ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.8
Committed: Wed Apr 27 20:05:15 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.7: +2 -2 lines
Log Message:
Fixed typo

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf_t.c,v 3.7 2011/04/27 20:03:25 greg Exp $";
3 #endif
4 /*
5 * bsdf_t.c
6 *
7 * Definitions for variable-resolution BSDF trees
8 *
9 * Created by Greg Ward on 2/2/11.
10 *
11 */
12
13 #include "rtio.h"
14 #include <stdlib.h>
15 #include <math.h>
16 #include <ctype.h>
17 #include "ezxml.h"
18 #include "bsdf.h"
19 #include "bsdf_t.h"
20 #include "hilbert.h"
21
22 /* Callback function type for SDtraverseTre() */
23 typedef int SDtreCallback(float val, const double *cmin,
24 double csiz, void *cptr);
25
26 /* reference width maximum (1.0) */
27 static const unsigned iwbits = sizeof(unsigned)*4;
28 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
29 /* maximum cumulative value */
30 static const unsigned cumlmax = ~0;
31
32 /* Struct used for our distribution-building callback */
33 typedef struct {
34 int nic; /* number of input coordinates */
35 unsigned alen; /* current array length */
36 unsigned nall; /* number of allocated entries */
37 unsigned wmin; /* minimum square size so far */
38 unsigned wmax; /* maximum square size */
39 struct outdir_s {
40 unsigned hent; /* entering Hilbert index */
41 int wid; /* this square size */
42 float bsdf; /* BSDF for this square */
43 } *darr; /* output direction array */
44 } SDdistScaffold;
45
46 /* Allocate a new scattering distribution node */
47 static SDNode *
48 SDnewNode(int nd, int lg)
49 {
50 SDNode *st;
51
52 if (nd <= 0) {
53 strcpy(SDerrorDetail, "Zero dimension BSDF node request");
54 return NULL;
55 }
56 if (nd > SD_MAXDIM) {
57 sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
58 nd, SD_MAXDIM);
59 return NULL;
60 }
61 if (lg < 0) {
62 st = (SDNode *)malloc(sizeof(SDNode) +
63 sizeof(st->u.t[0])*((1<<nd) - 1));
64 if (st != NULL)
65 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
66 } else
67 st = (SDNode *)malloc(sizeof(SDNode) +
68 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
69
70 if (st == NULL) {
71 if (lg < 0)
72 sprintf(SDerrorDetail,
73 "Cannot allocate %d branch BSDF tree", 1<<nd);
74 else
75 sprintf(SDerrorDetail,
76 "Cannot allocate %d BSDF leaves", 1 << nd*lg);
77 return NULL;
78 }
79 st->ndim = nd;
80 st->log2GR = lg;
81 return st;
82 }
83
84 /* Free an SD tree */
85 static void
86 SDfreeTre(SDNode *st)
87 {
88 int i;
89
90 if (st == NULL)
91 return;
92 for (i = (st->log2GR < 0) << st->ndim; i--; )
93 SDfreeTre(st->u.t[i]);
94 free((void *)st);
95 }
96
97 /* Free a variable-resolution BSDF */
98 static void
99 SDFreeBTre(void *p)
100 {
101 SDTre *sdt = (SDTre *)p;
102
103 if (sdt == NULL)
104 return;
105 SDfreeTre(sdt->st);
106 free(sdt);
107 }
108
109 /* Fill branch's worth of grid values from subtree */
110 static void
111 fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
112 {
113 unsigned n = 1 << (shft-1);
114
115 if (!--nd) { /* end on the line */
116 memcpy(dptr, sptr, sizeof(*dptr)*n);
117 return;
118 }
119 while (n--) /* recurse on each slice */
120 fill_grid_branch(dptr + (n << shft*nd),
121 sptr + (n << (shft-1)*nd), nd, shft);
122 }
123
124 /* Get pointer at appropriate offset for the given branch */
125 static float *
126 grid_branch_start(SDNode *st, int n)
127 {
128 unsigned skipsiz = 1 << st->log2GR;
129 float *vptr = st->u.v;
130 int i;
131
132 for (i = st->ndim; i--; skipsiz <<= st->log2GR)
133 if (1<<i & n)
134 vptr += skipsiz >> 1;
135 return vptr;
136 }
137
138 /* Simplify (consolidate) a tree by flattening uniform depth regions */
139 static SDNode *
140 SDsimplifyTre(SDNode *st)
141 {
142 int match, n;
143
144 if (st == NULL) /* check for invalid tree */
145 return NULL;
146 if (st->log2GR >= 0) /* grid just returns unaltered */
147 return st;
148 match = 1; /* check if grids below match */
149 for (n = 0; n < 1<<st->ndim; n++) {
150 if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
151 return NULL; /* propogate error up call stack */
152 match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
153 }
154 if (match && st->u.t[0]->log2GR >= 0) {
155 SDNode *stn = SDnewNode(st->ndim, st->u.t[0]->log2GR + 1);
156 if (stn == NULL) /* out of memory? */
157 return st;
158 /* transfer values to new grid */
159 for (n = 1 << st->ndim; n--; )
160 fill_grid_branch(grid_branch_start(stn, n),
161 st->u.t[n]->u.v, st->ndim, st->log2GR);
162 SDfreeTre(st); /* free old tree */
163 st = stn; /* return new one */
164 }
165 return st;
166 }
167
168 /* Find smallest leaf in tree */
169 static double
170 SDsmallestLeaf(const SDNode *st)
171 {
172 if (st->log2GR < 0) { /* tree branches */
173 double lmin = 1.;
174 int n;
175 for (n = 1<<st->ndim; n--; ) {
176 double lsiz = SDsmallestLeaf(st->u.t[n]);
177 if (lsiz < lmin)
178 lmin = lsiz;
179 }
180 return .5*lmin;
181 }
182 /* leaf grid width */
183 return 1. / (double)(1 << st->log2GR);
184 }
185
186 /* Add up N-dimensional hypercube array values over the given box */
187 static double
188 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
189 {
190 const unsigned skipsiz = 1 << nd*shft;
191 double sum = .0;
192 int i;
193
194 if (skipsiz == 1)
195 for (i = *imin; i < *imax; i++)
196 sum += va[i];
197 else
198 for (i = *imin; i < *imax; i++)
199 sum += SDiterSum(va + i*skipsiz,
200 nd-1, shft, imin+1, imax+1);
201 return sum;
202 }
203
204 /* Average BSDF leaves over an orthotope defined by the unit hypercube */
205 static double
206 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
207 {
208 int imin[SD_MAXDIM], imax[SD_MAXDIM];
209 unsigned n;
210 int i;
211
212 if (!st)
213 return .0;
214 /* check box limits */
215 for (i = st->ndim; i--; ) {
216 if (bmin[i] >= 1.)
217 return .0;
218 if (bmax[i] <= .0)
219 return .0;
220 if (bmin[i] >= bmax[i])
221 return .0;
222 }
223 if (st->log2GR < 0) { /* iterate on subtree */
224 double sum = .0, wsum = 1e-20;
225 double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
226
227 for (n = 1 << st->ndim; n--; ) {
228 w = 1.;
229 for (i = st->ndim; i--; ) {
230 sbmin[i] = 2.*bmin[i];
231 sbmax[i] = 2.*bmax[i];
232 if (n & 1<<i) {
233 sbmin[i] -= 1.;
234 sbmax[i] -= 1.;
235 }
236 if (sbmin[i] < .0) sbmin[i] = .0;
237 if (sbmax[i] > 1.) sbmax[i] = 1.;
238 w *= sbmax[i] - sbmin[i];
239 }
240 if (w > 1e-10) {
241 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
242 wsum += w;
243 }
244 }
245 return sum / wsum;
246 }
247 n = 1; /* iterate over leaves */
248 for (i = st->ndim; i--; ) {
249 imin[i] = (bmin[i] <= 0) ? 0
250 : (int)((1 << st->log2GR)*bmin[i]);
251 imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR)
252 : (int)((1 << st->log2GR)*bmax[i] + .999999);
253 n *= imax[i] - imin[i];
254 }
255 if (!n)
256 return .0;
257
258 return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n;
259 }
260
261 /* Recursive call for SDtraverseTre() */
262 static int
263 SDdotravTre(const SDNode *st, const double *pos, int cmask,
264 SDtreCallback *cf, void *cptr,
265 const double *cmin, double csiz)
266 {
267 int rv, rval = 0;
268 double bmin[SD_MAXDIM];
269 int i, n;
270 /* in branches? */
271 if (st->log2GR < 0) {
272 unsigned skipmask = 0;
273
274 csiz *= .5;
275 for (i = st->ndim; i--; )
276 if (1<<i & cmask)
277 if (pos[i] < cmin[i] + csiz)
278 for (n = 1 << st->ndim; n--; )
279 if (n & 1<<i)
280 skipmask |= 1<<n;
281 else
282 for (n = 1 << st->ndim; n--; )
283 if (!(n & 1<<i))
284 skipmask |= 1<<n;
285 for (n = 1 << st->ndim; n--; ) {
286 if (1<<n & skipmask)
287 continue;
288 for (i = st->ndim; i--; )
289 if (1<<i & n)
290 bmin[i] = cmin[i] + csiz;
291 else
292 bmin[i] = cmin[i];
293
294 rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
295 cf, cptr, bmin, csiz);
296 if (rv < 0)
297 return rv;
298 }
299 } else { /* else traverse leaves */
300 int clim[SD_MAXDIM][2];
301 int cpos[SD_MAXDIM];
302
303 if (st->log2GR == 0) /* short cut */
304 return (*cf)(st->u.v[0], cmin, csiz, cptr);
305
306 csiz /= (double)(1 << st->log2GR);
307 /* assign coord. ranges */
308 for (i = st->ndim; i--; )
309 if (1<<i & cmask) {
310 clim[i][0] = (pos[i] - cmin[i])/csiz;
311 /* check overflow from f.p. error */
312 clim[i][0] -= clim[i][0] >> st->log2GR;
313 clim[i][1] = clim[i][0] + 1;
314 } else {
315 clim[i][0] = 0;
316 clim[i][1] = 1 << st->log2GR;
317 }
318 /* fill in unused dimensions */
319 for (i = SD_MAXDIM; i-- > st->ndim; ) {
320 clim[i][0] = 0; clim[i][1] = 1;
321 }
322 #if (SD_MAXDIM == 4)
323 bmin[0] = cmin[0] + csiz*clim[0][0];
324 for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
325 bmin[1] = cmin[1] + csiz*clim[1][0];
326 for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
327 bmin[2] = cmin[2] + csiz*clim[2][0];
328 for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
329 bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
330 n = cpos[0];
331 for (i = 1; i < st->ndim; i++)
332 n = (n << st->log2GR) + cpos[i];
333 for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
334 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
335 if (rv < 0)
336 return rv;
337 bmin[3] += csiz;
338 }
339 bmin[2] += csiz;
340 }
341 bmin[1] += csiz;
342 }
343 bmin[0] += csiz;
344 }
345 #else
346 _!_ "broken code segment!"
347 #endif
348 }
349 return rval;
350 }
351
352 /* Traverse a tree, visiting nodes in a slice that fits partial position */
353 static int
354 SDtraverseTre(const SDNode *st, const double *pos, int cmask,
355 SDtreCallback *cf, void *cptr)
356 {
357 static double czero[SD_MAXDIM];
358 int i;
359 /* check arguments */
360 if ((st == NULL) | (cf == NULL))
361 return -1;
362 for (i = st->ndim; i--; )
363 if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
364 return -1;
365
366 return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
367 }
368
369 /* Look up tree value at the given grid position */
370 static float
371 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
372 {
373 double spos[SD_MAXDIM];
374 int i, n, t;
375 /* initialize voxel return */
376 if (hcube) {
377 hcube[i = st->ndim] = 1.;
378 while (i--)
379 hcube[i] = .0;
380 }
381 /* climb the tree */
382 while (st->log2GR < 0) {
383 n = 0; /* move to appropriate branch */
384 if (hcube) hcube[st->ndim] *= .5;
385 for (i = st->ndim; i--; ) {
386 spos[i] = 2.*pos[i];
387 t = (spos[i] >= 1.);
388 n |= t<<i;
389 spos[i] -= (double)t;
390 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
391 }
392 st = st->u.t[n]; /* avoids tail recursion */
393 pos = spos;
394 }
395 if (st->log2GR == 0) /* short cut */
396 return st->u.v[0];
397 n = t = 0; /* find grid array index */
398 for (i = st->ndim; i--; ) {
399 n += (int)((1<<st->log2GR)*pos[i]) << t;
400 t += st->log2GR;
401 }
402 if (hcube) { /* compute final hypercube */
403 hcube[st->ndim] /= (double)(1<<st->log2GR);
404 for (i = st->ndim; i--; )
405 hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
406 }
407 return st->u.v[n]; /* no interpolation */
408 }
409
410 /* Query BSDF value and sample hypercube for the given vectors */
411 static float
412 SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
413 {
414 static const FVECT zvec = {.0, .0, 1.};
415 FVECT rOutVec;
416 double gridPos[4];
417
418 switch (sdt->sidef) { /* whose side are you on? */
419 case SD_UFRONT:
420 if ((outVec[2] < 0) | (inVec[2] < 0))
421 return -1.;
422 break;
423 case SD_UBACK:
424 if ((outVec[2] > 0) | (inVec[2] > 0))
425 return -1.;
426 break;
427 case SD_XMIT:
428 if ((outVec[2] > 0) == (inVec[2] > 0))
429 return -1.;
430 break;
431 default:
432 return -1.;
433 }
434 /* convert vector coordinates */
435 if (sdt->st->ndim == 3) {
436 spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0]));
437 gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
438 SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
439 } else if (sdt->st->ndim == 4) {
440 SDdisk2square(gridPos, -inVec[0], -inVec[1]);
441 SDdisk2square(gridPos+2, outVec[0], outVec[1]);
442 } else
443 return -1.; /* should be internal error */
444
445 return SDlookupTre(sdt->st, gridPos, hc);
446 }
447
448 /* Compute non-diffuse component for variable-resolution BSDF */
449 static int
450 SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
451 const FVECT inVec, SDComponent *sdc)
452 {
453 /* check arguments */
454 if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
455 || sdc->dist == NULL)
456 return 0;
457 /* get nearest BSDF value */
458 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
459 return (coef[0] >= 0); /* monochromatic for now */
460 }
461
462 /* Callback to build cumulative distribution using SDtraverseTre() */
463 static int
464 build_scaffold(float val, const double *cmin, double csiz, void *cptr)
465 {
466 SDdistScaffold *sp = (SDdistScaffold *)cptr;
467 int wid = csiz*(double)iwmax + .5;
468 bitmask_t bmin[2], bmax[2];
469
470 cmin += sp->nic; /* skip to output coords */
471 if (wid < sp->wmin) /* new minimum width? */
472 sp->wmin = wid;
473 if (wid > sp->wmax) /* new maximum? */
474 sp->wmax = wid;
475 if (sp->alen >= sp->nall) { /* need more space? */
476 struct outdir_s *ndarr;
477 sp->nall += 8192;
478 ndarr = (struct outdir_s *)realloc(sp->darr,
479 sizeof(struct outdir_s)*sp->nall);
480 if (ndarr == NULL)
481 return -1; /* abort build */
482 sp->darr = ndarr;
483 }
484 /* find Hilbert entry index */
485 bmin[0] = cmin[0]*(double)iwmax + .5;
486 bmin[1] = cmin[1]*(double)iwmax + .5;
487 bmax[0] = bmin[0] + wid;
488 bmax[1] = bmin[1] + wid;
489 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
490 sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
491 sp->darr[sp->alen].wid = wid;
492 sp->darr[sp->alen].bsdf = val;
493 sp->alen++; /* on to the next entry */
494 return 0;
495 }
496
497 /* Scaffold comparison function for qsort -- ascending Hilbert index */
498 static int
499 sscmp(const void *p1, const void *p2)
500 {
501 return (int)((*(const struct outdir_s *)p1).hent -
502 (*(const struct outdir_s *)p2).hent);
503 }
504
505 /* Create a new cumulative distribution for the given input direction */
506 static SDTreCDst *
507 make_cdist(const SDTre *sdt, const double *pos)
508 {
509 SDdistScaffold myScaffold;
510 SDTreCDst *cd;
511 struct outdir_s *sp;
512 double scale, cursum;
513 int i;
514 /* initialize scaffold */
515 myScaffold.wmin = iwmax;
516 myScaffold.wmax = 0;
517 myScaffold.nic = sdt->st->ndim - 2;
518 myScaffold.alen = 0;
519 myScaffold.nall = 8192;
520 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
521 myScaffold.nall);
522 if (myScaffold.darr == NULL)
523 return NULL;
524 /* grow the distribution */
525 if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
526 &build_scaffold, &myScaffold) < 0) {
527 free(myScaffold.darr);
528 return NULL;
529 }
530 /* allocate result holder */
531 cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
532 sizeof(cd->carr[0])*myScaffold.alen);
533 if (cd == NULL) {
534 free(myScaffold.darr);
535 return NULL;
536 }
537 /* sort the distribution */
538 qsort(myScaffold.darr, cd->calen = myScaffold.alen,
539 sizeof(struct outdir_s), &sscmp);
540
541 /* record input range */
542 scale = myScaffold.wmin / (double)iwmax;
543 for (i = myScaffold.nic; i--; ) {
544 cd->clim[i][0] = floor(pos[i]/scale) * scale;
545 cd->clim[i][1] = cd->clim[i][0] + scale;
546 }
547 cd->max_psa = myScaffold.wmax / (double)iwmax;
548 cd->max_psa *= cd->max_psa * M_PI;
549 cd->sidef = sdt->sidef;
550 cd->cTotal = 1e-20; /* compute directional total */
551 sp = myScaffold.darr;
552 for (i = myScaffold.alen; i--; sp++)
553 cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
554 cursum = .0; /* go back and get cumulative values */
555 scale = (double)cumlmax / cd->cTotal;
556 sp = myScaffold.darr;
557 for (i = 0; i < cd->calen; i++, sp++) {
558 cd->carr[i].hndx = sp->hent;
559 cd->carr[i].cuml = scale*cursum + .5;
560 cursum += sp->bsdf * (double)sp->wid * sp->wid;
561 }
562 cd->carr[i].hndx = ~0; /* make final entry */
563 cd->carr[i].cuml = cumlmax;
564 cd->cTotal *= M_PI/(double)iwmax/iwmax;
565 /* all done, clean up and return */
566 free(myScaffold.darr);
567 return cd;
568 }
569
570 /* Find or allocate a cumulative distribution for the given incoming vector */
571 const SDCDst *
572 SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
573 {
574 const SDTre *sdt;
575 double inCoord[2];
576 int vflags;
577 int i;
578 SDTreCDst *cd, *cdlast;
579 /* check arguments */
580 if ((inVec == NULL) | (sdc == NULL) ||
581 (sdt = (SDTre *)sdc->dist) == NULL)
582 return NULL;
583 if (sdt->st->ndim == 3) /* isotropic BSDF? */
584 inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
585 else if (sdt->st->ndim == 4)
586 SDdisk2square(inCoord, -inVec[0], -inVec[1]);
587 else
588 return NULL; /* should be internal error */
589 cdlast = NULL; /* check for direction in cache list */
590 for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
591 cdlast = cd, cd = (SDTreCDst *)cd->next) {
592 for (i = sdt->st->ndim - 2; i--; )
593 if ((cd->clim[i][0] > inCoord[i]) |
594 (inCoord[i] >= cd->clim[i][1]))
595 break;
596 if (i < 0)
597 break; /* means we have a match */
598 }
599 if (cd == NULL) /* need to create new entry? */
600 cdlast = cd = make_cdist(sdt, inCoord);
601 if (cdlast != NULL) { /* move entry to head of cache list */
602 cdlast->next = cd->next;
603 cd->next = sdc->cdList;
604 sdc->cdList = (SDCDst *)cd;
605 }
606 return (SDCDst *)cd; /* ready to go */
607 }
608
609 /* Query solid angle for vector(s) */
610 static SDError
611 SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
612 int qflags, SDComponent *sdc)
613 {
614 double myPSA[2];
615 /* check arguments */
616 if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
617 sdc->dist == NULL)
618 return SDEargument;
619 /* get projected solid angle(s) */
620 if (v2 != NULL) {
621 const SDTre *sdt = (SDTre *)sdc->dist;
622 double hcube[SD_MAXDIM];
623 if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
624 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
625 return SDEinternal;
626 }
627 myPSA[0] = hcube[sdt->st->ndim];
628 myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
629 } else {
630 const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
631 if (cd == NULL)
632 return SDEmemory;
633 myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
634 (cd->clim[1][1] - cd->clim[1][0]);
635 myPSA[1] = cd->max_psa;
636 }
637 switch (qflags) { /* record based on flag settings */
638 case SDqueryVal:
639 *psa = myPSA[0];
640 break;
641 case SDqueryMax:
642 if (myPSA[1] > *psa)
643 *psa = myPSA[1];
644 break;
645 case SDqueryMin+SDqueryMax:
646 if (myPSA[1] > psa[1])
647 psa[1] = myPSA[1];
648 /* fall through */
649 case SDqueryMin:
650 if (myPSA[0] < psa[0])
651 psa[0] = myPSA[0];
652 break;
653 }
654 return SDEnone;
655 }
656
657 /* Sample cumulative distribution */
658 static SDError
659 SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
660 {
661 const unsigned nBitsC = 4*sizeof(bitmask_t);
662 const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
663 const SDTreCDst *cd = (const SDTreCDst *)cdp;
664 const unsigned target = randX*cumlmax;
665 bitmask_t hndx, hcoord[2];
666 double gpos[3];
667 int i, iupper, ilower;
668 /* check arguments */
669 if ((ioVec == NULL) | (cd == NULL))
670 return SDEargument;
671 if (ioVec[2] > 0) {
672 if (!(cd->sidef & SD_UFRONT))
673 return SDEargument;
674 } else if (!(cd->sidef & SD_UBACK))
675 return SDEargument;
676 /* binary search to find position */
677 ilower = 0; iupper = cd->calen;
678 while ((i = (iupper + ilower) >> 1) != ilower)
679 if ((long)target >= (long)cd->carr[i].cuml)
680 ilower = i;
681 else
682 iupper = i;
683 /* localize random position */
684 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
685 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
686 /* index in longer Hilbert curve */
687 hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
688 * (double)((bitmask_t)1 << nExtraBits);
689 /* convert Hilbert index to vector */
690 hilbert_i2c(2, nBitsC, hndx, hcoord);
691 for (i = 2; i--; )
692 gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
693 (double)((bitmask_t)1 << nBitsC);
694 SDsquare2disk(gpos, gpos[0], gpos[1]);
695 /* compute Z-coordinate */
696 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
697 if (gpos[2] > 0) /* paranoia, I hope */
698 gpos[2] = sqrt(gpos[2]);
699 /* emit from back? */
700 if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
701 gpos[2] = -gpos[2];
702 VCOPY(ioVec, gpos);
703 return SDEnone;
704 }
705
706 /* Advance pointer to the next non-white character in the string (or nul) */
707 static int
708 next_token(char **spp)
709 {
710 while (isspace(**spp))
711 ++*spp;
712 return **spp;
713 }
714
715 /* Count words from this point in string to '}' */
716 static int
717 count_values(char *cp)
718 {
719 int n = 0;
720
721 while (next_token(&cp) != '}') {
722 if (*cp == '{')
723 return -1;
724 while (*cp && !isspace(*cp))
725 ++cp;
726 ++n;
727 cp += (next_token(&cp) == ',');
728 }
729 return n;
730 }
731
732 /* Load an array of real numbers, returning total */
733 static int
734 load_values(char **spp, float *va, int n)
735 {
736 float *v = va;
737 char *svnext;
738
739 while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
740 *v++ = atof(*spp);
741 *spp = svnext;
742 *spp += (next_token(spp) == ',');
743 }
744 return v - va;
745 }
746
747 /* Load BSDF tree data */
748 static SDNode *
749 load_tree_data(char **spp, int nd)
750 {
751 SDNode *st;
752 int n;
753
754 if (next_token(spp) != '{') {
755 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
756 return NULL;
757 }
758 ++*spp; /* in tree, now */
759 if (next_token(spp) == '{') { /* tree branches */
760 st = SDnewNode(nd, -1);
761 if (st == NULL)
762 return NULL;
763 for (n = 0; n < 1<<nd; n++)
764 if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
765 SDfreeTre(st);
766 return NULL;
767 }
768 } else { /* else load value grid */
769 int bsiz;
770 n = count_values(*spp); /* see how big the grid is */
771 if (n <= 0) {
772 strcpy(SDerrorDetail, "Bad tensor tree data");
773 return NULL;
774 }
775 for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd)
776 if (1<<bsiz == n)
777 break;
778 if (bsiz >= 8*sizeof(size_t)) {
779 strcpy(SDerrorDetail, "Illegal value count in tensor tree");
780 return NULL;
781 }
782 st = SDnewNode(nd, bsiz/nd);
783 if (st == NULL)
784 return NULL;
785 if (load_values(spp, st->u.v, n) != n) {
786 strcpy(SDerrorDetail, "Real format error in tensor tree");
787 SDfreeTre(st);
788 return NULL;
789 }
790 }
791 if (next_token(spp) != '}') {
792 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
793 SDfreeTre(st);
794 return NULL;
795 }
796 ++*spp; /* walk past close and return */
797 *spp += (next_token(spp) == ',');
798 return st;
799 }
800
801 /* Compute min. proj. solid angle and max. direct hemispherical scattering */
802 static SDError
803 get_extrema(SDSpectralDF *df)
804 {
805 SDNode *st = (*(SDTre *)df->comp[0].dist).st;
806 double stepWidth, dhemi, bmin[4], bmax[4];
807
808 stepWidth = SDsmallestLeaf(st);
809 df->minProjSA = M_PI*stepWidth*stepWidth;
810 if (stepWidth < .03125)
811 stepWidth = .03125; /* 1/32 resolution good enough */
812 df->maxHemi = .0;
813 if (st->ndim == 3) { /* isotropic BSDF */
814 bmin[1] = bmin[2] = .0;
815 bmax[1] = bmax[2] = 1.;
816 for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
817 bmax[0] = bmin[0] + stepWidth;
818 dhemi = SDavgTreBox(st, bmin, bmax);
819 if (dhemi > df->maxHemi)
820 df->maxHemi = dhemi;
821 }
822 } else if (st->ndim == 4) { /* anisotropic BSDF */
823 bmin[2] = bmin[3] = .0;
824 bmax[2] = bmax[3] = 1.;
825 for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
826 bmax[0] = bmin[0] + stepWidth;
827 for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
828 bmax[1] = bmin[1] + stepWidth;
829 dhemi = SDavgTreBox(st, bmin, bmax);
830 if (dhemi > df->maxHemi)
831 df->maxHemi = dhemi;
832 }
833 }
834 } else
835 return SDEinternal;
836 /* correct hemispherical value */
837 df->maxHemi *= M_PI;
838 return SDEnone;
839 }
840
841 /* Load BSDF distribution for this wavelength */
842 static SDError
843 load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
844 {
845 SDSpectralDF *df;
846 SDTre *sdt;
847 char *sdata;
848 int i;
849 /* allocate BSDF component */
850 sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
851 if (!sdata)
852 return SDEnone;
853 /*
854 * Remember that front and back are reversed from WINDOW 6 orientations
855 */
856 if (!strcasecmp(sdata, "Transmission")) {
857 if (sd->tf != NULL)
858 SDfreeSpectralDF(sd->tf);
859 if ((sd->tf = SDnewSpectralDF(1)) == NULL)
860 return SDEmemory;
861 df = sd->tf;
862 } else if (!strcasecmp(sdata, "Reflection Front")) {
863 if (sd->rb != NULL) /* note back-front reversal */
864 SDfreeSpectralDF(sd->rb);
865 if ((sd->rb = SDnewSpectralDF(1)) == NULL)
866 return SDEmemory;
867 df = sd->rb;
868 } else if (!strcasecmp(sdata, "Reflection Back")) {
869 if (sd->rf != NULL) /* note front-back reversal */
870 SDfreeSpectralDF(sd->rf);
871 if ((sd->rf = SDnewSpectralDF(1)) == NULL)
872 return SDEmemory;
873 df = sd->rf;
874 } else
875 return SDEnone;
876 /* XXX should also check "ScatteringDataType" for consistency? */
877 /* get angle bases */
878 sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
879 if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
880 sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
881 !sdata ? "Missing" : "Unsupported", sd->name);
882 return !sdata ? SDEformat : SDEsupport;
883 }
884 /* allocate BSDF tree */
885 sdt = (SDTre *)malloc(sizeof(SDTre));
886 if (sdt == NULL)
887 return SDEmemory;
888 if (df == sd->rf)
889 sdt->sidef = SD_UFRONT;
890 else if (df == sd->rb)
891 sdt->sidef = SD_UBACK;
892 else
893 sdt->sidef = SD_XMIT;
894 sdt->st = NULL;
895 df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
896 df->comp[0].dist = sdt;
897 df->comp[0].func = &SDhandleTre;
898 /* read BSDF data */
899 sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
900 if (!sdata || !next_token(&sdata)) {
901 sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
902 sd->name);
903 return SDEformat;
904 }
905 sdt->st = load_tree_data(&sdata, ndim);
906 if (sdt->st == NULL)
907 return SDEformat;
908 if (next_token(&sdata)) { /* check for unconsumed characters */
909 sprintf(SDerrorDetail,
910 "Extra characters at end of ScatteringData in '%s'",
911 sd->name);
912 return SDEformat;
913 }
914 /* flatten branches where possible */
915 sdt->st = SDsimplifyTre(sdt->st);
916 if (sdt->st == NULL)
917 return SDEinternal;
918 return get_extrema(df); /* compute global quantities */
919 }
920
921 /* Find minimum value in tree */
922 static float
923 SDgetTreMin(const SDNode *st)
924 {
925 float vmin = 1./M_PI;
926 int n;
927
928 if (st->log2GR < 0) {
929 for (n = 1<<st->ndim; n--; ) {
930 float v = SDgetTreMin(st->u.t[n]);
931 if (v < vmin)
932 vmin = v;
933 }
934 } else {
935 for (n = 1<<(st->ndim*st->log2GR); n--; )
936 if (st->u.v[n] < vmin)
937 vmin = st->u.v[n];
938 }
939 return vmin;
940 }
941
942 /* Subtract the given value from all tree nodes */
943 static void
944 SDsubtractTreVal(SDNode *st, float val)
945 {
946 int n;
947
948 if (st->log2GR < 0) {
949 for (n = 1<<st->ndim; n--; )
950 SDsubtractTreVal(st->u.t[n], val);
951 } else {
952 for (n = 1<<(st->ndim*st->log2GR); n--; )
953 st->u.v[n] -= val;
954 }
955 }
956
957 /* Subtract minimum value from BSDF */
958 static double
959 subtract_min(SDNode *st)
960 {
961 float vmin;
962 /* be sure to skip unused portion */
963 if ((st->ndim == 3) & (st->log2GR < 0)) {
964 float v;
965 int i;
966 vmin = 1./M_PI;
967 for (i = 0; i < 4; i++) {
968 v = SDgetTreMin(st->u.t[i]);
969 if (v < vmin)
970 vmin = v;
971 }
972 } else /* anisotropic covers entire tree */
973 vmin = SDgetTreMin(st);
974
975 if (vmin <= FTINY)
976 return .0;
977
978 SDsubtractTreVal(st, vmin);
979
980 return M_PI * vmin; /* return hemispherical value */
981 }
982
983 /* Extract and separate diffuse portion of BSDF */
984 static void
985 extract_diffuse(SDValue *dv, SDSpectralDF *df)
986 {
987 int n;
988
989 if (df == NULL || df->ncomp <= 0) {
990 dv->spec = c_dfcolor;
991 dv->cieY = .0;
992 return;
993 }
994 dv->spec = df->comp[0].cspec[0];
995 dv->cieY = subtract_min((*(SDTre *)df->comp[n].dist).st);
996 /* in case of multiple components */
997 for (n = df->ncomp; --n; ) {
998 double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
999 c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1000 dv->cieY += ymin;
1001 }
1002 df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1003 /* make sure everything is set */
1004 c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1005 }
1006
1007 /* Load a variable-resolution BSDF tree from an open XML file */
1008 SDError
1009 SDloadTre(SDData *sd, ezxml_t wtl)
1010 {
1011 SDError ec;
1012 ezxml_t wld, wdb;
1013 int rank;
1014 char *txt;
1015 /* basic checks and tensor rank */
1016 txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1017 "DataDefinition"), "IncidentDataStructure"));
1018 if (txt == NULL || !*txt) {
1019 sprintf(SDerrorDetail,
1020 "BSDF \"%s\": missing IncidentDataStructure",
1021 sd->name);
1022 return SDEformat;
1023 }
1024 if (!strcasecmp(txt, "TensorTree3"))
1025 rank = 3;
1026 else if (!strcasecmp(txt, "TensorTree4"))
1027 rank = 4;
1028 else {
1029 sprintf(SDerrorDetail,
1030 "BSDF \"%s\": unsupported IncidentDataStructure",
1031 sd->name);
1032 return SDEsupport;
1033 }
1034 /* load BSDF components */
1035 for (wld = ezxml_child(wtl, "WavelengthData");
1036 wld != NULL; wld = wld->next) {
1037 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1038 "Visible"))
1039 continue; /* just visible for now */
1040 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1041 wdb != NULL; wdb = wdb->next)
1042 if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1043 return ec;
1044 }
1045 /* separate diffuse components */
1046 extract_diffuse(&sd->rLambFront, sd->rf);
1047 extract_diffuse(&sd->rLambBack, sd->rb);
1048 extract_diffuse(&sd->tLamb, sd->tf);
1049 /* return success */
1050 return SDEnone;
1051 }
1052
1053 /* Variable resolution BSDF methods */
1054 SDFunc SDhandleTre = {
1055 &SDgetTreBSDF,
1056 &SDqueryTreProjSA,
1057 &SDgetTreCDist,
1058 &SDsampTreCDist,
1059 &SDFreeBTre,
1060 };