#ifndef lint static const char RCSid[] = "$Id: bsdf_t.c,v 3.36 2014/11/11 23:33:21 greg Exp $"; #endif /* * bsdf_t.c * * Definitions for variable-resolution BSDF trees * * Created by Greg Ward on 2/2/11. * */ #define _USE_MATH_DEFINES #include "rtio.h" #include #include #include #include "ezxml.h" #include "bsdf.h" #include "bsdf_t.h" #include "hilbert.h" /* Callback function type for SDtraverseTre() */ typedef int SDtreCallback(float val, const double *cmin, double csiz, void *cptr); /* reference width maximum (1.0) */ static const unsigned iwbits = sizeof(unsigned)*4; static const unsigned iwmax = 1<<(sizeof(unsigned)*4); /* maximum cumulative value */ static const unsigned cumlmax = ~0; /* constant z-vector */ static const FVECT zvec = {.0, .0, 1.}; /* quantization value */ static double quantum = 1./256.; /* Struct used for our distribution-building callback */ typedef struct { short nic; /* number of input coordinates */ short rev; /* reversing query */ unsigned alen; /* current array length */ unsigned nall; /* number of allocated entries */ unsigned wmin; /* minimum square size so far */ unsigned wmax; /* maximum square size */ struct outdir_s { unsigned hent; /* entering Hilbert index */ int wid; /* this square size */ float bsdf; /* BSDF for this square */ } *darr; /* output direction array */ } SDdistScaffold; /* Allocate a new scattering distribution node */ static SDNode * SDnewNode(int nd, int lg) { SDNode *st; if (nd <= 0) { strcpy(SDerrorDetail, "Zero dimension BSDF node request"); return NULL; } if (nd > SD_MAXDIM) { sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)", nd, SD_MAXDIM); return NULL; } if (lg < 0) { st = (SDNode *)malloc(sizeof(SDNode) + sizeof(st->u.t[0])*((1<u.t, 0, sizeof(st->u.t[0])<u.v[0])*((1 << nd*lg) - 1)); if (st == NULL) { sprintf(SDerrorDetail, "Cannot allocate %d BSDF leaves", 1 << nd*lg); return NULL; } } st->ndim = nd; st->log2GR = lg; return st; } /* Free an SD tree */ static void SDfreeTre(SDNode *st) { int n; if (st == NULL) return; for (n = (st->log2GR < 0) << st->ndim; n--; ) SDfreeTre(st->u.t[n]); free(st); } /* Free a variable-resolution BSDF */ static void SDFreeBTre(void *p) { SDTre *sdt = (SDTre *)p; if (sdt == NULL) return; SDfreeTre(sdt->st); free(sdt); } /* Fill branch's worth of grid values from subtree */ static void fill_grid_branch(float *dptr, const float *sptr, int nd, int shft) { unsigned n = 1 << (shft-1); if (!--nd) { /* end on the line */ memcpy(dptr, sptr, sizeof(*dptr)*n); return; } while (n--) /* recurse on each slice */ fill_grid_branch(dptr + (n << shft*nd), sptr + (n << (shft-1)*nd), nd, shft); } /* Get pointer at appropriate offset for the given branch */ static float * grid_branch_start(SDNode *st, int n) { unsigned skipsiz = 1 << (st->log2GR - 1); float *vptr = st->u.v; int i; for (i = st->ndim; i--; skipsiz <<= st->log2GR) if (1<log2GR >= 0) /* grid just returns unaltered */ return st; match = 1; /* check if grids below match */ for (n = 0; n < 1<ndim; n++) { if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL) return NULL; /* propogate error up call stack */ match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR); } if (match && (match = st->u.t[0]->log2GR) >= 0) { SDNode *stn = SDnewNode(st->ndim, match + 1); if (stn == NULL) /* out of memory? */ return st; /* transfer values to new grid */ for (n = 1 << st->ndim; n--; ) fill_grid_branch(grid_branch_start(stn, n), st->u.t[n]->u.v, stn->ndim, stn->log2GR); SDfreeTre(st); /* free old tree */ st = stn; /* return new one */ } return st; } /* Find smallest leaf in tree */ static double SDsmallestLeaf(const SDNode *st) { if (st->log2GR < 0) { /* tree branches */ double lmin = 1.; int n; for (n = 1<ndim; n--; ) { double lsiz = SDsmallestLeaf(st->u.t[n]); if (lsiz < lmin) lmin = lsiz; } return .5*lmin; } /* leaf grid width */ return 1. / (double)(1 << st->log2GR); } /* Add up N-dimensional hypercube array values over the given box */ static double SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax) { const unsigned skipsiz = 1 << --nd*shft; double sum = .0; int i; va += *imin * skipsiz; if (skipsiz == 1) for (i = *imin; i < *imax; i++) sum += *va++; else for (i = *imin; i < *imax; i++, va += skipsiz) sum += SDiterSum(va, nd, shft, imin+1, imax+1); return sum; } /* Average BSDF leaves over an orthotope defined by the unit hypercube */ static double SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax) { unsigned n; int i; if (!st) return .0; /* check box limits */ for (i = st->ndim; i--; ) { if (bmin[i] >= 1.) return .0; if (bmax[i] <= 0) return .0; if (bmin[i] >= bmax[i]) return .0; } if (st->log2GR < 0) { /* iterate on subtree */ double sum = .0, wsum = 1e-20; double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w; for (n = 1 << st->ndim; n--; ) { w = 1.; for (i = st->ndim; i--; ) { sbmin[i] = 2.*bmin[i]; sbmax[i] = 2.*bmax[i]; if (n & 1< 1.) sbmax[i] = 1.; if (sbmin[i] >= sbmax[i]) { w = .0; break; } w *= sbmax[i] - sbmin[i]; } if (w > 1e-10) { sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax); wsum += w; } } return sum / wsum; } else { /* iterate over leaves */ int imin[SD_MAXDIM], imax[SD_MAXDIM]; n = 1; for (i = st->ndim; i--; ) { imin[i] = (bmin[i] <= 0) ? 0 : (int)((1 << st->log2GR)*bmin[i]); imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) : (int)((1 << st->log2GR)*bmax[i] + .999999); n *= imax[i] - imin[i]; } if (n) return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n; } return .0; } /* Recursive call for SDtraverseTre() */ static int SDdotravTre(const SDNode *st, const double *pos, int cmask, SDtreCallback *cf, void *cptr, const double *cmin, double csiz) { int rv, rval = 0; double bmin[SD_MAXDIM]; int i, n; /* in branches? */ if (st->log2GR < 0) { unsigned skipmask = 0; csiz *= .5; for (i = st->ndim; i--; ) if (1<ndim; n--; ) { if (n & 1<ndim; n--; ) { if (!(n & 1<ndim; n--; ) { if (1<ndim; i--; ) if (1<u.t[n], pos, cmask, cf, cptr, bmin, csiz); if (rv < 0) return rv; } } else { /* else traverse leaves */ int clim[SD_MAXDIM][2]; int cpos[SD_MAXDIM]; if (st->log2GR == 0) /* short cut */ return (*cf)(st->u.v[0], cmin, csiz, cptr); csiz /= (double)(1 << st->log2GR); /* assign coord. ranges */ for (i = st->ndim; i--; ) if (1<> st->log2GR; clim[i][1] = clim[i][0] + 1; } else { clim[i][0] = 0; clim[i][1] = 1 << st->log2GR; } #if (SD_MAXDIM == 4) bmin[0] = cmin[0] + csiz*clim[0][0]; for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) { bmin[1] = cmin[1] + csiz*clim[1][0]; for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) { bmin[2] = cmin[2] + csiz*clim[2][0]; if (st->ndim == 3) { cpos[2] = clim[2][0]; n = cpos[0]; for (i = 1; i < 3; i++) n = (n << st->log2GR) + cpos[i]; for ( ; cpos[2] < clim[2][1]; cpos[2]++) { rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); if (rv < 0) return rv; bmin[2] += csiz; } } else { for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) { bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]); n = cpos[0]; for (i = 1; i < 4; i++) n = (n << st->log2GR) + cpos[i]; for ( ; cpos[3] < clim[3][1]; cpos[3]++) { rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); if (rv < 0) return rv; bmin[3] += csiz; } bmin[2] += csiz; } } bmin[1] += csiz; } bmin[0] += csiz; } #else _!_ "broken code segment!" #endif } return rval; } /* Traverse a tree, visiting nodes in a slice that fits partial position */ static int SDtraverseTre(const SDNode *st, const double *pos, int cmask, SDtreCallback *cf, void *cptr) { static double czero[SD_MAXDIM]; int i; /* check arguments */ if ((st == NULL) | (cf == NULL)) return -1; for (i = st->ndim; i--; ) if (1<= 1.)) return -1; return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.); } /* Look up tree value at the given grid position */ static float SDlookupTre(const SDNode *st, const double *pos, double *hcube) { double spos[SD_MAXDIM]; int i, n, t; /* initialize voxel return */ if (hcube) { hcube[i = st->ndim] = 1.; while (i--) hcube[i] = .0; } /* climb the tree */ while (st->log2GR < 0) { n = 0; /* move to appropriate branch */ if (hcube) hcube[st->ndim] *= .5; for (i = st->ndim; i--; ) { spos[i] = 2.*pos[i]; t = (spos[i] >= 1.); n |= t<ndim]; } st = st->u.t[n]; /* avoids tail recursion */ pos = spos; } if (st->log2GR == 0) /* short cut */ return st->u.v[0]; n = t = 0; /* find grid array index */ for (i = st->ndim; i--; ) { n += (int)((1<log2GR)*pos[i]) << t; t += st->log2GR; } if (hcube) { /* compute final hypercube */ hcube[st->ndim] /= (double)(1<log2GR); for (i = st->ndim; i--; ) hcube[i] += floor((1<log2GR)*pos[i])*hcube[st->ndim]; } return st->u.v[n]; /* no interpolation */ } /* Query BSDF value and sample hypercube for the given vectors */ static float SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc) { const RREAL *vtmp; FVECT rOutVec; double gridPos[4]; switch (sdt->sidef) { /* whose side are you on? */ case SD_FREFL: if ((outVec[2] < 0) | (inVec[2] < 0)) return -1.; break; case SD_BREFL: if ((outVec[2] > 0) | (inVec[2] > 0)) return -1.; break; case SD_FXMIT: if (outVec[2] > 0) { if (inVec[2] > 0) return -1.; vtmp = outVec; outVec = inVec; inVec = vtmp; } else if (inVec[2] < 0) return -1.; break; case SD_BXMIT: if (inVec[2] > 0) { if (outVec[2] > 0) return -1.; vtmp = outVec; outVec = inVec; inVec = vtmp; } else if (outVec[2] < 0) return -1.; break; default: return -1.; } /* convert vector coordinates */ if (sdt->st->ndim == 3) { spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0])); gridPos[0] = (.5-FTINY) - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]); } else if (sdt->st->ndim == 4) { SDdisk2square(gridPos, -inVec[0], -inVec[1]); SDdisk2square(gridPos+2, outVec[0], outVec[1]); } else return -1.; /* should be internal error */ return SDlookupTre(sdt->st, gridPos, hc); } /* Compute non-diffuse component for variable-resolution BSDF */ static int SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec, const FVECT inVec, SDComponent *sdc) { /* check arguments */ if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL) || sdc->dist == NULL) return 0; /* get nearest BSDF value */ coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL); return (coef[0] >= 0); /* monochromatic for now */ } /* Callback to build cumulative distribution using SDtraverseTre() */ static int build_scaffold(float val, const double *cmin, double csiz, void *cptr) { SDdistScaffold *sp = (SDdistScaffold *)cptr; int wid = csiz*(double)iwmax + .5; double revcmin[2]; bitmask_t bmin[2], bmax[2]; if (sp->rev) { /* need to reverse sense? */ revcmin[0] = 1. - cmin[0] - csiz; revcmin[1] = 1. - cmin[1] - csiz; cmin = revcmin; } else { cmin += sp->nic; /* else skip to output coords */ } if (wid < sp->wmin) /* new minimum width? */ sp->wmin = wid; if (wid > sp->wmax) /* new maximum? */ sp->wmax = wid; if (sp->alen >= sp->nall) { /* need more space? */ struct outdir_s *ndarr; sp->nall = (int)(1.5*sp->nall) + 256; ndarr = (struct outdir_s *)realloc(sp->darr, sizeof(struct outdir_s)*sp->nall); if (ndarr == NULL) { sprintf(SDerrorDetail, "Cannot grow scaffold to %u entries", sp->nall); return -1; /* abort build */ } sp->darr = ndarr; } /* find Hilbert entry index */ bmin[0] = cmin[0]*(double)iwmax + .5; bmin[1] = cmin[1]*(double)iwmax + .5; bmax[0] = bmin[0] + wid-1; bmax[1] = bmin[1] + wid-1; hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax); sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin); sp->darr[sp->alen].wid = wid; sp->darr[sp->alen].bsdf = val; sp->alen++; /* on to the next entry */ return 0; } /* Scaffold comparison function for qsort -- ascending Hilbert index */ static int sscmp(const void *p1, const void *p2) { unsigned h1 = (*(const struct outdir_s *)p1).hent; unsigned h2 = (*(const struct outdir_s *)p2).hent; if (h1 > h2) return 1; if (h1 < h2) return -1; return 0; } /* Create a new cumulative distribution for the given input direction */ static SDTreCDst * make_cdist(const SDTre *sdt, const double *invec, int rev) { SDdistScaffold myScaffold; double pos[4]; int cmask; SDTreCDst *cd; struct outdir_s *sp; double scale, cursum; int i; /* initialize scaffold */ myScaffold.wmin = iwmax; myScaffold.wmax = 0; myScaffold.nic = sdt->st->ndim - 2; myScaffold.rev = rev; myScaffold.alen = 0; myScaffold.nall = 512; myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) * myScaffold.nall); if (myScaffold.darr == NULL) return NULL; /* set up traversal */ cmask = (1<st, pos, cmask, &build_scaffold, &myScaffold) < 0) { free(myScaffold.darr); return NULL; } /* allocate result holder */ cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) + sizeof(cd->carr[0])*myScaffold.alen); if (cd == NULL) { sprintf(SDerrorDetail, "Cannot allocate %u entry cumulative distribution", myScaffold.alen); free(myScaffold.darr); return NULL; } cd->isodist = (myScaffold.nic == 1); /* sort the distribution */ qsort(myScaffold.darr, cd->calen = myScaffold.alen, sizeof(struct outdir_s), &sscmp); /* record input range */ scale = myScaffold.wmin / (double)iwmax; for (i = myScaffold.nic; i--; ) { cd->clim[i][0] = floor(pos[i+2*rev]/scale) * scale; cd->clim[i][1] = cd->clim[i][0] + scale; } if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */ cd->clim[1][0] = cd->clim[0][0]; cd->clim[1][1] = cd->clim[0][1]; } cd->max_psa = myScaffold.wmax / (double)iwmax; cd->max_psa *= cd->max_psa * M_PI; if (rev) cd->sidef = (sdt->sidef==SD_BXMIT) ? SD_FXMIT : SD_BXMIT; else cd->sidef = sdt->sidef; cd->cTotal = 1e-20; /* compute directional total */ sp = myScaffold.darr; for (i = myScaffold.alen; i--; sp++) cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid; cursum = .0; /* go back and get cumulative values */ scale = (double)cumlmax / cd->cTotal; sp = myScaffold.darr; for (i = 0; i < cd->calen; i++, sp++) { cd->carr[i].hndx = sp->hent; cd->carr[i].cuml = scale*cursum + .5; cursum += sp->bsdf * (double)sp->wid * sp->wid; } cd->carr[i].hndx = ~0; /* make final entry */ cd->carr[i].cuml = cumlmax; cd->cTotal *= M_PI/(double)iwmax/iwmax; /* all done, clean up and return */ free(myScaffold.darr); return cd; } /* Find or allocate a cumulative distribution for the given incoming vector */ const SDCDst * SDgetTreCDist(const FVECT inVec, SDComponent *sdc) { const SDTre *sdt; double inCoord[2]; int i; int mode; SDTreCDst *cd, *cdlast; /* check arguments */ if ((inVec == NULL) | (sdc == NULL) || (sdt = (SDTre *)sdc->dist) == NULL) return NULL; switch (mode = sdt->sidef) { /* check direction */ case SD_FREFL: if (inVec[2] < 0) return NULL; break; case SD_BREFL: if (inVec[2] > 0) return NULL; break; case SD_FXMIT: if (inVec[2] < 0) mode = SD_BXMIT; break; case SD_BXMIT: if (inVec[2] > 0) mode = SD_FXMIT; break; default: return NULL; } if (sdt->st->ndim == 3) { /* isotropic BSDF? */ if (mode != sdt->sidef) /* XXX unhandled reciprocity */ return &SDemptyCD; inCoord[0] = (.5-FTINY) - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); } else if (sdt->st->ndim == 4) { if (mode != sdt->sidef) /* use reciprocity? */ SDdisk2square(inCoord, inVec[0], inVec[1]); else SDdisk2square(inCoord, -inVec[0], -inVec[1]); } else return NULL; /* should be internal error */ /* quantize to avoid f.p. errors */ for (i = sdt->st->ndim - 2; i--; ) inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum; cdlast = NULL; /* check for direction in cache list */ for (cd = (SDTreCDst *)sdc->cdList; cd != NULL; cdlast = cd, cd = cd->next) { if (cd->sidef != mode) continue; for (i = sdt->st->ndim - 2; i--; ) if ((cd->clim[i][0] > inCoord[i]) | (inCoord[i] >= cd->clim[i][1])) break; if (i < 0) break; /* means we have a match */ } if (cd == NULL) /* need to create new entry? */ cdlast = cd = make_cdist(sdt, inCoord, mode != sdt->sidef); if (cdlast != NULL) { /* move entry to head of cache list */ cdlast->next = cd->next; cd->next = (SDTreCDst *)sdc->cdList; sdc->cdList = (SDCDst *)cd; } return (SDCDst *)cd; /* ready to go */ } /* Query solid angle for vector(s) */ static SDError SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2, int qflags, SDComponent *sdc) { double myPSA[2]; /* check arguments */ if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) || sdc->dist == NULL) return SDEargument; /* get projected solid angle(s) */ if (v2 != NULL) { const SDTre *sdt = (SDTre *)sdc->dist; double hcube[SD_MAXDIM+1]; if (SDqueryTre(sdt, v1, v2, hcube) < 0) { strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA"); return SDEinternal; } myPSA[0] = hcube[sdt->st->ndim]; myPSA[1] = myPSA[0] *= myPSA[0] * M_PI; } else { const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc); if (cd == NULL) myPSA[0] = myPSA[1] = 0; else { myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) * (cd->clim[1][1] - cd->clim[1][0]); myPSA[1] = cd->max_psa; } } switch (qflags) { /* record based on flag settings */ case SDqueryVal: *psa = myPSA[0]; break; case SDqueryMax: if (myPSA[1] > *psa) *psa = myPSA[1]; break; case SDqueryMin+SDqueryMax: if (myPSA[1] > psa[1]) psa[1] = myPSA[1]; /* fall through */ case SDqueryMin: if ((myPSA[0] > 0) & (myPSA[0] < psa[0])) psa[0] = myPSA[0]; break; } return SDEnone; } /* Sample cumulative distribution */ static SDError SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp) { const unsigned nBitsC = 4*sizeof(bitmask_t); const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned)); const SDTreCDst *cd = (const SDTreCDst *)cdp; const unsigned target = randX*cumlmax; bitmask_t hndx, hcoord[2]; double gpos[3], rotangle; int i, iupper, ilower; /* check arguments */ if ((ioVec == NULL) | (cd == NULL)) return SDEargument; if (!cd->sidef) return SDEnone; /* XXX should never happen */ if (ioVec[2] > 0) { if ((cd->sidef != SD_FREFL) & (cd->sidef != SD_FXMIT)) return SDEargument; } else if ((cd->sidef != SD_BREFL) & (cd->sidef != SD_BXMIT)) return SDEargument; /* binary search to find position */ ilower = 0; iupper = cd->calen; while ((i = (iupper + ilower) >> 1) != ilower) if (target >= cd->carr[i].cuml) ilower = i; else iupper = i; /* localize random position */ randX = (randX*cumlmax - cd->carr[ilower].cuml) / (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml); /* index in longer Hilbert curve */ hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx) * (double)((bitmask_t)1 << nExtraBits); /* convert Hilbert index to vector */ hilbert_i2c(2, nBitsC, hndx, hcoord); for (i = 2; i--; ) gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) / (double)((bitmask_t)1 << nBitsC); SDsquare2disk(gpos, gpos[0], gpos[1]); /* compute Z-coordinate */ gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1]; gpos[2] = sqrt(gpos[2]*(gpos[2]>0)); /* emit from back? */ if ((cd->sidef == SD_BREFL) | (cd->sidef == SD_FXMIT)) gpos[2] = -gpos[2]; if (cd->isodist) { /* rotate isotropic sample */ rotangle = atan2(-ioVec[1],-ioVec[0]); spinvector(ioVec, gpos, zvec, rotangle); } else VCOPY(ioVec, gpos); return SDEnone; } /* Advance pointer to the next non-white character in the string (or nul) */ static int next_token(char **spp) { while (isspace(**spp)) ++*spp; return **spp; } /* Advance pointer past matching token (or any token if c==0) */ #define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0) /* Count words from this point in string to '}' */ static int count_values(char *cp) { int n = 0; while (next_token(&cp) != '}' && *cp) { while (!isspace(*cp) & (*cp != ',') & (*cp != '}')) if (!*++cp) break; ++n; eat_token(&cp, ','); } return n; } /* Load an array of real numbers, returning total */ static int load_values(char **spp, float *va, int n) { float *v = va; char *svnext; while (n-- > 0 && (svnext = fskip(*spp)) != NULL) { if ((*v++ = atof(*spp)) < 0) v[-1] = 0; *spp = svnext; eat_token(spp, ','); } return v - va; } /* Load BSDF tree data */ static SDNode * load_tree_data(char **spp, int nd) { SDNode *st; int n; if (!eat_token(spp, '{')) { strcpy(SDerrorDetail, "Missing '{' in tensor tree"); return NULL; } if (next_token(spp) == '{') { /* tree branches */ st = SDnewNode(nd, -1); if (st == NULL) return NULL; for (n = 0; n < 1<u.t[n] = load_tree_data(spp, nd)) == NULL) { SDfreeTre(st); return NULL; } } else { /* else load value grid */ int bsiz; n = count_values(*spp); /* see how big the grid is */ for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd) if (1<= 8*sizeof(size_t)) { strcpy(SDerrorDetail, "Illegal value count in tensor tree"); return NULL; } st = SDnewNode(nd, bsiz/nd); if (st == NULL) return NULL; if (load_values(spp, st->u.v, n) != n) { strcpy(SDerrorDetail, "Real format error in tensor tree"); SDfreeTre(st); return NULL; } } if (!eat_token(spp, '}')) { strcpy(SDerrorDetail, "Missing '}' in tensor tree"); SDfreeTre(st); return NULL; } eat_token(spp, ','); return st; } /* Compute min. proj. solid angle and max. direct hemispherical scattering */ static SDError get_extrema(SDSpectralDF *df) { SDNode *st = (*(SDTre *)df->comp[0].dist).st; double stepWidth, dhemi, bmin[4], bmax[4]; stepWidth = SDsmallestLeaf(st); if (quantum > stepWidth) /* adjust quantization factor */ quantum = stepWidth; df->minProjSA = M_PI*stepWidth*stepWidth; if (stepWidth < .03125) stepWidth = .03125; /* 1/32 resolution good enough */ df->maxHemi = .0; if (st->ndim == 3) { /* isotropic BSDF */ bmin[1] = bmin[2] = .0; bmax[1] = bmax[2] = 1.; for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) { bmax[0] = bmin[0] + stepWidth; dhemi = SDavgTreBox(st, bmin, bmax); if (dhemi > df->maxHemi) df->maxHemi = dhemi; } } else if (st->ndim == 4) { /* anisotropic BSDF */ bmin[2] = bmin[3] = .0; bmax[2] = bmax[3] = 1.; for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) { bmax[0] = bmin[0] + stepWidth; for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) { bmax[1] = bmin[1] + stepWidth; dhemi = SDavgTreBox(st, bmin, bmax); if (dhemi > df->maxHemi) df->maxHemi = dhemi; } } } else return SDEinternal; /* correct hemispherical value */ df->maxHemi *= M_PI; return SDEnone; } /* Load BSDF distribution for this wavelength */ static SDError load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim) { SDSpectralDF *df; SDTre *sdt; char *sdata; /* allocate BSDF component */ sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection")); if (!sdata) return SDEnone; /* * Remember that front and back are reversed from WINDOW 6 orientations */ if (!strcasecmp(sdata, "Transmission Front")) { if (sd->tb != NULL) SDfreeSpectralDF(sd->tb); if ((sd->tb = SDnewSpectralDF(1)) == NULL) return SDEmemory; df = sd->tb; } else if (!strcasecmp(sdata, "Transmission Back")) { if (sd->tf != NULL) SDfreeSpectralDF(sd->tf); if ((sd->tf = SDnewSpectralDF(1)) == NULL) return SDEmemory; df = sd->tf; } else if (!strcasecmp(sdata, "Reflection Front")) { if (sd->rb != NULL) SDfreeSpectralDF(sd->rb); if ((sd->rb = SDnewSpectralDF(1)) == NULL) return SDEmemory; df = sd->rb; } else if (!strcasecmp(sdata, "Reflection Back")) { if (sd->rf != NULL) SDfreeSpectralDF(sd->rf); if ((sd->rf = SDnewSpectralDF(1)) == NULL) return SDEmemory; df = sd->rf; } else return SDEnone; /* XXX should also check "ScatteringDataType" for consistency? */ /* get angle bases */ sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis")); if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) { sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'", !sdata ? "Missing" : "Unsupported", sd->name); return !sdata ? SDEformat : SDEsupport; } /* allocate BSDF tree */ sdt = (SDTre *)malloc(sizeof(SDTre)); if (sdt == NULL) return SDEmemory; if (df == sd->rf) sdt->sidef = SD_FREFL; else if (df == sd->rb) sdt->sidef = SD_BREFL; else if (df == sd->tf) sdt->sidef = SD_FXMIT; else /* df == sd->tb */ sdt->sidef = SD_BXMIT; sdt->st = NULL; df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */ df->comp[0].dist = sdt; df->comp[0].func = &SDhandleTre; /* read BSDF data */ sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData")); if (!sdata || !next_token(&sdata)) { sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'", sd->name); return SDEformat; } sdt->st = load_tree_data(&sdata, ndim); if (sdt->st == NULL) return SDEformat; if (next_token(&sdata)) { /* check for unconsumed characters */ sprintf(SDerrorDetail, "Extra characters at end of ScatteringData in '%s'", sd->name); return SDEformat; } /* flatten branches where possible */ sdt->st = SDsimplifyTre(sdt->st); if (sdt->st == NULL) return SDEinternal; return get_extrema(df); /* compute global quantities */ } /* Find minimum value in tree */ static float SDgetTreMin(const SDNode *st) { float vmin = FHUGE; int n; if (st->log2GR < 0) { for (n = 1<ndim; n--; ) { float v = SDgetTreMin(st->u.t[n]); if (v < vmin) vmin = v; } } else { for (n = 1<<(st->ndim*st->log2GR); n--; ) if (st->u.v[n] < vmin) vmin = st->u.v[n]; } return vmin; } /* Subtract the given value from all tree nodes */ static void SDsubtractTreVal(SDNode *st, float val) { int n; if (st->log2GR < 0) { for (n = 1<ndim; n--; ) SDsubtractTreVal(st->u.t[n], val); } else { for (n = 1<<(st->ndim*st->log2GR); n--; ) if ((st->u.v[n] -= val) < 0) st->u.v[n] = .0f; } } /* Subtract minimum value from BSDF */ static double subtract_min(SDNode *st) { float vmin; /* be sure to skip unused portion */ if (st->ndim == 3) { int n; vmin = 1./M_PI; if (st->log2GR < 0) { for (n = 0; n < 8; n += 2) { float v = SDgetTreMin(st->u.t[n]); if (v < vmin) vmin = v; } } else if (st->log2GR) { for (n = 1 << (3*st->log2GR - 1); n--; ) if (st->u.v[n] < vmin) vmin = st->u.v[n]; } else vmin = st->u.v[0]; } else /* anisotropic covers entire tree */ vmin = SDgetTreMin(st); if (vmin <= FTINY) return .0; SDsubtractTreVal(st, vmin); return M_PI * vmin; /* return hemispherical value */ } /* Extract and separate diffuse portion of BSDF */ static void extract_diffuse(SDValue *dv, SDSpectralDF *df) { int n; if (df == NULL || df->ncomp <= 0) { dv->spec = c_dfcolor; dv->cieY = .0; return; } dv->spec = df->comp[0].cspec[0]; dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st); /* in case of multiple components */ for (n = df->ncomp; --n; ) { double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st); c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]); dv->cieY += ymin; } df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */ /* make sure everything is set */ c_ccvt(&dv->spec, C_CSXY+C_CSSPEC); } /* Load a variable-resolution BSDF tree from an open XML file */ SDError SDloadTre(SDData *sd, ezxml_t wtl) { SDError ec; ezxml_t wld, wdb; int rank; char *txt; /* basic checks and tensor rank */ txt = ezxml_txt(ezxml_child(ezxml_child(wtl, "DataDefinition"), "IncidentDataStructure")); if (txt == NULL || !*txt) { sprintf(SDerrorDetail, "BSDF \"%s\": missing IncidentDataStructure", sd->name); return SDEformat; } if (!strcasecmp(txt, "TensorTree3")) rank = 3; else if (!strcasecmp(txt, "TensorTree4")) rank = 4; else { sprintf(SDerrorDetail, "BSDF \"%s\": unsupported IncidentDataStructure", sd->name); return SDEsupport; } /* load BSDF components */ for (wld = ezxml_child(wtl, "WavelengthData"); wld != NULL; wld = wld->next) { if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")), "Visible")) continue; /* just visible for now */ for (wdb = ezxml_child(wld, "WavelengthDataBlock"); wdb != NULL; wdb = wdb->next) if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone) return ec; } /* separate diffuse components */ extract_diffuse(&sd->rLambFront, sd->rf); extract_diffuse(&sd->rLambBack, sd->rb); if (sd->tf != NULL) extract_diffuse(&sd->tLamb, sd->tf); if (sd->tb != NULL) extract_diffuse(&sd->tLamb, sd->tb); /* return success */ return SDEnone; } /* Variable resolution BSDF methods */ SDFunc SDhandleTre = { &SDgetTreBSDF, &SDqueryTreProjSA, &SDgetTreCDist, &SDsampTreCDist, &SDFreeBTre, };