| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: cone.c,v 2.6 2003/02/25 02:47:21 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* cone.c - routines for making cones
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "copyright.h"
|
| 9 |
|
| 10 |
#include "standard.h"
|
| 11 |
|
| 12 |
#include "object.h"
|
| 13 |
|
| 14 |
#include "otypes.h"
|
| 15 |
|
| 16 |
#include "cone.h"
|
| 17 |
|
| 18 |
/*
|
| 19 |
* In general, a cone may be any one of a cone, a cylinder, a ring,
|
| 20 |
* a cup (inverted cone), or a tube (inverted cylinder).
|
| 21 |
* Most cones are specified with a starting point and radius and
|
| 22 |
* an ending point and radius. In the cases of a cylinder or tube,
|
| 23 |
* only one radius is needed. In the case of a ring, a normal direction
|
| 24 |
* is specified instead of a second endpoint.
|
| 25 |
*
|
| 26 |
* mtype (cone|cup) name
|
| 27 |
* 0
|
| 28 |
* 0
|
| 29 |
* 8 P0x P0y P0z P1x P1y P1z R0 R1
|
| 30 |
*
|
| 31 |
* mtype (cylinder|tube) name
|
| 32 |
* 0
|
| 33 |
* 0
|
| 34 |
* 7 P0x P0y P0z P1x P1y P1z R
|
| 35 |
*
|
| 36 |
* mtype ring name
|
| 37 |
* 0
|
| 38 |
* 0
|
| 39 |
* 8 Px Py Pz Nx Ny Nz R0 R1
|
| 40 |
*/
|
| 41 |
|
| 42 |
|
| 43 |
CONE *
|
| 44 |
getcone(o, getxf) /* get cone structure */
|
| 45 |
register OBJREC *o;
|
| 46 |
int getxf;
|
| 47 |
{
|
| 48 |
int sgn0, sgn1;
|
| 49 |
register CONE *co;
|
| 50 |
|
| 51 |
if ((co = (CONE *)o->os) == NULL) {
|
| 52 |
|
| 53 |
co = (CONE *)malloc(sizeof(CONE));
|
| 54 |
if (co == NULL)
|
| 55 |
error(SYSTEM, "out of memory in makecone");
|
| 56 |
|
| 57 |
co->ca = o->oargs.farg;
|
| 58 |
/* get radii */
|
| 59 |
if (o->otype == OBJ_CYLINDER | o->otype == OBJ_TUBE) {
|
| 60 |
if (o->oargs.nfargs != 7)
|
| 61 |
goto argcerr;
|
| 62 |
if (co->ca[6] < -FTINY) {
|
| 63 |
objerror(o, WARNING, "negative radius");
|
| 64 |
o->otype = o->otype == OBJ_CYLINDER ?
|
| 65 |
OBJ_TUBE : OBJ_CYLINDER;
|
| 66 |
co->ca[6] = -co->ca[6];
|
| 67 |
} else if (co->ca[6] <= FTINY)
|
| 68 |
goto raderr;
|
| 69 |
co->p0 = 0; co->p1 = 3;
|
| 70 |
co->r0 = co->r1 = 6;
|
| 71 |
} else {
|
| 72 |
if (o->oargs.nfargs != 8)
|
| 73 |
goto argcerr;
|
| 74 |
if (co->ca[6] < -FTINY) sgn0 = -1;
|
| 75 |
else if (co->ca[6] > FTINY) sgn0 = 1;
|
| 76 |
else sgn0 = 0;
|
| 77 |
if (co->ca[7] < -FTINY) sgn1 = -1;
|
| 78 |
else if (co->ca[7] > FTINY) sgn1 = 1;
|
| 79 |
else sgn1 = 0;
|
| 80 |
if (sgn0+sgn1 == 0)
|
| 81 |
goto raderr;
|
| 82 |
if (sgn0 < 0 | sgn1 < 0) {
|
| 83 |
objerror(o, o->otype==OBJ_RING?USER:WARNING,
|
| 84 |
"negative radii");
|
| 85 |
o->otype = o->otype == OBJ_CONE ?
|
| 86 |
OBJ_CUP : OBJ_CONE;
|
| 87 |
}
|
| 88 |
co->ca[6] = co->ca[6]*sgn0;
|
| 89 |
co->ca[7] = co->ca[7]*sgn1;
|
| 90 |
if (co->ca[7] - co->ca[6] > FTINY) {
|
| 91 |
if (o->otype == OBJ_RING)
|
| 92 |
co->p0 = co->p1 = 0;
|
| 93 |
else {
|
| 94 |
co->p0 = 0; co->p1 = 3;
|
| 95 |
}
|
| 96 |
co->r0 = 6; co->r1 = 7;
|
| 97 |
} else if (co->ca[6] - co->ca[7] > FTINY) {
|
| 98 |
if (o->otype == OBJ_RING)
|
| 99 |
co->p0 = co->p1 = 0;
|
| 100 |
else {
|
| 101 |
co->p0 = 3; co->p1 = 0;
|
| 102 |
}
|
| 103 |
co->r0 = 7; co->r1 = 6;
|
| 104 |
} else {
|
| 105 |
if (o->otype == OBJ_RING)
|
| 106 |
goto raderr;
|
| 107 |
o->otype = o->otype == OBJ_CONE ?
|
| 108 |
OBJ_CYLINDER : OBJ_TUBE;
|
| 109 |
o->oargs.nfargs = 7;
|
| 110 |
co->p0 = 0; co->p1 = 3;
|
| 111 |
co->r0 = co->r1 = 6;
|
| 112 |
}
|
| 113 |
}
|
| 114 |
/* get axis orientation */
|
| 115 |
if (o->otype == OBJ_RING)
|
| 116 |
VCOPY(co->ad, o->oargs.farg+3);
|
| 117 |
else {
|
| 118 |
co->ad[0] = CO_P1(co)[0] - CO_P0(co)[0];
|
| 119 |
co->ad[1] = CO_P1(co)[1] - CO_P0(co)[1];
|
| 120 |
co->ad[2] = CO_P1(co)[2] - CO_P0(co)[2];
|
| 121 |
}
|
| 122 |
co->al = normalize(co->ad);
|
| 123 |
if (co->al == 0.0)
|
| 124 |
objerror(o, USER, "zero orientation");
|
| 125 |
/* compute axis and side lengths */
|
| 126 |
if (o->otype == OBJ_RING) {
|
| 127 |
co->al = 0.0;
|
| 128 |
co->sl = CO_R1(co) - CO_R0(co);
|
| 129 |
} else if (o->otype == OBJ_CONE | o->otype == OBJ_CUP) {
|
| 130 |
co->sl = co->ca[7] - co->ca[6];
|
| 131 |
co->sl = sqrt(co->sl*co->sl + co->al*co->al);
|
| 132 |
} else { /* OBJ_CYLINDER or OBJ_TUBE */
|
| 133 |
co->sl = co->al;
|
| 134 |
}
|
| 135 |
co->tm = NULL;
|
| 136 |
o->os = (char *)co;
|
| 137 |
}
|
| 138 |
if (getxf && co->tm == NULL)
|
| 139 |
conexform(co);
|
| 140 |
return(co);
|
| 141 |
|
| 142 |
argcerr:
|
| 143 |
objerror(o, USER, "bad # arguments");
|
| 144 |
raderr:
|
| 145 |
objerror(o, USER, "illegal radii");
|
| 146 |
return NULL; /* pro forma return */
|
| 147 |
}
|
| 148 |
|
| 149 |
|
| 150 |
void
|
| 151 |
freecone(o) /* free memory associated with cone */
|
| 152 |
OBJREC *o;
|
| 153 |
{
|
| 154 |
register CONE *co = (CONE *)o->os;
|
| 155 |
|
| 156 |
if (co == NULL)
|
| 157 |
return;
|
| 158 |
if (co->tm != NULL)
|
| 159 |
free((void *)co->tm);
|
| 160 |
free((void *)co);
|
| 161 |
o->os = NULL;
|
| 162 |
}
|
| 163 |
|
| 164 |
|
| 165 |
void
|
| 166 |
conexform(co) /* get cone transformation matrix */
|
| 167 |
register CONE *co;
|
| 168 |
{
|
| 169 |
MAT4 m4;
|
| 170 |
register double d;
|
| 171 |
register int i;
|
| 172 |
|
| 173 |
co->tm = (FLOAT (*)[4])malloc(sizeof(MAT4));
|
| 174 |
if (co->tm == NULL)
|
| 175 |
error(SYSTEM, "out of memory in conexform");
|
| 176 |
|
| 177 |
/* translate to origin */
|
| 178 |
setident4(co->tm);
|
| 179 |
if (co->r0 == co->r1)
|
| 180 |
d = 0.0;
|
| 181 |
else
|
| 182 |
d = CO_R0(co) / (CO_R1(co) - CO_R0(co));
|
| 183 |
for (i = 0; i < 3; i++)
|
| 184 |
co->tm[3][i] = d*(CO_P1(co)[i] - CO_P0(co)[i])
|
| 185 |
- CO_P0(co)[i];
|
| 186 |
|
| 187 |
/* rotate to positive z-axis */
|
| 188 |
setident4(m4);
|
| 189 |
d = co->ad[1]*co->ad[1] + co->ad[2]*co->ad[2];
|
| 190 |
if (d <= FTINY*FTINY) {
|
| 191 |
m4[0][0] = 0.0;
|
| 192 |
m4[0][2] = co->ad[0];
|
| 193 |
m4[2][0] = -co->ad[0];
|
| 194 |
m4[2][2] = 0.0;
|
| 195 |
} else {
|
| 196 |
d = sqrt(d);
|
| 197 |
m4[0][0] = d;
|
| 198 |
m4[1][0] = -co->ad[0]*co->ad[1]/d;
|
| 199 |
m4[2][0] = -co->ad[0]*co->ad[2]/d;
|
| 200 |
m4[1][1] = co->ad[2]/d;
|
| 201 |
m4[2][1] = -co->ad[1]/d;
|
| 202 |
m4[0][2] = co->ad[0];
|
| 203 |
m4[1][2] = co->ad[1];
|
| 204 |
m4[2][2] = co->ad[2];
|
| 205 |
}
|
| 206 |
multmat4(co->tm, co->tm, m4);
|
| 207 |
|
| 208 |
/* scale z-axis */
|
| 209 |
if (co->p0 != co->p1 & co->r0 != co->r1) {
|
| 210 |
setident4(m4);
|
| 211 |
m4[2][2] = (CO_R1(co) - CO_R0(co)) / co->al;
|
| 212 |
multmat4(co->tm, co->tm, m4);
|
| 213 |
}
|
| 214 |
}
|