ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.21
Committed: Mon Aug 22 05:48:39 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.20: +9 -5 lines
Log Message:
Fixed floating point epsilon errors in position branch testing

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf_t.c,v 3.20 2011/08/21 22:38:12 greg Exp $";
3 #endif
4 /*
5 * bsdf_t.c
6 *
7 * Definitions for variable-resolution BSDF trees
8 *
9 * Created by Greg Ward on 2/2/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include "rtio.h"
15 #include <stdlib.h>
16 #include <math.h>
17 #include <ctype.h>
18 #include "ezxml.h"
19 #include "bsdf.h"
20 #include "bsdf_t.h"
21 #include "hilbert.h"
22
23 /* Callback function type for SDtraverseTre() */
24 typedef int SDtreCallback(float val, const double *cmin,
25 double csiz, void *cptr);
26
27 /* reference width maximum (1.0) */
28 static const unsigned iwbits = sizeof(unsigned)*4;
29 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
30 /* maximum cumulative value */
31 static const unsigned cumlmax = ~0;
32 /* constant z-vector */
33 static const FVECT zvec = {.0, .0, 1.};
34
35 /* Struct used for our distribution-building callback */
36 typedef struct {
37 int nic; /* number of input coordinates */
38 unsigned alen; /* current array length */
39 unsigned nall; /* number of allocated entries */
40 unsigned wmin; /* minimum square size so far */
41 unsigned wmax; /* maximum square size */
42 struct outdir_s {
43 unsigned hent; /* entering Hilbert index */
44 int wid; /* this square size */
45 float bsdf; /* BSDF for this square */
46 } *darr; /* output direction array */
47 } SDdistScaffold;
48
49 /* Allocate a new scattering distribution node */
50 static SDNode *
51 SDnewNode(int nd, int lg)
52 {
53 SDNode *st;
54
55 if (nd <= 0) {
56 strcpy(SDerrorDetail, "Zero dimension BSDF node request");
57 return NULL;
58 }
59 if (nd > SD_MAXDIM) {
60 sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
61 nd, SD_MAXDIM);
62 return NULL;
63 }
64 if (lg < 0) {
65 st = (SDNode *)malloc(sizeof(SDNode) +
66 sizeof(st->u.t[0])*((1<<nd) - 1));
67 if (st == NULL) {
68 sprintf(SDerrorDetail,
69 "Cannot allocate %d branch BSDF tree", 1<<nd);
70 return NULL;
71 }
72 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
73 } else {
74 st = (SDNode *)malloc(sizeof(SDNode) +
75 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
76 if (st == NULL) {
77 sprintf(SDerrorDetail,
78 "Cannot allocate %d BSDF leaves", 1 << nd*lg);
79 return NULL;
80 }
81 }
82 st->ndim = nd;
83 st->log2GR = lg;
84 return st;
85 }
86
87 /* Free an SD tree */
88 static void
89 SDfreeTre(SDNode *st)
90 {
91 int n;
92
93 if (st == NULL)
94 return;
95 for (n = (st->log2GR < 0) << st->ndim; n--; )
96 SDfreeTre(st->u.t[n]);
97 free(st);
98 }
99
100 /* Free a variable-resolution BSDF */
101 static void
102 SDFreeBTre(void *p)
103 {
104 SDTre *sdt = (SDTre *)p;
105
106 if (sdt == NULL)
107 return;
108 SDfreeTre(sdt->st);
109 free(sdt);
110 }
111
112 /* Fill branch's worth of grid values from subtree */
113 static void
114 fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
115 {
116 unsigned n = 1 << (shft-1);
117
118 if (!--nd) { /* end on the line */
119 memcpy(dptr, sptr, sizeof(*dptr)*n);
120 return;
121 }
122 while (n--) /* recurse on each slice */
123 fill_grid_branch(dptr + (n << shft*nd),
124 sptr + (n << (shft-1)*nd), nd, shft);
125 }
126
127 /* Get pointer at appropriate offset for the given branch */
128 static float *
129 grid_branch_start(SDNode *st, int n)
130 {
131 unsigned skipsiz = 1 << (st->log2GR - 1);
132 float *vptr = st->u.v;
133 int i;
134
135 for (i = st->ndim; i--; skipsiz <<= st->log2GR)
136 if (1<<i & n)
137 vptr += skipsiz;
138 return vptr;
139 }
140
141 /* Simplify (consolidate) a tree by flattening uniform depth regions */
142 static SDNode *
143 SDsimplifyTre(SDNode *st)
144 {
145 int match, n;
146
147 if (st == NULL) /* check for invalid tree */
148 return NULL;
149 if (st->log2GR >= 0) /* grid just returns unaltered */
150 return st;
151 match = 1; /* check if grids below match */
152 for (n = 0; n < 1<<st->ndim; n++) {
153 if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
154 return NULL; /* propogate error up call stack */
155 match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
156 }
157 if (match && (match = st->u.t[0]->log2GR) >= 0) {
158 SDNode *stn = SDnewNode(st->ndim, match + 1);
159 if (stn == NULL) /* out of memory? */
160 return st;
161 /* transfer values to new grid */
162 for (n = 1 << st->ndim; n--; )
163 fill_grid_branch(grid_branch_start(stn, n),
164 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
165 SDfreeTre(st); /* free old tree */
166 st = stn; /* return new one */
167 }
168 return st;
169 }
170
171 /* Find smallest leaf in tree */
172 static double
173 SDsmallestLeaf(const SDNode *st)
174 {
175 if (st->log2GR < 0) { /* tree branches */
176 double lmin = 1.;
177 int n;
178 for (n = 1<<st->ndim; n--; ) {
179 double lsiz = SDsmallestLeaf(st->u.t[n]);
180 if (lsiz < lmin)
181 lmin = lsiz;
182 }
183 return .5*lmin;
184 }
185 /* leaf grid width */
186 return 1. / (double)(1 << st->log2GR);
187 }
188
189 /* Add up N-dimensional hypercube array values over the given box */
190 static double
191 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
192 {
193 const unsigned skipsiz = 1 << --nd*shft;
194 double sum = .0;
195 int i;
196
197 va += *imin * skipsiz;
198
199 if (skipsiz == 1)
200 for (i = *imin; i < *imax; i++)
201 sum += *va++;
202 else
203 for (i = *imin; i < *imax; i++, va += skipsiz)
204 sum += SDiterSum(va, nd, shft, imin+1, imax+1);
205 return sum;
206 }
207
208 /* Average BSDF leaves over an orthotope defined by the unit hypercube */
209 static double
210 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
211 {
212 unsigned n;
213 int i;
214
215 if (!st)
216 return .0;
217 /* check box limits */
218 for (i = st->ndim; i--; ) {
219 if (bmin[i] >= 1.)
220 return .0;
221 if (bmax[i] <= 0)
222 return .0;
223 if (bmin[i] >= bmax[i])
224 return .0;
225 }
226 if (st->log2GR < 0) { /* iterate on subtree */
227 double sum = .0, wsum = 1e-20;
228 double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
229 for (n = 1 << st->ndim; n--; ) {
230 w = 1.;
231 for (i = st->ndim; i--; ) {
232 sbmin[i] = 2.*bmin[i];
233 sbmax[i] = 2.*bmax[i];
234 if (n & 1<<i) {
235 sbmin[i] -= 1.;
236 sbmax[i] -= 1.;
237 }
238 if (sbmin[i] < .0) sbmin[i] = .0;
239 if (sbmax[i] > 1.) sbmax[i] = 1.;
240 if (sbmin[i] >= sbmax[i]) {
241 w = .0;
242 break;
243 }
244 w *= sbmax[i] - sbmin[i];
245 }
246 if (w > 1e-10) {
247 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
248 wsum += w;
249 }
250 }
251 return sum / wsum;
252 } else { /* iterate over leaves */
253 int imin[SD_MAXDIM], imax[SD_MAXDIM];
254
255 n = 1;
256 for (i = st->ndim; i--; ) {
257 imin[i] = (bmin[i] <= 0) ? 0 :
258 (int)((1 << st->log2GR)*bmin[i]);
259 imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) :
260 (int)((1 << st->log2GR)*bmax[i] + .999999);
261 n *= imax[i] - imin[i];
262 }
263 if (n)
264 return SDiterSum(st->u.v, st->ndim,
265 st->log2GR, imin, imax) / (double)n;
266 }
267 return .0;
268 }
269
270 /* Recursive call for SDtraverseTre() */
271 static int
272 SDdotravTre(const SDNode *st, const double *pos, int cmask,
273 SDtreCallback *cf, void *cptr,
274 const double *cmin, double csiz)
275 {
276 int rv, rval = 0;
277 double bmin[SD_MAXDIM];
278 int i, n;
279 /* in branches? */
280 if (st->log2GR < 0) {
281 unsigned skipmask = 0;
282 csiz *= .5;
283 for (i = st->ndim; i--; )
284 if (1<<i & cmask)
285 if (pos[i] < cmin[i] + csiz)
286 for (n = 1 << st->ndim; n--; ) {
287 if (n & 1<<i)
288 skipmask |= 1<<n;
289 }
290 else
291 for (n = 1 << st->ndim; n--; ) {
292 if (!(n & 1<<i))
293 skipmask |= 1<<n;
294 }
295 for (n = 1 << st->ndim; n--; ) {
296 if (1<<n & skipmask)
297 continue;
298 for (i = st->ndim; i--; )
299 if (1<<i & n)
300 bmin[i] = cmin[i] + csiz;
301 else
302 bmin[i] = cmin[i];
303
304 rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
305 cf, cptr, bmin, csiz);
306 if (rv < 0)
307 return rv;
308 }
309 } else { /* else traverse leaves */
310 int clim[SD_MAXDIM][2];
311 int cpos[SD_MAXDIM];
312
313 if (st->log2GR == 0) /* short cut */
314 return (*cf)(st->u.v[0], cmin, csiz, cptr);
315
316 csiz /= (double)(1 << st->log2GR);
317 /* assign coord. ranges */
318 for (i = st->ndim; i--; )
319 if (1<<i & cmask) {
320 clim[i][0] = (pos[i] - cmin[i])/csiz;
321 /* check overflow from f.p. error */
322 clim[i][0] -= clim[i][0] >> st->log2GR;
323 clim[i][1] = clim[i][0] + 1;
324 } else {
325 clim[i][0] = 0;
326 clim[i][1] = 1 << st->log2GR;
327 }
328 #if (SD_MAXDIM == 4)
329 bmin[0] = cmin[0] + csiz*clim[0][0];
330 for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
331 bmin[1] = cmin[1] + csiz*clim[1][0];
332 for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
333 bmin[2] = cmin[2] + csiz*clim[2][0];
334 if (st->ndim == 3) {
335 cpos[2] = clim[2][0];
336 n = cpos[0];
337 for (i = 1; i < 3; i++)
338 n = (n << st->log2GR) + cpos[i];
339 for ( ; cpos[2] < clim[2][1]; cpos[2]++) {
340 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
341 if (rv < 0)
342 return rv;
343 bmin[2] += csiz;
344 }
345 } else {
346 for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
347 bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
348 n = cpos[0];
349 for (i = 1; i < 4; i++)
350 n = (n << st->log2GR) + cpos[i];
351 for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
352 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
353 if (rv < 0)
354 return rv;
355 bmin[3] += csiz;
356 }
357 bmin[2] += csiz;
358 }
359 }
360 bmin[1] += csiz;
361 }
362 bmin[0] += csiz;
363 }
364 #else
365 _!_ "broken code segment!"
366 #endif
367 }
368 return rval;
369 }
370
371 /* Traverse a tree, visiting nodes in a slice that fits partial position */
372 static int
373 SDtraverseTre(const SDNode *st, const double *pos, int cmask,
374 SDtreCallback *cf, void *cptr)
375 {
376 static double czero[SD_MAXDIM];
377 int i;
378 /* check arguments */
379 if ((st == NULL) | (cf == NULL))
380 return -1;
381 for (i = st->ndim; i--; )
382 if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
383 return -1;
384
385 return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
386 }
387
388 /* Look up tree value at the given grid position */
389 static float
390 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
391 {
392 double spos[SD_MAXDIM];
393 int i, n, t;
394 /* initialize voxel return */
395 if (hcube) {
396 hcube[i = st->ndim] = 1.;
397 while (i--)
398 hcube[i] = .0;
399 }
400 /* climb the tree */
401 while (st->log2GR < 0) {
402 n = 0; /* move to appropriate branch */
403 if (hcube) hcube[st->ndim] *= .5;
404 for (i = st->ndim; i--; ) {
405 spos[i] = 2.*pos[i];
406 t = (spos[i] >= 1.);
407 n |= t<<i;
408 spos[i] -= (double)t;
409 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
410 }
411 st = st->u.t[n]; /* avoids tail recursion */
412 pos = spos;
413 }
414 if (st->log2GR == 0) /* short cut */
415 return st->u.v[0];
416 n = t = 0; /* find grid array index */
417 for (i = st->ndim; i--; ) {
418 n += (int)((1<<st->log2GR)*pos[i]) << t;
419 t += st->log2GR;
420 }
421 if (hcube) { /* compute final hypercube */
422 hcube[st->ndim] /= (double)(1<<st->log2GR);
423 for (i = st->ndim; i--; )
424 hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
425 }
426 return st->u.v[n]; /* no interpolation */
427 }
428
429 /* Query BSDF value and sample hypercube for the given vectors */
430 static float
431 SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
432 {
433 FVECT rOutVec;
434 double gridPos[4];
435
436 switch (sdt->sidef) { /* whose side are you on? */
437 case SD_UFRONT:
438 if ((outVec[2] < 0) | (inVec[2] < 0))
439 return -1.;
440 break;
441 case SD_UBACK:
442 if ((outVec[2] > 0) | (inVec[2] > 0))
443 return -1.;
444 break;
445 case SD_XMIT:
446 if ((outVec[2] > 0) == (inVec[2] > 0))
447 return -1.;
448 break;
449 default:
450 return -1.;
451 }
452 /* convert vector coordinates */
453 if (sdt->st->ndim == 3) {
454 spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0]));
455 gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
456 SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
457 } else if (sdt->st->ndim == 4) {
458 SDdisk2square(gridPos, -inVec[0], -inVec[1]);
459 SDdisk2square(gridPos+2, outVec[0], outVec[1]);
460 } else
461 return -1.; /* should be internal error */
462
463 return SDlookupTre(sdt->st, gridPos, hc);
464 }
465
466 /* Compute non-diffuse component for variable-resolution BSDF */
467 static int
468 SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
469 const FVECT inVec, SDComponent *sdc)
470 {
471 /* check arguments */
472 if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
473 || sdc->dist == NULL)
474 return 0;
475 /* get nearest BSDF value */
476 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
477 return (coef[0] >= 0); /* monochromatic for now */
478 }
479
480 /* Callback to build cumulative distribution using SDtraverseTre() */
481 static int
482 build_scaffold(float val, const double *cmin, double csiz, void *cptr)
483 {
484 SDdistScaffold *sp = (SDdistScaffold *)cptr;
485 int wid = csiz*(double)iwmax + .5;
486 bitmask_t bmin[2], bmax[2];
487
488 cmin += sp->nic; /* skip to output coords */
489 if (wid < sp->wmin) /* new minimum width? */
490 sp->wmin = wid;
491 if (wid > sp->wmax) /* new maximum? */
492 sp->wmax = wid;
493 if (sp->alen >= sp->nall) { /* need more space? */
494 struct outdir_s *ndarr;
495 sp->nall += 1024;
496 ndarr = (struct outdir_s *)realloc(sp->darr,
497 sizeof(struct outdir_s)*sp->nall);
498 if (ndarr == NULL) {
499 sprintf(SDerrorDetail,
500 "Cannot grow scaffold to %u entries", sp->nall);
501 return -1; /* abort build */
502 }
503 sp->darr = ndarr;
504 }
505 /* find Hilbert entry index */
506 bmin[0] = cmin[0]*(double)iwmax + .5;
507 bmin[1] = cmin[1]*(double)iwmax + .5;
508 bmax[0] = bmin[0] + wid-1;
509 bmax[1] = bmin[1] + wid-1;
510 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
511 sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
512 sp->darr[sp->alen].wid = wid;
513 sp->darr[sp->alen].bsdf = val;
514 sp->alen++; /* on to the next entry */
515 return 0;
516 }
517
518 /* Scaffold comparison function for qsort -- ascending Hilbert index */
519 static int
520 sscmp(const void *p1, const void *p2)
521 {
522 unsigned h1 = (*(const struct outdir_s *)p1).hent;
523 unsigned h2 = (*(const struct outdir_s *)p2).hent;
524
525 if (h1 > h2)
526 return 1;
527 if (h1 < h2)
528 return -1;
529 return 0;
530 }
531
532 /* Create a new cumulative distribution for the given input direction */
533 static SDTreCDst *
534 make_cdist(const SDTre *sdt, const double *pos)
535 {
536 SDdistScaffold myScaffold;
537 SDTreCDst *cd;
538 struct outdir_s *sp;
539 double scale, cursum;
540 int i;
541 /* initialize scaffold */
542 myScaffold.wmin = iwmax;
543 myScaffold.wmax = 0;
544 myScaffold.nic = sdt->st->ndim - 2;
545 myScaffold.alen = 0;
546 myScaffold.nall = 512;
547 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
548 myScaffold.nall);
549 if (myScaffold.darr == NULL)
550 return NULL;
551 /* grow the distribution */
552 if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
553 &build_scaffold, &myScaffold) < 0) {
554 free(myScaffold.darr);
555 return NULL;
556 }
557 /* allocate result holder */
558 cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
559 sizeof(cd->carr[0])*myScaffold.alen);
560 if (cd == NULL) {
561 sprintf(SDerrorDetail,
562 "Cannot allocate %u entry cumulative distribution",
563 myScaffold.alen);
564 free(myScaffold.darr);
565 return NULL;
566 }
567 cd->isodist = (myScaffold.nic == 1);
568 /* sort the distribution */
569 qsort(myScaffold.darr, cd->calen = myScaffold.alen,
570 sizeof(struct outdir_s), &sscmp);
571
572 /* record input range */
573 scale = myScaffold.wmin / (double)iwmax;
574 for (i = myScaffold.nic; i--; ) {
575 cd->clim[i][0] = floor(pos[i]/scale) * scale;
576 cd->clim[i][1] = cd->clim[i][0] + scale;
577 }
578 if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */
579 cd->clim[1][0] = cd->clim[0][0];
580 cd->clim[1][1] = cd->clim[0][1];
581 }
582 cd->max_psa = myScaffold.wmax / (double)iwmax;
583 cd->max_psa *= cd->max_psa * M_PI;
584 cd->sidef = sdt->sidef;
585 cd->cTotal = 1e-20; /* compute directional total */
586 sp = myScaffold.darr;
587 for (i = myScaffold.alen; i--; sp++)
588 cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
589 cursum = .0; /* go back and get cumulative values */
590 scale = (double)cumlmax / cd->cTotal;
591 sp = myScaffold.darr;
592 for (i = 0; i < cd->calen; i++, sp++) {
593 cd->carr[i].hndx = sp->hent;
594 cd->carr[i].cuml = scale*cursum + .5;
595 cursum += sp->bsdf * (double)sp->wid * sp->wid;
596 }
597 cd->carr[i].hndx = ~0; /* make final entry */
598 cd->carr[i].cuml = cumlmax;
599 cd->cTotal *= M_PI/(double)iwmax/iwmax;
600 /* all done, clean up and return */
601 free(myScaffold.darr);
602 return cd;
603 }
604
605 /* Find or allocate a cumulative distribution for the given incoming vector */
606 const SDCDst *
607 SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
608 {
609 const SDTre *sdt;
610 double inCoord[2], quantum;
611 int i;
612 SDTreCDst *cd, *cdlast;
613 /* check arguments */
614 if ((inVec == NULL) | (sdc == NULL) ||
615 (sdt = (SDTre *)sdc->dist) == NULL)
616 return NULL;
617 if (sdt->st->ndim == 3) { /* isotropic BSDF? */
618 inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
619 } else if (sdt->st->ndim == 4) {
620 SDdisk2square(inCoord, -inVec[0], -inVec[1]);
621 } else
622 return NULL; /* should be internal error */
623 /* quantize to avoid f.p. errors */
624 quantum = SDsmallestLeaf(sdt->st);
625 for (i = sdt->st->ndim - 2; i--; )
626 inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum;
627 cdlast = NULL; /* check for direction in cache list */
628 for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
629 cdlast = cd, cd = cd->next) {
630 for (i = sdt->st->ndim - 2; i--; )
631 if ((cd->clim[i][0] > inCoord[i]) |
632 (inCoord[i] >= cd->clim[i][1]))
633 break;
634 if (i < 0)
635 break; /* means we have a match */
636 }
637 if (cd == NULL) /* need to create new entry? */
638 cdlast = cd = make_cdist(sdt, inCoord);
639 if (cdlast != NULL) { /* move entry to head of cache list */
640 cdlast->next = cd->next;
641 cd->next = (SDTreCDst *)sdc->cdList;
642 sdc->cdList = (SDCDst *)cd;
643 }
644 return (SDCDst *)cd; /* ready to go */
645 }
646
647 /* Query solid angle for vector(s) */
648 static SDError
649 SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
650 int qflags, SDComponent *sdc)
651 {
652 double myPSA[2];
653 /* check arguments */
654 if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
655 sdc->dist == NULL)
656 return SDEargument;
657 /* get projected solid angle(s) */
658 if (v2 != NULL) {
659 const SDTre *sdt = (SDTre *)sdc->dist;
660 double hcube[SD_MAXDIM];
661 if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
662 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
663 return SDEinternal;
664 }
665 myPSA[0] = hcube[sdt->st->ndim];
666 myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
667 } else {
668 const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
669 if (cd == NULL)
670 return SDEmemory;
671 myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
672 (cd->clim[1][1] - cd->clim[1][0]);
673 myPSA[1] = cd->max_psa;
674 }
675 switch (qflags) { /* record based on flag settings */
676 case SDqueryVal:
677 *psa = myPSA[0];
678 break;
679 case SDqueryMax:
680 if (myPSA[1] > *psa)
681 *psa = myPSA[1];
682 break;
683 case SDqueryMin+SDqueryMax:
684 if (myPSA[1] > psa[1])
685 psa[1] = myPSA[1];
686 /* fall through */
687 case SDqueryMin:
688 if (myPSA[0] < psa[0])
689 psa[0] = myPSA[0];
690 break;
691 }
692 return SDEnone;
693 }
694
695 /* Sample cumulative distribution */
696 static SDError
697 SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
698 {
699 const unsigned nBitsC = 4*sizeof(bitmask_t);
700 const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
701 const SDTreCDst *cd = (const SDTreCDst *)cdp;
702 const unsigned target = randX*cumlmax;
703 bitmask_t hndx, hcoord[2];
704 double gpos[3], rotangle;
705 int i, iupper, ilower;
706 /* check arguments */
707 if ((ioVec == NULL) | (cd == NULL))
708 return SDEargument;
709 if (ioVec[2] > 0) {
710 if (!(cd->sidef & SD_UFRONT))
711 return SDEargument;
712 } else if (!(cd->sidef & SD_UBACK))
713 return SDEargument;
714 /* binary search to find position */
715 ilower = 0; iupper = cd->calen;
716 while ((i = (iupper + ilower) >> 1) != ilower)
717 if (target >= cd->carr[i].cuml)
718 ilower = i;
719 else
720 iupper = i;
721 /* localize random position */
722 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
723 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
724 /* index in longer Hilbert curve */
725 hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
726 * (double)((bitmask_t)1 << nExtraBits);
727 /* convert Hilbert index to vector */
728 hilbert_i2c(2, nBitsC, hndx, hcoord);
729 for (i = 2; i--; )
730 gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
731 (double)((bitmask_t)1 << nBitsC);
732 SDsquare2disk(gpos, gpos[0], gpos[1]);
733 /* compute Z-coordinate */
734 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
735 if (gpos[2] > 0) /* paranoia, I hope */
736 gpos[2] = sqrt(gpos[2]);
737 /* emit from back? */
738 if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
739 gpos[2] = -gpos[2];
740 if (cd->isodist) { /* rotate isotropic result */
741 rotangle = atan2(-ioVec[1],-ioVec[0]);
742 VCOPY(ioVec, gpos);
743 spinvector(ioVec, ioVec, zvec, rotangle);
744 } else
745 VCOPY(ioVec, gpos);
746 return SDEnone;
747 }
748
749 /* Advance pointer to the next non-white character in the string (or nul) */
750 static int
751 next_token(char **spp)
752 {
753 while (isspace(**spp))
754 ++*spp;
755 return **spp;
756 }
757
758 /* Advance pointer past matching token (or any token if c==0) */
759 #define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0)
760
761 /* Count words from this point in string to '}' */
762 static int
763 count_values(char *cp)
764 {
765 int n = 0;
766
767 while (next_token(&cp) != '}' && *cp) {
768 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
769 if (!*++cp)
770 break;
771 ++n;
772 eat_token(&cp, ',');
773 }
774 return n;
775 }
776
777 /* Load an array of real numbers, returning total */
778 static int
779 load_values(char **spp, float *va, int n)
780 {
781 float *v = va;
782 char *svnext;
783
784 while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
785 *v++ = atof(*spp);
786 *spp = svnext;
787 eat_token(spp, ',');
788 }
789 return v - va;
790 }
791
792 /* Load BSDF tree data */
793 static SDNode *
794 load_tree_data(char **spp, int nd)
795 {
796 SDNode *st;
797 int n;
798
799 if (!eat_token(spp, '{')) {
800 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
801 return NULL;
802 }
803 if (next_token(spp) == '{') { /* tree branches */
804 st = SDnewNode(nd, -1);
805 if (st == NULL)
806 return NULL;
807 for (n = 0; n < 1<<nd; n++)
808 if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
809 SDfreeTre(st);
810 return NULL;
811 }
812 } else { /* else load value grid */
813 int bsiz;
814 n = count_values(*spp); /* see how big the grid is */
815 for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd)
816 if (1<<bsiz == n)
817 break;
818 if (bsiz >= 8*sizeof(size_t)) {
819 strcpy(SDerrorDetail, "Illegal value count in tensor tree");
820 return NULL;
821 }
822 st = SDnewNode(nd, bsiz/nd);
823 if (st == NULL)
824 return NULL;
825 if (load_values(spp, st->u.v, n) != n) {
826 strcpy(SDerrorDetail, "Real format error in tensor tree");
827 SDfreeTre(st);
828 return NULL;
829 }
830 }
831 if (!eat_token(spp, '}')) {
832 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
833 SDfreeTre(st);
834 return NULL;
835 }
836 eat_token(spp, ',');
837 return st;
838 }
839
840 /* Compute min. proj. solid angle and max. direct hemispherical scattering */
841 static SDError
842 get_extrema(SDSpectralDF *df)
843 {
844 SDNode *st = (*(SDTre *)df->comp[0].dist).st;
845 double stepWidth, dhemi, bmin[4], bmax[4];
846
847 stepWidth = SDsmallestLeaf(st);
848 df->minProjSA = M_PI*stepWidth*stepWidth;
849 if (stepWidth < .03125)
850 stepWidth = .03125; /* 1/32 resolution good enough */
851 df->maxHemi = .0;
852 if (st->ndim == 3) { /* isotropic BSDF */
853 bmin[1] = bmin[2] = .0;
854 bmax[1] = bmax[2] = 1.;
855 for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
856 bmax[0] = bmin[0] + stepWidth;
857 dhemi = SDavgTreBox(st, bmin, bmax);
858 if (dhemi > df->maxHemi)
859 df->maxHemi = dhemi;
860 }
861 } else if (st->ndim == 4) { /* anisotropic BSDF */
862 bmin[2] = bmin[3] = .0;
863 bmax[2] = bmax[3] = 1.;
864 for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
865 bmax[0] = bmin[0] + stepWidth;
866 for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
867 bmax[1] = bmin[1] + stepWidth;
868 dhemi = SDavgTreBox(st, bmin, bmax);
869 if (dhemi > df->maxHemi)
870 df->maxHemi = dhemi;
871 }
872 }
873 } else
874 return SDEinternal;
875 /* correct hemispherical value */
876 df->maxHemi *= M_PI;
877 return SDEnone;
878 }
879
880 /* Load BSDF distribution for this wavelength */
881 static SDError
882 load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
883 {
884 SDSpectralDF *df;
885 SDTre *sdt;
886 char *sdata;
887 /* allocate BSDF component */
888 sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
889 if (!sdata)
890 return SDEnone;
891 /*
892 * Remember that front and back are reversed from WINDOW 6 orientations
893 */
894 if (!strcasecmp(sdata, "Transmission")) {
895 if (sd->tf != NULL)
896 SDfreeSpectralDF(sd->tf);
897 if ((sd->tf = SDnewSpectralDF(1)) == NULL)
898 return SDEmemory;
899 df = sd->tf;
900 } else if (!strcasecmp(sdata, "Reflection Front")) {
901 if (sd->rb != NULL) /* note back-front reversal */
902 SDfreeSpectralDF(sd->rb);
903 if ((sd->rb = SDnewSpectralDF(1)) == NULL)
904 return SDEmemory;
905 df = sd->rb;
906 } else if (!strcasecmp(sdata, "Reflection Back")) {
907 if (sd->rf != NULL) /* note front-back reversal */
908 SDfreeSpectralDF(sd->rf);
909 if ((sd->rf = SDnewSpectralDF(1)) == NULL)
910 return SDEmemory;
911 df = sd->rf;
912 } else
913 return SDEnone;
914 /* XXX should also check "ScatteringDataType" for consistency? */
915 /* get angle bases */
916 sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
917 if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
918 sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
919 !sdata ? "Missing" : "Unsupported", sd->name);
920 return !sdata ? SDEformat : SDEsupport;
921 }
922 /* allocate BSDF tree */
923 sdt = (SDTre *)malloc(sizeof(SDTre));
924 if (sdt == NULL)
925 return SDEmemory;
926 if (df == sd->rf)
927 sdt->sidef = SD_UFRONT;
928 else if (df == sd->rb)
929 sdt->sidef = SD_UBACK;
930 else
931 sdt->sidef = SD_XMIT;
932 sdt->st = NULL;
933 df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
934 df->comp[0].dist = sdt;
935 df->comp[0].func = &SDhandleTre;
936 /* read BSDF data */
937 sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
938 if (!sdata || !next_token(&sdata)) {
939 sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
940 sd->name);
941 return SDEformat;
942 }
943 sdt->st = load_tree_data(&sdata, ndim);
944 if (sdt->st == NULL)
945 return SDEformat;
946 if (next_token(&sdata)) { /* check for unconsumed characters */
947 sprintf(SDerrorDetail,
948 "Extra characters at end of ScatteringData in '%s'",
949 sd->name);
950 return SDEformat;
951 }
952 /* flatten branches where possible */
953 sdt->st = SDsimplifyTre(sdt->st);
954 if (sdt->st == NULL)
955 return SDEinternal;
956 return get_extrema(df); /* compute global quantities */
957 }
958
959 /* Find minimum value in tree */
960 static float
961 SDgetTreMin(const SDNode *st)
962 {
963 float vmin = FHUGE;
964 int n;
965
966 if (st->log2GR < 0) {
967 for (n = 1<<st->ndim; n--; ) {
968 float v = SDgetTreMin(st->u.t[n]);
969 if (v < vmin)
970 vmin = v;
971 }
972 } else {
973 for (n = 1<<(st->ndim*st->log2GR); n--; )
974 if (st->u.v[n] < vmin)
975 vmin = st->u.v[n];
976 }
977 return vmin;
978 }
979
980 /* Subtract the given value from all tree nodes */
981 static void
982 SDsubtractTreVal(SDNode *st, float val)
983 {
984 int n;
985
986 if (st->log2GR < 0) {
987 for (n = 1<<st->ndim; n--; )
988 SDsubtractTreVal(st->u.t[n], val);
989 } else {
990 for (n = 1<<(st->ndim*st->log2GR); n--; )
991 if ((st->u.v[n] -= val) < 0)
992 st->u.v[n] = .0f;
993 }
994 }
995
996 /* Subtract minimum value from BSDF */
997 static double
998 subtract_min(SDNode *st)
999 {
1000 float vmin;
1001 /* be sure to skip unused portion */
1002 if (st->ndim == 3) {
1003 int n;
1004 vmin = 1./M_PI;
1005 if (st->log2GR < 0) {
1006 for (n = 0; n < 8; n += 2) {
1007 float v = SDgetTreMin(st->u.t[n]);
1008 if (v < vmin)
1009 vmin = v;
1010 }
1011 } else if (st->log2GR) {
1012 for (n = 1 << (3*st->log2GR - 1); n--; )
1013 if (st->u.v[n] < vmin)
1014 vmin = st->u.v[n];
1015 } else
1016 vmin = st->u.v[0];
1017 } else /* anisotropic covers entire tree */
1018 vmin = SDgetTreMin(st);
1019
1020 if (vmin <= FTINY)
1021 return .0;
1022
1023 SDsubtractTreVal(st, vmin);
1024
1025 return M_PI * vmin; /* return hemispherical value */
1026 }
1027
1028 /* Extract and separate diffuse portion of BSDF */
1029 static void
1030 extract_diffuse(SDValue *dv, SDSpectralDF *df)
1031 {
1032 int n;
1033
1034 if (df == NULL || df->ncomp <= 0) {
1035 dv->spec = c_dfcolor;
1036 dv->cieY = .0;
1037 return;
1038 }
1039 dv->spec = df->comp[0].cspec[0];
1040 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1041 /* in case of multiple components */
1042 for (n = df->ncomp; --n; ) {
1043 double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1044 c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1045 dv->cieY += ymin;
1046 }
1047 df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1048 /* make sure everything is set */
1049 c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1050 }
1051
1052 /* Load a variable-resolution BSDF tree from an open XML file */
1053 SDError
1054 SDloadTre(SDData *sd, ezxml_t wtl)
1055 {
1056 SDError ec;
1057 ezxml_t wld, wdb;
1058 int rank;
1059 char *txt;
1060 /* basic checks and tensor rank */
1061 txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1062 "DataDefinition"), "IncidentDataStructure"));
1063 if (txt == NULL || !*txt) {
1064 sprintf(SDerrorDetail,
1065 "BSDF \"%s\": missing IncidentDataStructure",
1066 sd->name);
1067 return SDEformat;
1068 }
1069 if (!strcasecmp(txt, "TensorTree3"))
1070 rank = 3;
1071 else if (!strcasecmp(txt, "TensorTree4"))
1072 rank = 4;
1073 else {
1074 sprintf(SDerrorDetail,
1075 "BSDF \"%s\": unsupported IncidentDataStructure",
1076 sd->name);
1077 return SDEsupport;
1078 }
1079 /* load BSDF components */
1080 for (wld = ezxml_child(wtl, "WavelengthData");
1081 wld != NULL; wld = wld->next) {
1082 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1083 "Visible"))
1084 continue; /* just visible for now */
1085 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1086 wdb != NULL; wdb = wdb->next)
1087 if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1088 return ec;
1089 }
1090 /* separate diffuse components */
1091 extract_diffuse(&sd->rLambFront, sd->rf);
1092 extract_diffuse(&sd->rLambBack, sd->rb);
1093 extract_diffuse(&sd->tLamb, sd->tf);
1094 /* return success */
1095 return SDEnone;
1096 }
1097
1098 /* Variable resolution BSDF methods */
1099 SDFunc SDhandleTre = {
1100 &SDgetTreBSDF,
1101 &SDqueryTreProjSA,
1102 &SDgetTreCDist,
1103 &SDsampTreCDist,
1104 &SDFreeBTre,
1105 };