ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.54
Committed: Tue Jan 25 01:34:20 2022 UTC (2 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 3.53: +16 -2 lines
Log Message:
fix: added position-based BSDF value perturbation for reliable peak extraction

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf_t.c,v 3.53 2021/12/15 01:38:50 greg Exp $";
3 #endif
4 /*
5 * bsdf_t.c
6 *
7 * Definitions for variable-resolution BSDF trees
8 *
9 * Created by Greg Ward on 2/2/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include "rtio.h"
15 #include <stdlib.h>
16 #include <math.h>
17 #include <ctype.h>
18 #include "ezxml.h"
19 #include "bsdf.h"
20 #include "bsdf_t.h"
21 #include "hilbert.h"
22
23 /* Callback function type for SDtraverseTre() */
24 typedef int SDtreCallback(float val, const double *cmin, double csiz,
25 void *cptr);
26 /* reference width maximum (1.0) */
27 static const unsigned iwbits = sizeof(unsigned)*4;
28 static const unsigned iwmax = 1<<(sizeof(unsigned)*4);
29 /* maximum cumulative value */
30 static const unsigned cumlmax = ~0;
31 /* constant z-vector */
32 static const FVECT zvec = {.0, .0, 1.};
33 /* quantization value */
34 static double quantum = 1./256.;
35 /* our RGB primaries */
36 static C_COLOR tt_RGB_prim[3];
37 static float tt_RGB_coef[3];
38
39 static const double czero[SD_MAXDIM];
40
41 enum {tt_Y, tt_u, tt_v}; /* tree components (tt_Y==0) */
42
43 /* Struct used for our distribution-building callback */
44 typedef struct {
45 short nic; /* number of input coordinates */
46 short rev; /* reversing query */
47 unsigned alen; /* current array length */
48 unsigned nall; /* number of allocated entries */
49 unsigned wmin; /* minimum square size so far */
50 unsigned wmax; /* maximum square size */
51 struct outdir_s {
52 unsigned hent; /* entering Hilbert index */
53 int wid; /* this square size */
54 float bsdf; /* BSDF for this square */
55 } *darr; /* output direction array */
56 } SDdistScaffold;
57
58 /* Allocate a new scattering distribution node */
59 static SDNode *
60 SDnewNode(int nd, int lg)
61 {
62 SDNode *st;
63
64 if (nd <= 0) {
65 strcpy(SDerrorDetail, "Zero dimension BSDF node request");
66 return NULL;
67 }
68 if (nd > SD_MAXDIM) {
69 sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
70 nd, SD_MAXDIM);
71 return NULL;
72 }
73 if (lg < 0) {
74 st = (SDNode *)malloc(sizeof(SDNode) +
75 sizeof(st->u.t[0])*((1<<nd) - 1));
76 if (st == NULL) {
77 sprintf(SDerrorDetail,
78 "Cannot allocate %d branch BSDF tree", 1<<nd);
79 return NULL;
80 }
81 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
82 } else {
83 st = (SDNode *)malloc(sizeof(SDNode) +
84 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
85 if (st == NULL) {
86 sprintf(SDerrorDetail,
87 "Cannot allocate %d BSDF leaves", 1 << nd*lg);
88 return NULL;
89 }
90 }
91 st->ndim = nd;
92 st->log2GR = lg;
93 return st;
94 }
95
96 /* Free an SD tree */
97 static void
98 SDfreeTre(SDNode *st)
99 {
100 int n;
101
102 if (st == NULL)
103 return;
104 for (n = (st->log2GR < 0) << st->ndim; n--; )
105 SDfreeTre(st->u.t[n]);
106 free(st);
107 }
108
109 /* Free a variable-resolution BSDF */
110 static void
111 SDFreeBTre(void *p)
112 {
113 SDTre *sdt = (SDTre *)p;
114
115 if (sdt == NULL)
116 return;
117 SDfreeTre(sdt->stc[tt_Y]);
118 SDfreeTre(sdt->stc[tt_u]);
119 SDfreeTre(sdt->stc[tt_v]);
120 free(sdt);
121 }
122
123 /* Fill branch's worth of grid values from subtree */
124 static void
125 fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
126 {
127 unsigned n = 1 << (shft-1);
128
129 if (!--nd) { /* end on the line */
130 memcpy(dptr, sptr, sizeof(*dptr)*n);
131 return;
132 }
133 while (n--) /* recurse on each slice */
134 fill_grid_branch(dptr + (n << shft*nd),
135 sptr + (n << (shft-1)*nd), nd, shft);
136 }
137
138 /* Get pointer at appropriate offset for the given branch */
139 static float *
140 grid_branch_start(SDNode *st, int n)
141 {
142 unsigned skipsiz = 1 << (st->log2GR - 1);
143 float *vptr = st->u.v;
144 int i;
145
146 for (i = st->ndim; i--; skipsiz <<= st->log2GR)
147 if (1<<i & n)
148 vptr += skipsiz;
149 return vptr;
150 }
151
152 /* Simplify (consolidate) a tree by flattening uniform depth regions */
153 static SDNode *
154 SDsimplifyTre(SDNode *st)
155 {
156 int match, n;
157
158 if (st == NULL) /* check for invalid tree */
159 return NULL;
160 if (st->log2GR >= 0) /* grid just returns unaltered */
161 return st;
162 match = 1; /* check if grids below match */
163 for (n = 0; n < 1<<st->ndim; n++) {
164 if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
165 return NULL; /* propogate error up call stack */
166 match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
167 }
168 if (match && (match = st->u.t[0]->log2GR) >= 0) {
169 SDNode *stn = SDnewNode(st->ndim, match + 1);
170 if (stn == NULL) /* out of memory? */
171 return st;
172 /* transfer values to new grid */
173 for (n = 1 << st->ndim; n--; )
174 fill_grid_branch(grid_branch_start(stn, n),
175 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
176 SDfreeTre(st); /* free old tree */
177 st = stn; /* return new one */
178 }
179 return st;
180 }
181
182 /* Assign the given voxel in tree (produces no grid nodes) */
183 static SDNode *
184 SDsetVoxel(SDNode *sroot, int nd, const double *tmin, const double tsiz, float val)
185 {
186 double ctrk[SD_MAXDIM];
187 double csiz = 1.;
188 SDNode *st;
189 int i, n;
190 /* check arguments */
191 for (i = nd; i-- > 0; )
192 if ((tmin[i] < .0) | (tmin[i] >= 1.-FTINY))
193 break;
194 if ((i >= 0) | (nd <= 0) | (tsiz <= FTINY) | (tsiz > 1.+FTINY) |
195 (sroot != NULL && sroot->ndim != nd)) {
196 SDfreeTre(sroot);
197 return NULL;
198 }
199 if (tsiz >= 1.-FTINY) { /* special case when tree is a leaf */
200 SDfreeTre(sroot);
201 if ((sroot = SDnewNode(nd, 0)) != NULL)
202 sroot->u.v[0] = val;
203 return sroot;
204 }
205 /* make sure we have branching root */
206 if (sroot != NULL && sroot->log2GR >= 0) {
207 SDfreeTre(sroot); sroot = NULL;
208 }
209 if (sroot == NULL && (sroot = SDnewNode(nd, -1)) == NULL)
210 return NULL;
211 st = sroot; /* climb/grow tree */
212 memset(ctrk, 0, sizeof(ctrk));
213 for ( ; ; ) {
214 csiz *= .5; /* find appropriate branch */
215 n = 0;
216 for (i = nd; i--; )
217 if (ctrk[i]+csiz <= tmin[i]+FTINY) {
218 ctrk[i] += csiz;
219 n |= 1 << i;
220 }
221 /* reached desired voxel? */
222 if (csiz <= tsiz+FTINY) {
223 SDfreeTre(st->u.t[n]);
224 st = st->u.t[n] = SDnewNode(nd, 0);
225 break;
226 }
227 /* else grow tree as needed */
228 if (st->u.t[n] != NULL && st->u.t[n]->log2GR >= 0) {
229 SDfreeTre(st->u.t[n]); st->u.t[n] = NULL;
230 }
231 if (st->u.t[n] == NULL)
232 st->u.t[n] = SDnewNode(nd, -1);
233 if ((st = st->u.t[n]) == NULL)
234 break;
235 }
236 if (st == NULL) {
237 SDfreeTre(sroot);
238 return NULL;
239 }
240 st->u.v[0] = val; /* assign leaf and return root */
241 return sroot;
242 }
243
244 /* Find smallest leaf in tree */
245 static double
246 SDsmallestLeaf(const SDNode *st)
247 {
248 if (st->log2GR < 0) { /* tree branches */
249 double lmin = 1.;
250 int n;
251 for (n = 1<<st->ndim; n--; ) {
252 double lsiz = SDsmallestLeaf(st->u.t[n]);
253 if (lsiz < lmin)
254 lmin = lsiz;
255 }
256 return .5*lmin;
257 }
258 /* leaf grid width */
259 return 1. / (double)(1 << st->log2GR);
260 }
261
262 /* Add up N-dimensional hypercube array values over the given box */
263 static double
264 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
265 {
266 const unsigned skipsiz = 1 << --nd*shft;
267 double sum = .0;
268 int i;
269
270 va += *imin * skipsiz;
271
272 if (skipsiz == 1)
273 for (i = *imin; i < *imax; i++)
274 sum += *va++;
275 else
276 for (i = *imin; i < *imax; i++, va += skipsiz)
277 sum += SDiterSum(va, nd, shft, imin+1, imax+1);
278 return sum;
279 }
280
281 /* Average BSDF leaves over an orthotope defined by the unit hypercube */
282 static double
283 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
284 {
285 unsigned n;
286 int i;
287
288 if (!st)
289 return .0;
290 /* check box limits */
291 for (i = st->ndim; i--; ) {
292 if (bmin[i] >= 1.)
293 return .0;
294 if (bmax[i] <= 0)
295 return .0;
296 if (bmin[i] >= bmax[i])
297 return .0;
298 }
299 if (st->log2GR < 0) { /* iterate on subtree */
300 double sum = .0, wsum = 1e-20;
301 double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
302 for (n = 1 << st->ndim; n--; ) {
303 w = 1.;
304 for (i = st->ndim; i--; ) {
305 sbmin[i] = 2.*bmin[i];
306 sbmax[i] = 2.*bmax[i];
307 if (n & 1<<i) {
308 sbmin[i] -= 1.;
309 sbmax[i] -= 1.;
310 }
311 if (sbmin[i] < .0) sbmin[i] = .0;
312 if (sbmax[i] > 1.) sbmax[i] = 1.;
313 if (sbmin[i] >= sbmax[i]) {
314 w = .0;
315 break;
316 }
317 w *= sbmax[i] - sbmin[i];
318 }
319 if (w > 1e-10) {
320 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
321 wsum += w;
322 }
323 }
324 return sum / wsum;
325 } else { /* iterate over leaves */
326 int imin[SD_MAXDIM], imax[SD_MAXDIM];
327
328 n = 1;
329 for (i = st->ndim; i--; ) {
330 imin[i] = (bmin[i] <= 0) ? 0 :
331 (int)((1 << st->log2GR)*bmin[i]);
332 imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) :
333 (int)((1 << st->log2GR)*bmax[i] + .999999);
334 n *= imax[i] - imin[i];
335 }
336 if (n)
337 return SDiterSum(st->u.v, st->ndim,
338 st->log2GR, imin, imax) / (double)n;
339 }
340 return .0;
341 }
342
343 /* Recursive call for SDtraverseTre() */
344 static int
345 SDdotravTre(const SDNode *st, const double *pos, int cmask,
346 SDtreCallback *cf, void *cptr,
347 const double *cmin, double csiz)
348 {
349 int rv, rval = 0;
350 double bmin[SD_MAXDIM];
351 int i, n;
352 /* paranoia */
353 if (st == NULL)
354 return 0;
355 /* in branches? */
356 if (st->log2GR < 0) {
357 unsigned skipmask = 0;
358 csiz *= .5;
359 for (i = st->ndim; i--; )
360 if (1<<i & cmask) {
361 if (pos[i] < cmin[i] + csiz)
362 for (n = 1 << st->ndim; n--; ) {
363 if (n & 1<<i)
364 skipmask |= 1<<n;
365 }
366 else
367 for (n = 1 << st->ndim; n--; ) {
368 if (!(n & 1<<i))
369 skipmask |= 1<<n;
370 }
371 }
372 for (n = 1 << st->ndim; n--; ) {
373 if (1<<n & skipmask)
374 continue;
375 for (i = st->ndim; i--; )
376 if (1<<i & n)
377 bmin[i] = cmin[i] + csiz;
378 else
379 bmin[i] = cmin[i];
380
381 rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
382 cf, cptr, bmin, csiz);
383 if (rv < 0)
384 return rv;
385 }
386 } else { /* else traverse leaves */
387 int clim[SD_MAXDIM][2];
388 int cpos[SD_MAXDIM];
389
390 if (st->log2GR == 0) /* short cut */
391 return (*cf)(st->u.v[0], cmin, csiz, cptr);
392
393 csiz /= (double)(1 << st->log2GR);
394 /* assign coord. ranges */
395 for (i = st->ndim; i--; )
396 if (1<<i & cmask) {
397 clim[i][0] = (pos[i] - cmin[i])/csiz;
398 /* check overflow from f.p. error */
399 clim[i][0] -= clim[i][0] >> st->log2GR;
400 clim[i][1] = clim[i][0] + 1;
401 } else {
402 clim[i][0] = 0;
403 clim[i][1] = 1 << st->log2GR;
404 }
405 #if (SD_MAXDIM == 4)
406 bmin[0] = cmin[0] + csiz*clim[0][0];
407 for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
408 bmin[1] = cmin[1] + csiz*clim[1][0];
409 for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
410 bmin[2] = cmin[2] + csiz*clim[2][0];
411 if (st->ndim == 3) {
412 cpos[2] = clim[2][0];
413 n = cpos[0];
414 for (i = 1; i < 3; i++)
415 n = (n << st->log2GR) + cpos[i];
416 for ( ; cpos[2] < clim[2][1]; cpos[2]++) {
417 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
418 if (rv < 0)
419 return rv;
420 bmin[2] += csiz;
421 }
422 } else {
423 for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
424 bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
425 n = cpos[0];
426 for (i = 1; i < 4; i++)
427 n = (n << st->log2GR) + cpos[i];
428 for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
429 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
430 if (rv < 0)
431 return rv;
432 bmin[3] += csiz;
433 }
434 bmin[2] += csiz;
435 }
436 }
437 bmin[1] += csiz;
438 }
439 bmin[0] += csiz;
440 }
441 #else
442 _!_ "broken code segment!"
443 #endif
444 }
445 return rval;
446 }
447
448 /* Traverse a tree, visiting nodes in a slice that fits partial position */
449 static int
450 SDtraverseTre(const SDNode *st, const double *pos, int cmask,
451 SDtreCallback *cf, void *cptr)
452 {
453 int i;
454 /* check arguments */
455 if ((st == NULL) | (cf == NULL))
456 return -1;
457 for (i = st->ndim; i--; )
458 if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
459 return -1;
460
461 return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
462 }
463
464 /* Look up tree value at the given grid position */
465 static float
466 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
467 {
468 double spos[SD_MAXDIM];
469 int i, n, t;
470 /* initialize voxel return */
471 if (hcube) {
472 hcube[i = st->ndim] = 1.;
473 while (i--)
474 hcube[i] = .0;
475 }
476 /* climb the tree */
477 while (st != NULL && st->log2GR < 0) {
478 n = 0; /* move to appropriate branch */
479 if (hcube) hcube[st->ndim] *= .5;
480 for (i = st->ndim; i--; ) {
481 spos[i] = 2.*pos[i];
482 t = (spos[i] >= 1.);
483 n |= t<<i;
484 spos[i] -= (double)t;
485 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
486 }
487 st = st->u.t[n]; /* avoids tail recursion */
488 pos = spos;
489 }
490 if (st == NULL) /* should never happen? */
491 return .0;
492 if (st->log2GR == 0) /* short cut */
493 return st->u.v[0];
494 n = t = 0; /* find grid array index */
495 for (i = st->ndim; i--; ) {
496 n += (int)((1<<st->log2GR)*pos[i]) << t;
497 t += st->log2GR;
498 }
499 if (hcube) { /* compute final hypercube */
500 hcube[st->ndim] /= (double)(1<<st->log2GR);
501 for (i = st->ndim; i--; )
502 hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
503 }
504 return st->u.v[n]; /* no interpolation */
505 }
506
507 /* Convert CIE (Y,u',v') color to our RGB */
508 static void
509 SDyuv2rgb(double yval, double uprime, double vprime, float rgb[3])
510 {
511 const double dfact = 1./(6.*uprime - 16.*vprime + 12.);
512 C_COLOR cxy;
513
514 c_cset(&cxy, 9.*uprime*dfact, 4.*vprime*dfact);
515 c_toSharpRGB(&cxy, yval, rgb);
516 }
517
518 static double
519 pfrac(double x)
520 {
521 return( x - (int)x );
522 }
523
524 /* Query BSDF value and sample hypercube for the given vectors */
525 static int
526 SDqueryTre(const SDTre *sdt, float *coef,
527 const FVECT inVec, const FVECT outVec, double *hc)
528 {
529 const RREAL *vtmp;
530 double hcube[SD_MAXDIM+1];
531 float yval;
532 FVECT rOutVec;
533 RREAL gridPos[4];
534 double d;
535 int i;
536
537 if (sdt->stc[tt_Y] == NULL) /* paranoia, I hope */
538 return 0;
539
540 switch (sdt->sidef) { /* whose side are you on? */
541 case SD_FREFL:
542 if ((outVec[2] < 0) | (inVec[2] < 0))
543 return 0;
544 break;
545 case SD_BREFL:
546 if ((outVec[2] > 0) | (inVec[2] > 0))
547 return 0;
548 break;
549 case SD_FXMIT:
550 if (outVec[2] > 0) {
551 if (inVec[2] > 0)
552 return 0;
553 vtmp = outVec; outVec = inVec; inVec = vtmp;
554 } else if (inVec[2] < 0)
555 return 0;
556 break;
557 case SD_BXMIT:
558 if (inVec[2] > 0) {
559 if (outVec[2] > 0)
560 return 0;
561 vtmp = outVec; outVec = inVec; inVec = vtmp;
562 } else if (outVec[2] < 0)
563 return 0;
564 break;
565 default:
566 return 0;
567 }
568 /* convert vector coordinates */
569 if (sdt->stc[tt_Y]->ndim == 3) {
570 spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0]));
571 gridPos[0] = (.5-FTINY) -
572 .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
573 disk2square(gridPos+1, rOutVec[0], rOutVec[1]);
574 } else if (sdt->stc[tt_Y]->ndim == 4) {
575 disk2square(gridPos, -inVec[0], -inVec[1]);
576 disk2square(gridPos+2, outVec[0], outVec[1]);
577 } else
578 return 0; /* should be internal error */
579
580 if (hc == NULL) hc = hcube; /* get BSDF value */
581 yval = SDlookupTre(sdt->stc[tt_Y], gridPos, hc);
582 if (coef == NULL) /* just getting hypercube? */
583 return 1;
584 d = 0; /* position-specific perturbation */
585 for (i = sdt->stc[tt_Y]->ndim; i--; )
586 d += pfrac((2<<i)/(hc[i]+.01687)) - .5;
587 yval *= 1. + 1e-4*d; /* assumes tolerance is > 0.04% */
588 if (sdt->stc[tt_u] == NULL || sdt->stc[tt_v] == NULL) {
589 *coef = yval;
590 return 1; /* no color */
591 }
592 /* else decode color */
593 SDyuv2rgb(yval, SDlookupTre(sdt->stc[tt_u], gridPos, NULL),
594 SDlookupTre(sdt->stc[tt_v], gridPos, NULL), coef);
595 coef[0] *= tt_RGB_coef[0];
596 coef[1] *= tt_RGB_coef[1];
597 coef[2] *= tt_RGB_coef[2];
598 return 3;
599 }
600
601 /* Compute non-diffuse component for variable-resolution BSDF */
602 static int
603 SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
604 const FVECT inVec, SDComponent *sdc)
605 {
606 /* check arguments */
607 if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
608 || sdc->dist == NULL)
609 return 0;
610 /* get nearest BSDF value */
611 return SDqueryTre((SDTre *)sdc->dist, coef, outVec, inVec, NULL);
612 }
613
614 /* Callback to build cumulative distribution using SDtraverseTre() */
615 static int
616 build_scaffold(float val, const double *cmin, double csiz, void *cptr)
617 {
618 SDdistScaffold *sp = (SDdistScaffold *)cptr;
619 int wid = csiz*(double)iwmax + .5;
620 double revcmin[2];
621 bitmask_t bmin[2], bmax[2];
622
623 if (sp->rev) { /* need to reverse sense? */
624 revcmin[0] = 1. - cmin[0] - csiz;
625 revcmin[1] = 1. - cmin[1] - csiz;
626 cmin = revcmin;
627 } else {
628 cmin += sp->nic; /* else skip to output coords */
629 }
630 if (wid < sp->wmin) /* new minimum width? */
631 sp->wmin = wid;
632 if (wid > sp->wmax) /* new maximum? */
633 sp->wmax = wid;
634 if (sp->alen >= sp->nall) { /* need more space? */
635 struct outdir_s *ndarr;
636 sp->nall = (int)(1.5*sp->nall) + 256;
637 ndarr = (struct outdir_s *)realloc(sp->darr,
638 sizeof(struct outdir_s)*sp->nall);
639 if (ndarr == NULL) {
640 sprintf(SDerrorDetail,
641 "Cannot grow scaffold to %u entries", sp->nall);
642 return -1; /* abort build */
643 }
644 sp->darr = ndarr;
645 }
646 /* find Hilbert entry index */
647 bmin[0] = cmin[0]*(double)iwmax + .5;
648 bmin[1] = cmin[1]*(double)iwmax + .5;
649 bmax[0] = bmin[0] + wid-1;
650 bmax[1] = bmin[1] + wid-1;
651 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
652 sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
653 sp->darr[sp->alen].wid = wid;
654 sp->darr[sp->alen].bsdf = val;
655 sp->alen++; /* on to the next entry */
656 return 0;
657 }
658
659 /* Scaffold comparison function for qsort -- ascending Hilbert index */
660 static int
661 sscmp(const void *p1, const void *p2)
662 {
663 unsigned h1 = (*(const struct outdir_s *)p1).hent;
664 unsigned h2 = (*(const struct outdir_s *)p2).hent;
665
666 if (h1 > h2)
667 return 1;
668 if (h1 < h2)
669 return -1;
670 return 0;
671 }
672
673 /* Create a new cumulative distribution for the given input direction */
674 static SDTreCDst *
675 make_cdist(const SDTre *sdt, const double *invec, int rev)
676 {
677 SDdistScaffold myScaffold;
678 double pos[4];
679 int cmask;
680 SDTreCDst *cd;
681 struct outdir_s *sp;
682 double scale, cursum;
683 int i;
684 /* initialize scaffold */
685 myScaffold.wmin = iwmax;
686 myScaffold.wmax = 0;
687 myScaffold.nic = sdt->stc[tt_Y]->ndim - 2;
688 myScaffold.rev = rev;
689 myScaffold.alen = 0;
690 myScaffold.nall = 512;
691 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
692 myScaffold.nall);
693 if (myScaffold.darr == NULL)
694 return NULL;
695 /* set up traversal */
696 cmask = (1<<myScaffold.nic) - 1;
697 for (i = myScaffold.nic; i--; )
698 pos[i+2*rev] = invec[i];
699 cmask <<= 2*rev;
700 /* grow the distribution */
701 if (SDtraverseTre(sdt->stc[tt_Y], pos, cmask,
702 build_scaffold, &myScaffold) < 0) {
703 free(myScaffold.darr);
704 return NULL;
705 }
706 /* allocate result holder */
707 cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
708 sizeof(cd->carr[0])*myScaffold.alen);
709 if (cd == NULL) {
710 sprintf(SDerrorDetail,
711 "Cannot allocate %u entry cumulative distribution",
712 myScaffold.alen);
713 free(myScaffold.darr);
714 return NULL;
715 }
716 cd->isodist = (myScaffold.nic == 1);
717 /* sort the distribution */
718 qsort(myScaffold.darr, cd->calen = myScaffold.alen,
719 sizeof(struct outdir_s), sscmp);
720
721 /* record input range */
722 scale = myScaffold.wmin / (double)iwmax;
723 for (i = myScaffold.nic; i--; ) {
724 cd->clim[i][0] = floor(pos[i+2*rev]/scale) * scale;
725 cd->clim[i][1] = cd->clim[i][0] + scale;
726 }
727 if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */
728 cd->clim[1][0] = cd->clim[0][0];
729 cd->clim[1][1] = cd->clim[0][1];
730 }
731 cd->max_psa = myScaffold.wmax / (double)iwmax;
732 cd->max_psa *= cd->max_psa * M_PI;
733 if (rev)
734 cd->sidef = (sdt->sidef==SD_BXMIT) ? SD_FXMIT : SD_BXMIT;
735 else
736 cd->sidef = sdt->sidef;
737 cd->cTotal = 1e-20; /* compute directional total */
738 sp = myScaffold.darr;
739 for (i = myScaffold.alen; i--; sp++)
740 cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
741 cursum = .0; /* go back and get cumulative values */
742 scale = (double)cumlmax / cd->cTotal;
743 sp = myScaffold.darr;
744 for (i = 0; i < cd->calen; i++, sp++) {
745 cd->carr[i].hndx = sp->hent;
746 cd->carr[i].cuml = scale*cursum + .5;
747 cursum += sp->bsdf * (double)sp->wid * sp->wid;
748 }
749 cd->carr[i].hndx = ~0; /* make final entry */
750 cd->carr[i].cuml = cumlmax;
751 cd->cTotal *= M_PI/(double)iwmax/iwmax;
752 /* all done, clean up and return */
753 free(myScaffold.darr);
754 return cd;
755 }
756
757 /* Find or allocate a cumulative distribution for the given incoming vector */
758 const SDCDst *
759 SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
760 {
761 unsigned long cacheLeft = SDmaxCache;
762 const SDTre *sdt;
763 RREAL inCoord[2];
764 int i;
765 int mode;
766 SDTreCDst *cd, *cdlast, *cdlimit;
767 /* check arguments */
768 if ((inVec == NULL) | (sdc == NULL) ||
769 (sdt = (SDTre *)sdc->dist) == NULL)
770 return NULL;
771 switch (mode = sdt->sidef) { /* check direction */
772 case SD_FREFL:
773 if (inVec[2] < 0)
774 return NULL;
775 break;
776 case SD_BREFL:
777 if (inVec[2] > 0)
778 return NULL;
779 break;
780 case SD_FXMIT:
781 if (inVec[2] < 0)
782 mode = SD_BXMIT;
783 break;
784 case SD_BXMIT:
785 if (inVec[2] > 0)
786 mode = SD_FXMIT;
787 break;
788 default:
789 return NULL;
790 }
791 if (sdt->stc[tt_Y]->ndim == 3) { /* isotropic BSDF? */
792 if (mode != sdt->sidef) /* XXX unhandled reciprocity */
793 return &SDemptyCD;
794 inCoord[0] = (.5-FTINY) -
795 .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
796 } else if (sdt->stc[tt_Y]->ndim == 4) {
797 if (mode != sdt->sidef) /* use reciprocity? */
798 disk2square(inCoord, inVec[0], inVec[1]);
799 else
800 disk2square(inCoord, -inVec[0], -inVec[1]);
801 } else
802 return NULL; /* should be internal error */
803 /* quantize to avoid f.p. errors */
804 for (i = sdt->stc[tt_Y]->ndim - 2; i--; )
805 inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum;
806 cdlast = cdlimit = NULL; /* check for direction in cache list */
807 /* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */
808 for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
809 cdlast = cd, cd = cd->next) {
810 if (cacheLeft) { /* check cache size limit */
811 long csiz = sizeof(SDTreCDst) +
812 sizeof(cd->carr[0])*cd->calen;
813 if (cacheLeft > csiz)
814 cacheLeft -= csiz;
815 else {
816 cdlimit = cdlast;
817 cacheLeft = 0;
818 }
819 }
820 if (cd->sidef != mode)
821 continue;
822 for (i = sdt->stc[tt_Y]->ndim - 2; i--; )
823 if ((cd->clim[i][0] > inCoord[i]) |
824 (inCoord[i] >= cd->clim[i][1]))
825 break;
826 if (i < 0)
827 break; /* means we have a match */
828 }
829 if (cd == NULL) { /* need to create new entry? */
830 if (cdlimit != NULL) /* exceeded cache size limit? */
831 while ((cd = cdlimit->next) != NULL) {
832 cdlimit->next = cd->next;
833 free(cd);
834 }
835 cdlast = cd = make_cdist(sdt, inCoord, mode != sdt->sidef);
836 }
837 if (cdlast != NULL) { /* move entry to head of cache list */
838 cdlast->next = cd->next;
839 cd->next = (SDTreCDst *)sdc->cdList;
840 sdc->cdList = (SDCDst *)cd;
841 }
842 /* END MUTEX LOCK */
843 return (SDCDst *)cd; /* ready to go */
844 }
845
846 /* Query solid angle for vector(s) */
847 static SDError
848 SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
849 int qflags, SDComponent *sdc)
850 {
851 double myPSA[2];
852 /* check arguments */
853 if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
854 sdc->dist == NULL)
855 return SDEargument;
856 /* get projected solid angle(s) */
857 if (v2 != NULL) {
858 const SDTre *sdt = (SDTre *)sdc->dist;
859 double hcube[SD_MAXDIM+1];
860 if (!SDqueryTre(sdt, NULL, v1, v2, hcube)) {
861 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
862 return SDEinternal;
863 }
864 myPSA[0] = hcube[sdt->stc[tt_Y]->ndim];
865 myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
866 } else {
867 const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
868 if (cd == NULL)
869 myPSA[0] = myPSA[1] = 0;
870 else {
871 myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
872 (cd->clim[1][1] - cd->clim[1][0]);
873 myPSA[1] = cd->max_psa;
874 }
875 }
876 switch (qflags) { /* record based on flag settings */
877 case SDqueryVal:
878 *psa = myPSA[0];
879 break;
880 case SDqueryMax:
881 if (myPSA[1] > *psa)
882 *psa = myPSA[1];
883 break;
884 case SDqueryMin+SDqueryMax:
885 if (myPSA[1] > psa[1])
886 psa[1] = myPSA[1];
887 /* fall through */
888 case SDqueryMin:
889 if ((myPSA[0] > 0) & (myPSA[0] < psa[0]))
890 psa[0] = myPSA[0];
891 break;
892 }
893 return SDEnone;
894 }
895
896 /* Sample cumulative distribution */
897 static SDError
898 SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
899 {
900 const unsigned nBitsC = 4*sizeof(bitmask_t);
901 const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
902 const SDTreCDst *cd = (const SDTreCDst *)cdp;
903 const unsigned target = randX*cumlmax;
904 bitmask_t hndx, hcoord[2];
905 FVECT gpos;
906 double rotangle;
907 int i, iupper, ilower;
908 /* check arguments */
909 if ((ioVec == NULL) | (cd == NULL))
910 return SDEargument;
911 if (!cd->sidef)
912 return SDEnone; /* XXX should never happen */
913 if (ioVec[2] > 0) {
914 if ((cd->sidef != SD_FREFL) & (cd->sidef != SD_FXMIT))
915 return SDEargument;
916 } else if ((cd->sidef != SD_BREFL) & (cd->sidef != SD_BXMIT))
917 return SDEargument;
918 /* binary search to find position */
919 ilower = 0; iupper = cd->calen;
920 while ((i = (iupper + ilower) >> 1) != ilower)
921 if (target >= cd->carr[i].cuml)
922 ilower = i;
923 else
924 iupper = i;
925 /* localize random position */
926 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
927 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
928 /* index in longer Hilbert curve */
929 hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
930 * (double)((bitmask_t)1 << nExtraBits);
931 /* convert Hilbert index to vector */
932 hilbert_i2c(2, nBitsC, hndx, hcoord);
933 for (i = 2; i--; )
934 gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
935 (double)((bitmask_t)1 << nBitsC);
936 square2disk(gpos, gpos[0], gpos[1]);
937 /* compute Z-coordinate */
938 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
939 gpos[2] = sqrt(gpos[2]*(gpos[2]>0));
940 /* emit from back? */
941 if ((cd->sidef == SD_BREFL) | (cd->sidef == SD_FXMIT))
942 gpos[2] = -gpos[2];
943 if (cd->isodist) { /* rotate isotropic sample */
944 rotangle = atan2(-ioVec[1],-ioVec[0]);
945 spinvector(ioVec, gpos, zvec, rotangle);
946 } else
947 VCOPY(ioVec, gpos);
948 return SDEnone;
949 }
950
951 /* Advance pointer to the next non-white character in the string (or nul) */
952 static int
953 next_token(char **spp)
954 {
955 while (isspace(**spp))
956 ++*spp;
957 return **spp;
958 }
959
960 /* Advance pointer past matching token (or any token if c==0) */
961 #define eat_token(spp,c) ((next_token(spp)==(c)) ^ !(c) ? *(*(spp))++ : 0)
962
963 /* Count words from this point in string to '}' */
964 static int
965 count_values(char *cp)
966 {
967 int n = 0;
968
969 while (next_token(&cp) != '}' && *cp) {
970 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
971 if (!*++cp)
972 break;
973 ++n;
974 eat_token(&cp, ',');
975 }
976 return n;
977 }
978
979 /* Load an array of real numbers, returning total */
980 static int
981 load_values(char **spp, float *va, int n)
982 {
983 float *v = va;
984 char *svnext;
985
986 while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
987 if ((*v++ = atof(*spp)) < 0)
988 v[-1] = 0;
989 *spp = svnext;
990 eat_token(spp, ',');
991 }
992 return v - va;
993 }
994
995 /* Load BSDF tree data */
996 static SDNode *
997 load_tree_data(char **spp, int nd)
998 {
999 SDNode *st;
1000 int n;
1001
1002 if (!eat_token(spp, '{')) {
1003 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
1004 return NULL;
1005 }
1006 if (next_token(spp) == '{') { /* tree branches */
1007 st = SDnewNode(nd, -1);
1008 if (st == NULL)
1009 return NULL;
1010 for (n = 0; n < 1<<nd; n++)
1011 if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
1012 SDfreeTre(st);
1013 return NULL;
1014 }
1015 } else { /* else load value grid */
1016 int bsiz;
1017 n = count_values(*spp); /* see how big the grid is */
1018 for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd)
1019 if (1<<bsiz == n)
1020 break;
1021 if (bsiz >= 8*sizeof(size_t)) {
1022 strcpy(SDerrorDetail, "Illegal value count in tensor tree");
1023 return NULL;
1024 }
1025 st = SDnewNode(nd, bsiz/nd);
1026 if (st == NULL)
1027 return NULL;
1028 if (load_values(spp, st->u.v, n) != n) {
1029 strcpy(SDerrorDetail, "Real format error in tensor tree");
1030 SDfreeTre(st);
1031 return NULL;
1032 }
1033 }
1034 if (!eat_token(spp, '}')) {
1035 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
1036 SDfreeTre(st);
1037 return NULL;
1038 }
1039 eat_token(spp, ',');
1040 return st;
1041 }
1042
1043 /* Compute min. proj. solid angle and max. direct hemispherical scattering */
1044 static SDError
1045 get_extrema(SDSpectralDF *df)
1046 {
1047 SDNode *st = (*(SDTre *)df->comp[0].dist).stc[tt_Y];
1048 double stepWidth, dhemi, bmin[4], bmax[4];
1049
1050 stepWidth = SDsmallestLeaf(st);
1051 if (quantum > stepWidth) /* adjust quantization factor */
1052 quantum = stepWidth;
1053 df->minProjSA = M_PI*stepWidth*stepWidth;
1054 if (stepWidth < .03125)
1055 stepWidth = .03125; /* 1/32 resolution good enough */
1056 df->maxHemi = .0;
1057 if (st->ndim == 3) { /* isotropic BSDF */
1058 bmin[1] = bmin[2] = .0;
1059 bmax[1] = bmax[2] = 1.;
1060 for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
1061 bmax[0] = bmin[0] + stepWidth;
1062 dhemi = SDavgTreBox(st, bmin, bmax);
1063 if (dhemi > df->maxHemi)
1064 df->maxHemi = dhemi;
1065 }
1066 } else if (st->ndim == 4) { /* anisotropic BSDF */
1067 bmin[2] = bmin[3] = .0;
1068 bmax[2] = bmax[3] = 1.;
1069 for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
1070 bmax[0] = bmin[0] + stepWidth;
1071 for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
1072 bmax[1] = bmin[1] + stepWidth;
1073 dhemi = SDavgTreBox(st, bmin, bmax);
1074 if (dhemi > df->maxHemi)
1075 df->maxHemi = dhemi;
1076 }
1077 }
1078 } else
1079 return SDEinternal;
1080 /* correct hemispherical value */
1081 df->maxHemi *= M_PI;
1082 return SDEnone;
1083 }
1084
1085 /* Load BSDF distribution for this wavelength */
1086 static SDError
1087 load_bsdf_data(SDData *sd, ezxml_t wdb, int ct, int ndim)
1088 {
1089 SDSpectralDF *df;
1090 SDTre *sdt;
1091 char *sdata;
1092 /* allocate BSDF component */
1093 sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
1094 if (!sdata)
1095 return SDEnone;
1096 /*
1097 * Remember that front and back are reversed from WINDOW 6 orientations
1098 */
1099 if (!strcasecmp(sdata, "Transmission Front")) {
1100 if (sd->tb == NULL && (sd->tb = SDnewSpectralDF(1)) == NULL)
1101 return SDEmemory;
1102 df = sd->tb;
1103 } else if (!strcasecmp(sdata, "Transmission Back")) {
1104 if (sd->tf == NULL && (sd->tf = SDnewSpectralDF(1)) == NULL)
1105 return SDEmemory;
1106 df = sd->tf;
1107 } else if (!strcasecmp(sdata, "Reflection Front")) {
1108 if (sd->rb == NULL && (sd->rb = SDnewSpectralDF(1)) == NULL)
1109 return SDEmemory;
1110 df = sd->rb;
1111 } else if (!strcasecmp(sdata, "Reflection Back")) {
1112 if (sd->rf == NULL && (sd->rf = SDnewSpectralDF(1)) == NULL)
1113 return SDEmemory;
1114 df = sd->rf;
1115 } else
1116 return SDEnone;
1117 /* get angle bases */
1118 sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
1119 if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
1120 sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
1121 !sdata ? "Missing" : "Unsupported", sd->name);
1122 return !sdata ? SDEformat : SDEsupport;
1123 }
1124 if (df->comp[0].dist == NULL) { /* need to allocate BSDF tree? */
1125 sdt = (SDTre *)malloc(sizeof(SDTre));
1126 if (sdt == NULL)
1127 return SDEmemory;
1128 if (df == sd->rf)
1129 sdt->sidef = SD_FREFL;
1130 else if (df == sd->rb)
1131 sdt->sidef = SD_BREFL;
1132 else if (df == sd->tf)
1133 sdt->sidef = SD_FXMIT;
1134 else /* df == sd->tb */
1135 sdt->sidef = SD_BXMIT;
1136 sdt->stc[tt_Y] = sdt->stc[tt_u] = sdt->stc[tt_v] = NULL;
1137 df->comp[0].dist = sdt;
1138 df->comp[0].func = &SDhandleTre;
1139 } else {
1140 sdt = (SDTre *)df->comp[0].dist;
1141 if (sdt->stc[ct] != NULL) {
1142 SDfreeTre(sdt->stc[ct]);
1143 sdt->stc[ct] = NULL;
1144 }
1145 }
1146 /* read BSDF data */
1147 sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
1148 if (!sdata || !next_token(&sdata)) {
1149 sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
1150 sd->name);
1151 return SDEformat;
1152 }
1153 sdt->stc[ct] = load_tree_data(&sdata, ndim);
1154 if (sdt->stc[ct] == NULL)
1155 return SDEformat;
1156 if (next_token(&sdata)) { /* check for unconsumed characters */
1157 sprintf(SDerrorDetail,
1158 "Extra characters at end of ScatteringData in '%s'",
1159 sd->name);
1160 return SDEformat;
1161 }
1162 /* flatten branches where possible */
1163 sdt->stc[ct] = SDsimplifyTre(sdt->stc[ct]);
1164 if (sdt->stc[ct] == NULL)
1165 return SDEinternal;
1166 /* compute global quantities for Y */
1167 return (ct == tt_Y) ? get_extrema(df) : SDEnone;
1168 }
1169
1170 /* Find minimum value in tree */
1171 static float
1172 SDgetTreMin(const SDNode *st)
1173 {
1174 float vmin = FHUGE;
1175 int n;
1176
1177 if (st->log2GR < 0) {
1178 for (n = 1<<st->ndim; n--; ) {
1179 float v = SDgetTreMin(st->u.t[n]);
1180 if (v < vmin)
1181 vmin = v;
1182 }
1183 } else {
1184 for (n = 1<<(st->ndim*st->log2GR); n--; )
1185 if (st->u.v[n] < vmin)
1186 vmin = st->u.v[n];
1187 }
1188 return vmin;
1189 }
1190
1191 /* Subtract the given value from all tree nodes */
1192 static void
1193 SDsubtractTreVal(SDNode *st, float val)
1194 {
1195 int n;
1196
1197 if (st->log2GR < 0) {
1198 for (n = 1<<st->ndim; n--; )
1199 SDsubtractTreVal(st->u.t[n], val);
1200 } else {
1201 for (n = 1<<(st->ndim*st->log2GR); n--; )
1202 if ((st->u.v[n] -= val) < 0)
1203 st->u.v[n] = .0f;
1204 }
1205 }
1206
1207 /* Subtract minimum Y value from BSDF */
1208 static double
1209 subtract_min_Y(SDNode *st)
1210 {
1211 const float vmaxmin = 1.5/M_PI;
1212 float vmin;
1213 /* be sure to skip unused portion */
1214 if (st->ndim == 3) {
1215 int n;
1216 vmin = vmaxmin;
1217 if (st->log2GR < 0) {
1218 for (n = 0; n < 8; n += 2) {
1219 float v = SDgetTreMin(st->u.t[n]);
1220 if (v < vmin)
1221 vmin = v;
1222 }
1223 } else if (st->log2GR) {
1224 for (n = 1 << (3*st->log2GR - 1); n--; )
1225 if (st->u.v[n] < vmin)
1226 vmin = st->u.v[n];
1227 } else
1228 vmin = st->u.v[0];
1229 } else /* anisotropic covers entire tree */
1230 vmin = SDgetTreMin(st);
1231
1232 if ((vmin >= vmaxmin) | (vmin <= .01/M_PI))
1233 return .0; /* not worth bothering about */
1234
1235 SDsubtractTreVal(st, vmin);
1236
1237 return M_PI * vmin; /* return hemispherical value */
1238 }
1239
1240 /* Struct used in callback to find RGB extrema */
1241 typedef struct {
1242 SDNode **stc; /* original Y, u' & v' trees */
1243 float rgb[3]; /* RGB value */
1244 SDNode *new_stu, *new_stv; /* replacement u' & v' trees */
1245 } SDextRGBs;
1246
1247 /* Callback to find minimum RGB from Y value plus CIE (u',v') trees */
1248 static int
1249 get_min_RGB(float yval, const double *cmin, double csiz, void *cptr)
1250 {
1251 SDextRGBs *mp = (SDextRGBs *)cptr;
1252 double cmax[SD_MAXDIM];
1253 float rgb[3];
1254
1255 if (mp->stc[tt_Y]->ndim == 3) {
1256 if (cmin[0] + .5*csiz >= .5)
1257 return 0; /* ignore dead half of isotropic */
1258 } else
1259 cmax[3] = cmin[3] + csiz;
1260 cmax[0] = cmin[0] + csiz;
1261 cmax[1] = cmin[1] + csiz;
1262 cmax[2] = cmin[2] + csiz;
1263 /* average RGB color over voxel */
1264 SDyuv2rgb(yval, SDavgTreBox(mp->stc[tt_u], cmin, cmax),
1265 SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb);
1266 /* track smallest components */
1267 if (rgb[0] < mp->rgb[0]) mp->rgb[0] = rgb[0];
1268 if (rgb[1] < mp->rgb[1]) mp->rgb[1] = rgb[1];
1269 if (rgb[2] < mp->rgb[2]) mp->rgb[2] = rgb[2];
1270 return 0;
1271 }
1272
1273 /* Callback to build adjusted u' tree */
1274 static int
1275 adjust_utree(float uprime, const double *cmin, double csiz, void *cptr)
1276 {
1277 SDextRGBs *mp = (SDextRGBs *)cptr;
1278 double cmax[SD_MAXDIM];
1279 double yval;
1280 float rgb[3];
1281 C_COLOR clr;
1282
1283 if (mp->stc[tt_Y]->ndim == 3) {
1284 if (cmin[0] + .5*csiz >= .5)
1285 return 0; /* ignore dead half of isotropic */
1286 } else
1287 cmax[3] = cmin[3] + csiz;
1288 cmax[0] = cmin[0] + csiz;
1289 cmax[1] = cmin[1] + csiz;
1290 cmax[2] = cmin[2] + csiz;
1291 /* average RGB color over voxel */
1292 SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax), uprime,
1293 SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb);
1294 /* subtract minimum (& clamp) */
1295 if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval;
1296 if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval;
1297 if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval;
1298 c_fromSharpRGB(rgb, &clr); /* compute new u' for adj. RGB */
1299 uprime = 4.*clr.cx/(-2.*clr.cx + 12.*clr.cy + 3.);
1300 /* assign in new u' tree */
1301 mp->new_stu = SDsetVoxel(mp->new_stu, mp->stc[tt_Y]->ndim,
1302 cmin, csiz, uprime);
1303 return -(mp->new_stu == NULL);
1304 }
1305
1306 /* Callback to build adjusted v' tree */
1307 static int
1308 adjust_vtree(float vprime, const double *cmin, double csiz, void *cptr)
1309 {
1310 SDextRGBs *mp = (SDextRGBs *)cptr;
1311 double cmax[SD_MAXDIM];
1312 double yval;
1313 float rgb[3];
1314 C_COLOR clr;
1315
1316 if (mp->stc[tt_Y]->ndim == 3) {
1317 if (cmin[0] + .5*csiz >= .5)
1318 return 0; /* ignore dead half of isotropic */
1319 } else
1320 cmax[3] = cmin[3] + csiz;
1321 cmax[0] = cmin[0] + csiz;
1322 cmax[1] = cmin[1] + csiz;
1323 cmax[2] = cmin[2] + csiz;
1324 /* average RGB color over voxel */
1325 SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax),
1326 SDavgTreBox(mp->stc[tt_u], cmin, cmax),
1327 vprime, rgb);
1328 /* subtract minimum (& clamp) */
1329 if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval;
1330 if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval;
1331 if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval;
1332 c_fromSharpRGB(rgb, &clr); /* compute new v' for adj. RGB */
1333 vprime = 9.*clr.cy/(-2.*clr.cx + 12.*clr.cy + 3.);
1334 /* assign in new v' tree */
1335 mp->new_stv = SDsetVoxel(mp->new_stv, mp->stc[tt_Y]->ndim,
1336 cmin, csiz, vprime);
1337 return -(mp->new_stv == NULL);
1338 }
1339
1340 /* Subtract minimum (diffuse) color and return luminance & CIE (x,y) */
1341 static double
1342 subtract_min_RGB(C_COLOR *cs, SDNode *stc[])
1343 {
1344 SDextRGBs my_min;
1345 double ymin;
1346
1347 my_min.stc = stc;
1348 my_min.rgb[0] = my_min.rgb[1] = my_min.rgb[2] = FHUGE;
1349 my_min.new_stu = my_min.new_stv = NULL;
1350 /* get minimum RGB value */
1351 SDtraverseTre(stc[tt_Y], NULL, 0, get_min_RGB, &my_min);
1352 /* convert to C_COLOR */
1353 ymin = c_fromSharpRGB(my_min.rgb, cs);
1354 if ((ymin >= .5*FHUGE) | (ymin <= .01/M_PI))
1355 return .0; /* close to zero or no tree */
1356 /* adjust u' & v' trees */
1357 SDtraverseTre(stc[tt_u], NULL, 0, adjust_utree, &my_min);
1358 SDtraverseTre(stc[tt_v], NULL, 0, adjust_vtree, &my_min);
1359 SDfreeTre(stc[tt_u]); SDfreeTre(stc[tt_v]);
1360 stc[tt_u] = SDsimplifyTre(my_min.new_stu);
1361 stc[tt_v] = SDsimplifyTre(my_min.new_stv);
1362 /* subtract Y & return hemispherical */
1363 SDsubtractTreVal(stc[tt_Y], ymin);
1364
1365 return M_PI * ymin;
1366 }
1367
1368 /* Extract and separate diffuse portion of BSDF */
1369 static void
1370 extract_diffuse(SDValue *dv, SDSpectralDF *df)
1371 {
1372 int n;
1373 SDTre *sdt;
1374
1375 if (df == NULL || df->ncomp <= 0) {
1376 dv->spec = c_dfcolor;
1377 dv->cieY = .0;
1378 return;
1379 }
1380 sdt = (SDTre *)df->comp[0].dist;
1381 /* subtract minimum color/grayscale */
1382 if (sdt->stc[tt_u] != NULL && sdt->stc[tt_v] != NULL) {
1383 int i = 3*(tt_RGB_coef[1] < .001);
1384 while (i--) { /* initialize on first call */
1385 float rgb[3];
1386 rgb[0] = rgb[1] = rgb[2] = .0f; rgb[i] = 1.f;
1387 tt_RGB_coef[i] = c_fromSharpRGB(rgb, &tt_RGB_prim[i]);
1388 }
1389 memcpy(df->comp[0].cspec, tt_RGB_prim, sizeof(tt_RGB_prim));
1390 dv->cieY = subtract_min_RGB(&dv->spec, sdt->stc);
1391 } else {
1392 df->comp[0].cspec[0] = dv->spec = c_dfcolor;
1393 dv->cieY = subtract_min_Y(sdt->stc[tt_Y]);
1394 }
1395 df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1396
1397 c_ccvt(&dv->spec, C_CSXY); /* make sure (x,y) is set */
1398 }
1399
1400 /* Load a variable-resolution BSDF tree from an open XML file */
1401 SDError
1402 SDloadTre(SDData *sd, ezxml_t wtl)
1403 {
1404 SDError ec;
1405 ezxml_t wld, wdb;
1406 int rank;
1407 char *txt;
1408 /* basic checks and tensor rank */
1409 txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1410 "DataDefinition"), "IncidentDataStructure"));
1411 if (txt == NULL || !*txt) {
1412 sprintf(SDerrorDetail,
1413 "BSDF \"%s\": missing IncidentDataStructure",
1414 sd->name);
1415 return SDEformat;
1416 }
1417 if (!strcasecmp(txt, "TensorTree3"))
1418 rank = 3;
1419 else if (!strcasecmp(txt, "TensorTree4"))
1420 rank = 4;
1421 else {
1422 sprintf(SDerrorDetail,
1423 "BSDF \"%s\": unsupported IncidentDataStructure",
1424 sd->name);
1425 return SDEsupport;
1426 }
1427 /* load BSDF components */
1428 for (wld = ezxml_child(wtl, "WavelengthData");
1429 wld != NULL; wld = wld->next) {
1430 const char *cnm = ezxml_txt(ezxml_child(wld,"Wavelength"));
1431 int ct = -1;
1432 if (!strcasecmp(cnm, "Visible"))
1433 ct = tt_Y;
1434 else if (!strcasecmp(cnm, "CIE-u"))
1435 ct = tt_u;
1436 else if (!strcasecmp(cnm, "CIE-v"))
1437 ct = tt_v;
1438 else
1439 continue;
1440 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1441 wdb != NULL; wdb = wdb->next)
1442 if ((ec = load_bsdf_data(sd, wdb, ct, rank)) != SDEnone)
1443 return ec;
1444 }
1445 /* separate diffuse components */
1446 extract_diffuse(&sd->rLambFront, sd->rf);
1447 extract_diffuse(&sd->rLambBack, sd->rb);
1448 extract_diffuse(&sd->tLambFront, sd->tf);
1449 if (sd->tb != NULL) {
1450 extract_diffuse(&sd->tLambBack, sd->tb);
1451 if (sd->tf == NULL)
1452 sd->tLambFront = sd->tLambBack;
1453 } else if (sd->tf != NULL)
1454 sd->tLambBack = sd->tLambFront;
1455 /* return success */
1456 return SDEnone;
1457 }
1458
1459 /* Variable resolution BSDF methods */
1460 const SDFunc SDhandleTre = {
1461 &SDgetTreBSDF,
1462 &SDqueryTreProjSA,
1463 &SDgetTreCDist,
1464 &SDsampTreCDist,
1465 &SDFreeBTre,
1466 };