrs(pp->arr.s + y*sl*(si.nc+1), si.nc, sl, fp) < 0) |
347 |
goto readerr; |
348 |
fclose(fp); |
349 |
i = hash(sname); /* insert in hash table */ |
350 |
pp->next = dtab[i]; |
351 |
return(dtab[i] = pp); |
352 |
memerr: |
353 |
error(SYSTEM, "out of memory in getspec"); |
354 |
readerr: |
355 |
sprintf(errmsg, "bad hyperspectral image \"%s\"", pfname); |
356 |
error(USER, errmsg); |
357 |
return NULL; /* pro forma return */ |
358 |
} |
359 |
|
360 |
|
361 |
void |
362 |
freedata( /* release data array reference */ |
363 |
DATARRAY *dta |
364 |
) |
365 |
{ |
366 |
DATARRAY head; |
367 |
int hval, nents; |
368 |
DATARRAY *dpl, *dp; |
369 |
int i; |
370 |
|
371 |
if (dta == NULL) { /* free all if NULL */ |
372 |
hval = 0; nents = TABSIZ; |
373 |
} else { |
374 |
if (dta->next == dta) { |
375 |
free(dta); /* unlisted temp array */ |
376 |
return; |
377 |
} |
378 |
hval = hash(dta->name); nents = 1; |
379 |
if (!*dta->name) { /* not a data file? */ |
380 |
dta->next = dtab[hval]; |
381 |
dtab[hval] = dta; /* ...fake position */ |
382 |
} |
383 |
} |
384 |
while (nents--) { |
385 |
head.next = dtab[hval]; |
386 |
dpl = &head; |
387 |
while ((dp = dpl->next) != NULL) |
388 |
if ((dta == NULL) | (dta == dp)) { |
389 |
dpl->next = dp->next; |
390 |
free(dp->arr.p); |
391 |
for (i = 0; i < dp->nd; i++) |
392 |
if (dp->dim[i].p != NULL) |
393 |
free(dp->dim[i].p); |
394 |
freestr(dp->name); |
395 |
free(dp); |
396 |
} else |
397 |
dpl = dp; |
398 |
dtab[hval++] = head.next; |
399 |
} |
400 |
} |
401 |
|
402 |
|
403 |
/* internal call to interpolate data value or vector */ |
404 |
static double |
405 |
data_interp(DATARRAY *dp, double *pt, double coef, DATATYPE *rvec) |
406 |
{ |
407 |
DATARRAY sd; |
408 |
int stride, i; |
409 |
double x, c0, c1, y0, y1; |
410 |
/* unlikely, but may as well check */ |
411 |
if ((-FTINY <= coef) & (coef <= FTINY)) |
412 |
return(0.); |
413 |
/* set up dimensions for recursion */ |
414 |
if (dp->nd > 1) { |
415 |
sd.name = dp->name; |
416 |
sd.type = dp->type; |
417 |
sd.nd = dp->nd - 1; |
418 |
memcpy(sd.dim, dp->dim+1, sd.nd*sizeof(struct dadim)); |
419 |
stride = sd.dim[i = sd.nd-1].ne + (sd.type==SPECTY); |
420 |
while (i-- > 0) |
421 |
stride *= sd.dim[i].ne; |
422 |
} |
423 |
/* get independent variable */ |
424 |
if (dp->dim[0].p == NULL) { /* evenly spaced points */ |
425 |
x = (pt[0] - dp->dim[0].org)/dp->dim[0].siz; |
426 |
x *= (double)(dp->dim[0].ne - 1); |
427 |
i = x; |
428 |
if (i < 0) |
429 |
i = 0; |
430 |
else if (i > dp->dim[0].ne - 2) |
431 |
i = dp->dim[0].ne - 2; |
432 |
} else { /* unevenly spaced points */ |
433 |
int lower, upper; |
434 |
if (dp->dim[0].siz > 0.) { |
435 |
lower = 0; |
436 |
upper = dp->dim[0].ne; |
437 |
} else { |
438 |
lower = dp->dim[0].ne; |
439 |
upper = 0; |
440 |
} |
441 |
do { |
442 |
i = (lower + upper) >> 1; |
443 |
if (pt[0] >= dp->dim[0].p[i]) |
444 |
lower = i; |
445 |
else |
446 |
upper = i; |
447 |
} while (i != (lower + upper) >> 1); |
448 |
|
449 |
if (i > dp->dim[0].ne - 2) |
450 |
i = dp->dim[0].ne - 2; |
451 |
|
452 |
x = i + (pt[0] - dp->dim[0].p[i]) / |
453 |
(dp->dim[0].p[i+1] - dp->dim[0].p[i]); |
454 |
} |
455 |
/* |
456 |
* Compute interpolation coefficients: |
457 |
* extrapolate as far as one division, then |
458 |
* taper off harmonically to zero. |
459 |
*/ |
460 |
if (x > i+2) { |
461 |
c0 = 1./(i-1 - x); |
462 |
c1 = -2.*c0; |
463 |
} else if (x < i-1) { |
464 |
c1 = 1./(x - i); |
465 |
c0 = -2.*c1; |
466 |
} else { |
467 |
c0 = i+1 - x; |
468 |
c1 = x - i; |
469 |
} |
470 |
c0 *= coef; |
471 |
c1 *= coef; |
472 |
/* check if vector interp */ |
473 |
if ((dp->nd == 2) & (rvec != NULL)) { |
474 |
if (dp->type == DATATY) { |
475 |
sd.arr.d = dp->arr.d + i*stride; |
476 |
for (i = sd.dim[0].ne; i--; ) |
477 |
rvec[i] += c0*sd.arr.d[i] |
478 |
+ c1*sd.arr.d[i+stride]; |
479 |
} else if (dp->type == SPECTY) { |
480 |
double f; |
481 |
sd.arr.s = dp->arr.s + i*stride; |
482 |
if ((sd.arr.s[sd.dim[0].ne] > 0) & ((-FTINY>c0)|(c0>FTINY))) { |
483 |
f = c0 * cxponent[sd.arr.s[sd.dim[0].ne]]; |
484 |
for (i = sd.dim[0].ne; i--; ) |
485 |
rvec[i] += f*(sd.arr.s[i] + .5); |
486 |
} |
487 |
sd.arr.s += stride; |
488 |
if ((sd.arr.s[sd.dim[0].ne] > 0) & ((-FTINY>c1)|(c1>FTINY))) { |
489 |
f = c1 * cxponent[sd.arr.s[sd.dim[0].ne]]; |
490 |
for (i = sd.dim[0].ne; i--; ) |
491 |
rvec[i] += f*(sd.arr.s[i] + .5); |
492 |
} |
493 |
} else { |
494 |
sd.arr.c = dp->arr.c + i*stride; |
495 |
for (i = sd.dim[0].ne; i--; ) |
496 |
rvec[i] += c0*colrval(sd.arr.c[i],sd.type) |
497 |
+ c1*colrval(sd.arr.c[i+stride],sd.type); |
498 |
} |
499 |
return(0.); /* return value ignored */ |
500 |
} |
501 |
/* get dependent variable */ |
502 |
if (dp->nd > 1) { |
503 |
if (dp->type == DATATY) { |
504 |
sd.arr.d = dp->arr.d + i*stride; |
505 |
y0 = data_interp(&sd, pt+1, c0, rvec); |
506 |
sd.arr.d += stride; |
507 |
} else if (dp->type == SPECTY) { |
508 |
sd.arr.s = dp->arr.s + i*stride; |
509 |
y0 = data_interp(&sd, pt+1, c0, rvec); |
510 |
sd.arr.s += stride; |
511 |
} else { |
512 |
sd.arr.c = dp->arr.c + i*stride; |
513 |
y0 = data_interp(&sd, pt+1, c0, rvec); |
514 |
sd.arr.c += stride; |
515 |
} |
516 |
y1 = data_interp(&sd, pt+1, c1, rvec); |
517 |
} else { /* end of recursion */ |
518 |
if (dp->type == DATATY) { |
519 |
y0 = dp->arr.d[i]; |
520 |
y1 = dp->arr.d[i+1]; |
521 |
} else if (dp->type == SPECTY) { |
522 |
double f = cxponent[dp->arr.s[dp->dim[0].ne]]; |
523 |
y0 = f*(dp->arr.s[i] + 0.5); |
524 |
y1 = f*(dp->arr.s[i+1] + 0.5); |
525 |
} else { |
526 |
y0 = colrval(dp->arr.c[i],dp->type); |
527 |
y1 = colrval(dp->arr.c[i+1],dp->type); |
528 |
} |
529 |
y0 *= c0; |
530 |
y1 *= c1; |
531 |
} |
532 |
return(y0 + y1); /* coefficients already applied */ |
533 |
} |
534 |
|
535 |
|
536 |
double |
537 |
datavalue( /* interpolate data value at a point */ |
538 |
DATARRAY *dp, |
539 |
double *pt |
540 |
) |
541 |
{ |
542 |
return(data_interp(dp, pt, 1., NULL)); |
543 |
} |
544 |
|
545 |
|
546 |
/* Interpolate final vector corresponding to last dimension in data array */ |
547 |
DATARRAY * |
548 |
datavector(DATARRAY *dp, double *pt) |
549 |
{ |
550 |
DATARRAY *newdp; |
551 |
|
552 |
if (dp->nd < 2) |
553 |
error(INTERNAL, "datavector() called with 1-D array"); |
554 |
/* create vector array */ |
555 |
newdp = (DATARRAY *)malloc(sizeof(DATARRAY) - |
556 |
(MAXDDIM-1)*sizeof(struct dadim) + |
557 |
sizeof(DATATYPE)*dp->dim[dp->nd-1].ne); |
558 |
if (newdp == NULL) |
559 |
error(SYSTEM, "out of memory in datavector"); |
560 |
newdp->next = newdp; /* flags us as temp vector */ |
561 |
newdp->name = dp->name; |
562 |
newdp->type = DATATY; |
563 |
newdp->nd = 1; /* vector data goes here */ |
564 |
newdp->dim[0] = dp->dim[dp->nd-1]; |
565 |
newdp->arr.d = (DATATYPE *)(newdp->dim + 1); |
566 |
memset(newdp->arr.d, 0, sizeof(DATATYPE)*newdp->dim[0].ne); |
567 |
|
568 |
(void)data_interp(dp, pt, 1., newdp->arr.d); |
569 |
|
570 |
return(newdp); /* will be free'd using free() */ |
571 |
} |