#ifndef lint static const char RCSid[] = "$Id: cone.c,v 2.8 2003/06/26 00:58:09 schorsch Exp $"; #endif /* * cone.c - routines for making cones */ #include "copyright.h" #include "standard.h" #include "object.h" #include "otypes.h" #include "cone.h" /* * In general, a cone may be any one of a cone, a cylinder, a ring, * a cup (inverted cone), or a tube (inverted cylinder). * Most cones are specified with a starting point and radius and * an ending point and radius. In the cases of a cylinder or tube, * only one radius is needed. In the case of a ring, a normal direction * is specified instead of a second endpoint. * * mtype (cone|cup) name * 0 * 0 * 8 P0x P0y P0z P1x P1y P1z R0 R1 * * mtype (cylinder|tube) name * 0 * 0 * 7 P0x P0y P0z P1x P1y P1z R * * mtype ring name * 0 * 0 * 8 Px Py Pz Nx Ny Nz R0 R1 */ CONE * getcone(o, getxf) /* get cone structure */ register OBJREC *o; int getxf; { int sgn0, sgn1; register CONE *co; if ((co = (CONE *)o->os) == NULL) { co = (CONE *)malloc(sizeof(CONE)); if (co == NULL) error(SYSTEM, "out of memory in makecone"); co->ca = o->oargs.farg; /* get radii */ if (o->otype == OBJ_CYLINDER | o->otype == OBJ_TUBE) { if (o->oargs.nfargs != 7) goto argcerr; if (co->ca[6] < -FTINY) { objerror(o, WARNING, "negative radius"); o->otype = o->otype == OBJ_CYLINDER ? OBJ_TUBE : OBJ_CYLINDER; co->ca[6] = -co->ca[6]; } else if (co->ca[6] <= FTINY) goto raderr; co->p0 = 0; co->p1 = 3; co->r0 = co->r1 = 6; } else { if (o->oargs.nfargs != 8) goto argcerr; if (co->ca[6] < -FTINY) sgn0 = -1; else if (co->ca[6] > FTINY) sgn0 = 1; else sgn0 = 0; if (co->ca[7] < -FTINY) sgn1 = -1; else if (co->ca[7] > FTINY) sgn1 = 1; else sgn1 = 0; if (sgn0+sgn1 == 0) goto raderr; if (sgn0 < 0 | sgn1 < 0) { objerror(o, o->otype==OBJ_RING?USER:WARNING, "negative radii"); o->otype = o->otype == OBJ_CONE ? OBJ_CUP : OBJ_CONE; } co->ca[6] = co->ca[6]*sgn0; co->ca[7] = co->ca[7]*sgn1; if (co->ca[7] - co->ca[6] > FTINY) { if (o->otype == OBJ_RING) co->p0 = co->p1 = 0; else { co->p0 = 0; co->p1 = 3; } co->r0 = 6; co->r1 = 7; } else if (co->ca[6] - co->ca[7] > FTINY) { if (o->otype == OBJ_RING) co->p0 = co->p1 = 0; else { co->p0 = 3; co->p1 = 0; } co->r0 = 7; co->r1 = 6; } else { if (o->otype == OBJ_RING) goto raderr; o->otype = o->otype == OBJ_CONE ? OBJ_CYLINDER : OBJ_TUBE; o->oargs.nfargs = 7; co->p0 = 0; co->p1 = 3; co->r0 = co->r1 = 6; } } /* get axis orientation */ if (o->otype == OBJ_RING) VCOPY(co->ad, o->oargs.farg+3); else { co->ad[0] = CO_P1(co)[0] - CO_P0(co)[0]; co->ad[1] = CO_P1(co)[1] - CO_P0(co)[1]; co->ad[2] = CO_P1(co)[2] - CO_P0(co)[2]; } co->al = normalize(co->ad); if (co->al == 0.0) objerror(o, USER, "zero orientation"); /* compute axis and side lengths */ if (o->otype == OBJ_RING) { co->al = 0.0; co->sl = CO_R1(co) - CO_R0(co); } else if (o->otype == OBJ_CONE | o->otype == OBJ_CUP) { co->sl = co->ca[7] - co->ca[6]; co->sl = sqrt(co->sl*co->sl + co->al*co->al); } else { /* OBJ_CYLINDER or OBJ_TUBE */ co->sl = co->al; } co->tm = NULL; o->os = (char *)co; } if (getxf && co->tm == NULL) conexform(co); return(co); argcerr: objerror(o, USER, "bad # arguments"); raderr: objerror(o, USER, "illegal radii"); return NULL; /* pro forma return */ } void freecone(o) /* free memory associated with cone */ OBJREC *o; { register CONE *co = (CONE *)o->os; if (co == NULL) return; if (co->tm != NULL) free((void *)co->tm); free((void *)co); o->os = NULL; } void conexform(co) /* get cone transformation matrix */ register CONE *co; { MAT4 m4; register double d; register int i; co->tm = (RREAL (*)[4])malloc(sizeof(MAT4)); if (co->tm == NULL) error(SYSTEM, "out of memory in conexform"); /* translate to origin */ setident4(co->tm); if (co->r0 == co->r1) d = 0.0; else d = CO_R0(co) / (CO_R1(co) - CO_R0(co)); for (i = 0; i < 3; i++) co->tm[3][i] = d*(CO_P1(co)[i] - CO_P0(co)[i]) - CO_P0(co)[i]; /* rotate to positive z-axis */ setident4(m4); d = co->ad[1]*co->ad[1] + co->ad[2]*co->ad[2]; if (d <= FTINY*FTINY) { m4[0][0] = 0.0; m4[0][2] = co->ad[0]; m4[2][0] = -co->ad[0]; m4[2][2] = 0.0; } else { d = sqrt(d); m4[0][0] = d; m4[1][0] = -co->ad[0]*co->ad[1]/d; m4[2][0] = -co->ad[0]*co->ad[2]/d; m4[1][1] = co->ad[2]/d; m4[2][1] = -co->ad[1]/d; m4[0][2] = co->ad[0]; m4[1][2] = co->ad[1]; m4[2][2] = co->ad[2]; } multmat4(co->tm, co->tm, m4); /* scale z-axis */ if (co->p0 != co->p1 & co->r0 != co->r1) { setident4(m4); m4[2][2] = (CO_R1(co) - CO_R0(co)) / co->al; multmat4(co->tm, co->tm, m4); } }