ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.12
Committed: Sun May 1 16:34:37 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.11: +25 -18 lines
Log Message:
Minor fixes and improvements

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf_t.c,v 3.11 2011/04/28 17:46:25 greg Exp $";
3 #endif
4 /*
5 * bsdf_t.c
6 *
7 * Definitions for variable-resolution BSDF trees
8 *
9 * Created by Greg Ward on 2/2/11.
10 *
11 */
12
13 #include "rtio.h"
14 #include <stdlib.h>
15 #include <math.h>
16 #include <ctype.h>
17 #include "ezxml.h"
18 #include "bsdf.h"
19 #include "bsdf_t.h"
20 #include "hilbert.h"
21
22 /* Callback function type for SDtraverseTre() */
23 typedef int SDtreCallback(float val, const double *cmin,
24 double csiz, void *cptr);
25
26 /* reference width maximum (1.0) */
27 static const unsigned iwbits = sizeof(unsigned)*4;
28 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
29 /* maximum cumulative value */
30 static const unsigned cumlmax = ~0;
31
32 /* Struct used for our distribution-building callback */
33 typedef struct {
34 int nic; /* number of input coordinates */
35 unsigned alen; /* current array length */
36 unsigned nall; /* number of allocated entries */
37 unsigned wmin; /* minimum square size so far */
38 unsigned wmax; /* maximum square size */
39 struct outdir_s {
40 unsigned hent; /* entering Hilbert index */
41 int wid; /* this square size */
42 float bsdf; /* BSDF for this square */
43 } *darr; /* output direction array */
44 } SDdistScaffold;
45
46 /* Allocate a new scattering distribution node */
47 static SDNode *
48 SDnewNode(int nd, int lg)
49 {
50 SDNode *st;
51
52 if (nd <= 0) {
53 strcpy(SDerrorDetail, "Zero dimension BSDF node request");
54 return NULL;
55 }
56 if (nd > SD_MAXDIM) {
57 sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
58 nd, SD_MAXDIM);
59 return NULL;
60 }
61 if (lg < 0) {
62 st = (SDNode *)malloc(sizeof(SDNode) +
63 sizeof(st->u.t[0])*((1<<nd) - 1));
64 if (st == NULL) {
65 sprintf(SDerrorDetail,
66 "Cannot allocate %d branch BSDF tree", 1<<nd);
67 return NULL;
68 }
69 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
70 } else {
71 st = (SDNode *)malloc(sizeof(SDNode) +
72 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
73 if (st == NULL) {
74 sprintf(SDerrorDetail,
75 "Cannot allocate %d BSDF leaves", 1 << nd*lg);
76 return NULL;
77 }
78 }
79 st->ndim = nd;
80 st->log2GR = lg;
81 return st;
82 }
83
84 /* Free an SD tree */
85 static void
86 SDfreeTre(SDNode *st)
87 {
88 int n;
89
90 if (st == NULL)
91 return;
92 for (n = (st->log2GR < 0) << st->ndim; n--; )
93 SDfreeTre(st->u.t[n]);
94 free((void *)st);
95 }
96
97 /* Free a variable-resolution BSDF */
98 static void
99 SDFreeBTre(void *p)
100 {
101 SDTre *sdt = (SDTre *)p;
102
103 if (sdt == NULL)
104 return;
105 SDfreeTre(sdt->st);
106 free(sdt);
107 }
108
109 /* Fill branch's worth of grid values from subtree */
110 static void
111 fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
112 {
113 unsigned n = 1 << (shft-1);
114
115 if (!--nd) { /* end on the line */
116 memcpy(dptr, sptr, sizeof(*dptr)*n);
117 return;
118 }
119 while (n--) /* recurse on each slice */
120 fill_grid_branch(dptr + (n << shft*nd),
121 sptr + (n << (shft-1)*nd), nd, shft);
122 }
123
124 /* Get pointer at appropriate offset for the given branch */
125 static float *
126 grid_branch_start(SDNode *st, int n)
127 {
128 unsigned skipsiz = 1 << st->log2GR;
129 float *vptr = st->u.v;
130 int i;
131
132 for (i = 0; i < st->ndim; skipsiz <<= st->log2GR)
133 if (1<<i++ & n)
134 vptr += skipsiz >> 1;
135 return vptr;
136 }
137
138 /* Simplify (consolidate) a tree by flattening uniform depth regions */
139 static SDNode *
140 SDsimplifyTre(SDNode *st)
141 {
142 int match, n;
143
144 if (st == NULL) /* check for invalid tree */
145 return NULL;
146 if (st->log2GR >= 0) /* grid just returns unaltered */
147 return st;
148 match = 1; /* check if grids below match */
149 for (n = 0; n < 1<<st->ndim; n++) {
150 if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
151 return NULL; /* propogate error up call stack */
152 match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
153 }
154 if (match && (match = st->u.t[0]->log2GR) >= 0) {
155 SDNode *stn = SDnewNode(st->ndim, match + 1);
156 if (stn == NULL) /* out of memory? */
157 return st;
158 /* transfer values to new grid */
159 for (n = 1 << st->ndim; n--; )
160 fill_grid_branch(grid_branch_start(stn, n),
161 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
162 SDfreeTre(st); /* free old tree */
163 st = stn; /* return new one */
164 }
165 return st;
166 }
167
168 /* Find smallest leaf in tree */
169 static double
170 SDsmallestLeaf(const SDNode *st)
171 {
172 if (st->log2GR < 0) { /* tree branches */
173 double lmin = 1.;
174 int n;
175 for (n = 1<<st->ndim; n--; ) {
176 double lsiz = SDsmallestLeaf(st->u.t[n]);
177 if (lsiz < lmin)
178 lmin = lsiz;
179 }
180 return .5*lmin;
181 }
182 /* leaf grid width */
183 return 1. / (double)(1 << st->log2GR);
184 }
185
186 /* Add up N-dimensional hypercube array values over the given box */
187 static double
188 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
189 {
190 const unsigned skipsiz = 1 << --nd*shft;
191 double sum = .0;
192 int i;
193
194 if (skipsiz == 1)
195 for (i = *imin; i < *imax; i++)
196 sum += va[i];
197 else
198 for (i = *imin; i < *imax; i++)
199 sum += SDiterSum(va + i*skipsiz, nd, shft, imin+1, imax+1);
200 return sum;
201 }
202
203 /* Average BSDF leaves over an orthotope defined by the unit hypercube */
204 static double
205 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
206 {
207 int imin[SD_MAXDIM], imax[SD_MAXDIM];
208 unsigned n;
209 int i;
210
211 if (!st)
212 return .0;
213 /* check box limits */
214 for (i = st->ndim; i--; ) {
215 if (bmin[i] >= 1.)
216 return .0;
217 if (bmax[i] <= .0)
218 return .0;
219 if (bmin[i] >= bmax[i])
220 return .0;
221 }
222 if (st->log2GR < 0) { /* iterate on subtree */
223 double sum = .0, wsum = 1e-20;
224 double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
225
226 for (n = 1 << st->ndim; n--; ) {
227 w = 1.;
228 for (i = st->ndim; i--; ) {
229 sbmin[i] = 2.*bmin[i];
230 sbmax[i] = 2.*bmax[i];
231 if (n & 1<<i) {
232 sbmin[i] -= 1.;
233 sbmax[i] -= 1.;
234 }
235 if (sbmin[i] < .0) sbmin[i] = .0;
236 if (sbmax[i] > 1.) sbmax[i] = 1.;
237 w *= sbmax[i] - sbmin[i];
238 }
239 if (w > 1e-10) {
240 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
241 wsum += w;
242 }
243 }
244 return sum / wsum;
245 }
246 n = 1; /* iterate over leaves */
247 for (i = st->ndim; i--; ) {
248 imin[i] = (bmin[i] <= 0) ? 0
249 : (int)((1 << st->log2GR)*bmin[i]);
250 imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR)
251 : (int)((1 << st->log2GR)*bmax[i] + .999999);
252 n *= imax[i] - imin[i];
253 }
254 if (!n)
255 return .0;
256
257 return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n;
258 }
259
260 /* Recursive call for SDtraverseTre() */
261 static int
262 SDdotravTre(const SDNode *st, const double *pos, int cmask,
263 SDtreCallback *cf, void *cptr,
264 const double *cmin, double csiz)
265 {
266 int rv, rval = 0;
267 double bmin[SD_MAXDIM];
268 int i, n;
269 /* in branches? */
270 if (st->log2GR < 0) {
271 unsigned skipmask = 0;
272
273 csiz *= .5;
274 for (i = st->ndim; i--; )
275 if (1<<i & cmask)
276 if (pos[i] < cmin[i] + csiz)
277 for (n = 1 << st->ndim; n--; )
278 if (n & 1<<i)
279 skipmask |= 1<<n;
280 else
281 for (n = 1 << st->ndim; n--; )
282 if (!(n & 1<<i))
283 skipmask |= 1<<n;
284 for (n = 1 << st->ndim; n--; ) {
285 if (1<<n & skipmask)
286 continue;
287 for (i = st->ndim; i--; )
288 if (1<<i & n)
289 bmin[i] = cmin[i] + csiz;
290 else
291 bmin[i] = cmin[i];
292
293 rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
294 cf, cptr, bmin, csiz);
295 if (rv < 0)
296 return rv;
297 }
298 } else { /* else traverse leaves */
299 int clim[SD_MAXDIM][2];
300 int cpos[SD_MAXDIM];
301
302 if (st->log2GR == 0) /* short cut */
303 return (*cf)(st->u.v[0], cmin, csiz, cptr);
304
305 csiz /= (double)(1 << st->log2GR);
306 /* assign coord. ranges */
307 for (i = st->ndim; i--; )
308 if (1<<i & cmask) {
309 clim[i][0] = (pos[i] - cmin[i])/csiz;
310 /* check overflow from f.p. error */
311 clim[i][0] -= clim[i][0] >> st->log2GR;
312 clim[i][1] = clim[i][0] + 1;
313 } else {
314 clim[i][0] = 0;
315 clim[i][1] = 1 << st->log2GR;
316 }
317 /* fill in unused dimensions */
318 for (i = SD_MAXDIM; i-- > st->ndim; ) {
319 clim[i][0] = 0; clim[i][1] = 1;
320 }
321 #if (SD_MAXDIM == 4)
322 bmin[0] = cmin[0] + csiz*clim[0][0];
323 for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
324 bmin[1] = cmin[1] + csiz*clim[1][0];
325 for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
326 bmin[2] = cmin[2] + csiz*clim[2][0];
327 for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
328 bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
329 n = cpos[0];
330 for (i = 1; i < st->ndim; i++)
331 n = (n << st->log2GR) + cpos[i];
332 for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
333 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
334 if (rv < 0)
335 return rv;
336 bmin[3] += csiz;
337 }
338 bmin[2] += csiz;
339 }
340 bmin[1] += csiz;
341 }
342 bmin[0] += csiz;
343 }
344 #else
345 _!_ "broken code segment!"
346 #endif
347 }
348 return rval;
349 }
350
351 /* Traverse a tree, visiting nodes in a slice that fits partial position */
352 static int
353 SDtraverseTre(const SDNode *st, const double *pos, int cmask,
354 SDtreCallback *cf, void *cptr)
355 {
356 static double czero[SD_MAXDIM];
357 int i;
358 /* check arguments */
359 if ((st == NULL) | (cf == NULL))
360 return -1;
361 for (i = st->ndim; i--; )
362 if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
363 return -1;
364
365 return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
366 }
367
368 /* Look up tree value at the given grid position */
369 static float
370 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
371 {
372 double spos[SD_MAXDIM];
373 int i, n, t;
374 /* initialize voxel return */
375 if (hcube) {
376 hcube[i = st->ndim] = 1.;
377 while (i--)
378 hcube[i] = .0;
379 }
380 /* climb the tree */
381 while (st->log2GR < 0) {
382 n = 0; /* move to appropriate branch */
383 if (hcube) hcube[st->ndim] *= .5;
384 for (i = st->ndim; i--; ) {
385 spos[i] = 2.*pos[i];
386 t = (spos[i] >= 1.);
387 n |= t<<i;
388 spos[i] -= (double)t;
389 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
390 }
391 st = st->u.t[n]; /* avoids tail recursion */
392 pos = spos;
393 }
394 if (st->log2GR == 0) /* short cut */
395 return st->u.v[0];
396 n = t = 0; /* find grid array index */
397 for (i = st->ndim; i--; ) {
398 n += (int)((1<<st->log2GR)*pos[i]) << t;
399 t += st->log2GR;
400 }
401 if (hcube) { /* compute final hypercube */
402 hcube[st->ndim] /= (double)(1<<st->log2GR);
403 for (i = st->ndim; i--; )
404 hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
405 }
406 return st->u.v[n]; /* no interpolation */
407 }
408
409 /* Query BSDF value and sample hypercube for the given vectors */
410 static float
411 SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
412 {
413 static const FVECT zvec = {.0, .0, 1.};
414 FVECT rOutVec;
415 double gridPos[4];
416
417 switch (sdt->sidef) { /* whose side are you on? */
418 case SD_UFRONT:
419 if ((outVec[2] < 0) | (inVec[2] < 0))
420 return -1.;
421 break;
422 case SD_UBACK:
423 if ((outVec[2] > 0) | (inVec[2] > 0))
424 return -1.;
425 break;
426 case SD_XMIT:
427 if ((outVec[2] > 0) == (inVec[2] > 0))
428 return -1.;
429 break;
430 default:
431 return -1.;
432 }
433 /* convert vector coordinates */
434 if (sdt->st->ndim == 3) {
435 spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0]));
436 gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
437 SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
438 } else if (sdt->st->ndim == 4) {
439 SDdisk2square(gridPos, -inVec[0], -inVec[1]);
440 SDdisk2square(gridPos+2, outVec[0], outVec[1]);
441 } else
442 return -1.; /* should be internal error */
443
444 return SDlookupTre(sdt->st, gridPos, hc);
445 }
446
447 /* Compute non-diffuse component for variable-resolution BSDF */
448 static int
449 SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
450 const FVECT inVec, SDComponent *sdc)
451 {
452 /* check arguments */
453 if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
454 || sdc->dist == NULL)
455 return 0;
456 /* get nearest BSDF value */
457 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
458 return (coef[0] >= 0); /* monochromatic for now */
459 }
460
461 /* Callback to build cumulative distribution using SDtraverseTre() */
462 static int
463 build_scaffold(float val, const double *cmin, double csiz, void *cptr)
464 {
465 SDdistScaffold *sp = (SDdistScaffold *)cptr;
466 int wid = csiz*(double)iwmax + .5;
467 bitmask_t bmin[2], bmax[2];
468
469 cmin += sp->nic; /* skip to output coords */
470 if (wid < sp->wmin) /* new minimum width? */
471 sp->wmin = wid;
472 if (wid > sp->wmax) /* new maximum? */
473 sp->wmax = wid;
474 if (sp->alen >= sp->nall) { /* need more space? */
475 struct outdir_s *ndarr;
476 sp->nall += 1024;
477 ndarr = (struct outdir_s *)realloc(sp->darr,
478 sizeof(struct outdir_s)*sp->nall);
479 if (ndarr == NULL) {
480 sprintf(SDerrorDetail,
481 "Cannot grow scaffold to %u entries", sp->nall);
482 return -1; /* abort build */
483 }
484 sp->darr = ndarr;
485 }
486 /* find Hilbert entry index */
487 bmin[0] = cmin[0]*(double)iwmax + .5;
488 bmin[1] = cmin[1]*(double)iwmax + .5;
489 bmax[0] = bmin[0] + wid-1;
490 bmax[1] = bmin[1] + wid-1;
491 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
492 sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
493 sp->darr[sp->alen].wid = wid;
494 sp->darr[sp->alen].bsdf = val;
495 sp->alen++; /* on to the next entry */
496 return 0;
497 }
498
499 /* Scaffold comparison function for qsort -- ascending Hilbert index */
500 static int
501 sscmp(const void *p1, const void *p2)
502 {
503 unsigned h1 = (*(const struct outdir_s *)p1).hent;
504 unsigned h2 = (*(const struct outdir_s *)p2).hent;
505
506 if (h1 > h2)
507 return 1;
508 if (h1 < h2)
509 return -1;
510 return 0;
511 }
512
513 /* Create a new cumulative distribution for the given input direction */
514 static SDTreCDst *
515 make_cdist(const SDTre *sdt, const double *pos)
516 {
517 SDdistScaffold myScaffold;
518 SDTreCDst *cd;
519 struct outdir_s *sp;
520 double scale, cursum;
521 int i;
522 /* initialize scaffold */
523 myScaffold.wmin = iwmax;
524 myScaffold.wmax = 0;
525 myScaffold.nic = sdt->st->ndim - 2;
526 myScaffold.alen = 0;
527 myScaffold.nall = 512;
528 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
529 myScaffold.nall);
530 if (myScaffold.darr == NULL)
531 return NULL;
532 /* grow the distribution */
533 if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
534 &build_scaffold, &myScaffold) < 0) {
535 free(myScaffold.darr);
536 return NULL;
537 }
538 /* allocate result holder */
539 cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
540 sizeof(cd->carr[0])*myScaffold.alen);
541 if (cd == NULL) {
542 sprintf(SDerrorDetail,
543 "Cannot allocate %u entry cumulative distribution",
544 myScaffold.alen);
545 free(myScaffold.darr);
546 return NULL;
547 }
548 /* sort the distribution */
549 qsort(myScaffold.darr, cd->calen = myScaffold.alen,
550 sizeof(struct outdir_s), &sscmp);
551
552 /* record input range */
553 scale = myScaffold.wmin / (double)iwmax;
554 for (i = myScaffold.nic; i--; ) {
555 cd->clim[i][0] = floor(pos[i]/scale) * scale;
556 cd->clim[i][1] = cd->clim[i][0] + scale;
557 }
558 cd->max_psa = myScaffold.wmax / (double)iwmax;
559 cd->max_psa *= cd->max_psa * M_PI;
560 cd->sidef = sdt->sidef;
561 cd->cTotal = 1e-20; /* compute directional total */
562 sp = myScaffold.darr;
563 for (i = myScaffold.alen; i--; sp++)
564 cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
565 cursum = .0; /* go back and get cumulative values */
566 scale = (double)cumlmax / cd->cTotal;
567 sp = myScaffold.darr;
568 for (i = 0; i < cd->calen; i++, sp++) {
569 cd->carr[i].hndx = sp->hent;
570 cd->carr[i].cuml = scale*cursum + .5;
571 cursum += sp->bsdf * (double)sp->wid * sp->wid;
572 }
573 cd->carr[i].hndx = ~0; /* make final entry */
574 cd->carr[i].cuml = cumlmax;
575 cd->cTotal *= M_PI/(double)iwmax/iwmax;
576 /* all done, clean up and return */
577 free(myScaffold.darr);
578 return cd;
579 }
580
581 /* Find or allocate a cumulative distribution for the given incoming vector */
582 const SDCDst *
583 SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
584 {
585 const SDTre *sdt;
586 double inCoord[2];
587 int vflags;
588 int i;
589 SDTreCDst *cd, *cdlast;
590 /* check arguments */
591 if ((inVec == NULL) | (sdc == NULL) ||
592 (sdt = (SDTre *)sdc->dist) == NULL)
593 return NULL;
594 if (sdt->st->ndim == 3) /* isotropic BSDF? */
595 inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
596 else if (sdt->st->ndim == 4)
597 SDdisk2square(inCoord, -inVec[0], -inVec[1]);
598 else
599 return NULL; /* should be internal error */
600 cdlast = NULL; /* check for direction in cache list */
601 for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
602 cdlast = cd, cd = (SDTreCDst *)cd->next) {
603 for (i = sdt->st->ndim - 2; i--; )
604 if ((cd->clim[i][0] > inCoord[i]) |
605 (inCoord[i] >= cd->clim[i][1]))
606 break;
607 if (i < 0)
608 break; /* means we have a match */
609 }
610 if (cd == NULL) /* need to create new entry? */
611 cdlast = cd = make_cdist(sdt, inCoord);
612 if (cdlast != NULL) { /* move entry to head of cache list */
613 cdlast->next = cd->next;
614 cd->next = sdc->cdList;
615 sdc->cdList = (SDCDst *)cd;
616 }
617 return (SDCDst *)cd; /* ready to go */
618 }
619
620 /* Query solid angle for vector(s) */
621 static SDError
622 SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
623 int qflags, SDComponent *sdc)
624 {
625 double myPSA[2];
626 /* check arguments */
627 if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
628 sdc->dist == NULL)
629 return SDEargument;
630 /* get projected solid angle(s) */
631 if (v2 != NULL) {
632 const SDTre *sdt = (SDTre *)sdc->dist;
633 double hcube[SD_MAXDIM];
634 if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
635 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
636 return SDEinternal;
637 }
638 myPSA[0] = hcube[sdt->st->ndim];
639 myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
640 } else {
641 const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
642 if (cd == NULL)
643 return SDEmemory;
644 myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
645 (cd->clim[1][1] - cd->clim[1][0]);
646 myPSA[1] = cd->max_psa;
647 }
648 switch (qflags) { /* record based on flag settings */
649 case SDqueryVal:
650 *psa = myPSA[0];
651 break;
652 case SDqueryMax:
653 if (myPSA[1] > *psa)
654 *psa = myPSA[1];
655 break;
656 case SDqueryMin+SDqueryMax:
657 if (myPSA[1] > psa[1])
658 psa[1] = myPSA[1];
659 /* fall through */
660 case SDqueryMin:
661 if (myPSA[0] < psa[0])
662 psa[0] = myPSA[0];
663 break;
664 }
665 return SDEnone;
666 }
667
668 /* Sample cumulative distribution */
669 static SDError
670 SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
671 {
672 const unsigned nBitsC = 4*sizeof(bitmask_t);
673 const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
674 const SDTreCDst *cd = (const SDTreCDst *)cdp;
675 const unsigned target = randX*cumlmax;
676 bitmask_t hndx, hcoord[2];
677 double gpos[3];
678 int i, iupper, ilower;
679 /* check arguments */
680 if ((ioVec == NULL) | (cd == NULL))
681 return SDEargument;
682 if (ioVec[2] > 0) {
683 if (!(cd->sidef & SD_UFRONT))
684 return SDEargument;
685 } else if (!(cd->sidef & SD_UBACK))
686 return SDEargument;
687 /* binary search to find position */
688 ilower = 0; iupper = cd->calen;
689 while ((i = (iupper + ilower) >> 1) != ilower)
690 if ((long)target >= (long)cd->carr[i].cuml)
691 ilower = i;
692 else
693 iupper = i;
694 /* localize random position */
695 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
696 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
697 /* index in longer Hilbert curve */
698 hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
699 * (double)((bitmask_t)1 << nExtraBits);
700 /* convert Hilbert index to vector */
701 hilbert_i2c(2, nBitsC, hndx, hcoord);
702 for (i = 2; i--; )
703 gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
704 (double)((bitmask_t)1 << nBitsC);
705 SDsquare2disk(gpos, gpos[0], gpos[1]);
706 /* compute Z-coordinate */
707 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
708 if (gpos[2] > 0) /* paranoia, I hope */
709 gpos[2] = sqrt(gpos[2]);
710 /* emit from back? */
711 if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
712 gpos[2] = -gpos[2];
713 VCOPY(ioVec, gpos);
714 return SDEnone;
715 }
716
717 /* Advance pointer to the next non-white character in the string (or nul) */
718 static int
719 next_token(char **spp)
720 {
721 while (isspace(**spp))
722 ++*spp;
723 return **spp;
724 }
725
726 /* Advance pointer past matching token (or any token if c==0) */
727 #define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0)
728
729 /* Count words from this point in string to '}' */
730 static int
731 count_values(char *cp)
732 {
733 int n = 0;
734
735 while (next_token(&cp) != '}' && *cp) {
736 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
737 if (!*++cp)
738 break;
739 ++n;
740 eat_token(&cp, ',');
741 }
742 return n;
743 }
744
745 /* Load an array of real numbers, returning total */
746 static int
747 load_values(char **spp, float *va, int n)
748 {
749 float *v = va;
750 char *svnext;
751
752 while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
753 *v++ = atof(*spp);
754 *spp = svnext;
755 eat_token(spp, ',');
756 }
757 return v - va;
758 }
759
760 /* Load BSDF tree data */
761 static SDNode *
762 load_tree_data(char **spp, int nd)
763 {
764 SDNode *st;
765 int n;
766
767 if (!eat_token(spp, '{')) {
768 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
769 return NULL;
770 }
771 if (next_token(spp) == '{') { /* tree branches */
772 st = SDnewNode(nd, -1);
773 if (st == NULL)
774 return NULL;
775 for (n = 0; n < 1<<nd; n++)
776 if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
777 SDfreeTre(st);
778 return NULL;
779 }
780 } else { /* else load value grid */
781 int bsiz;
782 n = count_values(*spp); /* see how big the grid is */
783 for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd)
784 if (1<<bsiz == n)
785 break;
786 if (bsiz >= 8*sizeof(size_t)) {
787 strcpy(SDerrorDetail, "Illegal value count in tensor tree");
788 return NULL;
789 }
790 st = SDnewNode(nd, bsiz/nd);
791 if (st == NULL)
792 return NULL;
793 if (load_values(spp, st->u.v, n) != n) {
794 strcpy(SDerrorDetail, "Real format error in tensor tree");
795 SDfreeTre(st);
796 return NULL;
797 }
798 }
799 if (!eat_token(spp, '}')) {
800 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
801 SDfreeTre(st);
802 return NULL;
803 }
804 eat_token(spp, ',');
805 return st;
806 }
807
808 /* Compute min. proj. solid angle and max. direct hemispherical scattering */
809 static SDError
810 get_extrema(SDSpectralDF *df)
811 {
812 SDNode *st = (*(SDTre *)df->comp[0].dist).st;
813 double stepWidth, dhemi, bmin[4], bmax[4];
814
815 stepWidth = SDsmallestLeaf(st);
816 df->minProjSA = M_PI*stepWidth*stepWidth;
817 if (stepWidth < .03125)
818 stepWidth = .03125; /* 1/32 resolution good enough */
819 df->maxHemi = .0;
820 if (st->ndim == 3) { /* isotropic BSDF */
821 bmin[1] = bmin[2] = .0;
822 bmax[1] = bmax[2] = 1.;
823 for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
824 bmax[0] = bmin[0] + stepWidth;
825 dhemi = SDavgTreBox(st, bmin, bmax);
826 if (dhemi > df->maxHemi)
827 df->maxHemi = dhemi;
828 }
829 } else if (st->ndim == 4) { /* anisotropic BSDF */
830 bmin[2] = bmin[3] = .0;
831 bmax[2] = bmax[3] = 1.;
832 for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
833 bmax[0] = bmin[0] + stepWidth;
834 for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
835 bmax[1] = bmin[1] + stepWidth;
836 dhemi = SDavgTreBox(st, bmin, bmax);
837 if (dhemi > df->maxHemi)
838 df->maxHemi = dhemi;
839 }
840 }
841 } else
842 return SDEinternal;
843 /* correct hemispherical value */
844 df->maxHemi *= M_PI;
845 return SDEnone;
846 }
847
848 /* Load BSDF distribution for this wavelength */
849 static SDError
850 load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
851 {
852 SDSpectralDF *df;
853 SDTre *sdt;
854 char *sdata;
855 int i;
856 /* allocate BSDF component */
857 sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
858 if (!sdata)
859 return SDEnone;
860 /*
861 * Remember that front and back are reversed from WINDOW 6 orientations
862 */
863 if (!strcasecmp(sdata, "Transmission")) {
864 if (sd->tf != NULL)
865 SDfreeSpectralDF(sd->tf);
866 if ((sd->tf = SDnewSpectralDF(1)) == NULL)
867 return SDEmemory;
868 df = sd->tf;
869 } else if (!strcasecmp(sdata, "Reflection Front")) {
870 if (sd->rb != NULL) /* note back-front reversal */
871 SDfreeSpectralDF(sd->rb);
872 if ((sd->rb = SDnewSpectralDF(1)) == NULL)
873 return SDEmemory;
874 df = sd->rb;
875 } else if (!strcasecmp(sdata, "Reflection Back")) {
876 if (sd->rf != NULL) /* note front-back reversal */
877 SDfreeSpectralDF(sd->rf);
878 if ((sd->rf = SDnewSpectralDF(1)) == NULL)
879 return SDEmemory;
880 df = sd->rf;
881 } else
882 return SDEnone;
883 /* XXX should also check "ScatteringDataType" for consistency? */
884 /* get angle bases */
885 sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
886 if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
887 sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
888 !sdata ? "Missing" : "Unsupported", sd->name);
889 return !sdata ? SDEformat : SDEsupport;
890 }
891 /* allocate BSDF tree */
892 sdt = (SDTre *)malloc(sizeof(SDTre));
893 if (sdt == NULL)
894 return SDEmemory;
895 if (df == sd->rf)
896 sdt->sidef = SD_UFRONT;
897 else if (df == sd->rb)
898 sdt->sidef = SD_UBACK;
899 else
900 sdt->sidef = SD_XMIT;
901 sdt->st = NULL;
902 df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
903 df->comp[0].dist = sdt;
904 df->comp[0].func = &SDhandleTre;
905 /* read BSDF data */
906 sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
907 if (!sdata || !next_token(&sdata)) {
908 sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
909 sd->name);
910 return SDEformat;
911 }
912 sdt->st = load_tree_data(&sdata, ndim);
913 if (sdt->st == NULL)
914 return SDEformat;
915 if (next_token(&sdata)) { /* check for unconsumed characters */
916 sprintf(SDerrorDetail,
917 "Extra characters at end of ScatteringData in '%s'",
918 sd->name);
919 return SDEformat;
920 }
921 /* flatten branches where possible */
922 sdt->st = SDsimplifyTre(sdt->st);
923 if (sdt->st == NULL)
924 return SDEinternal;
925 return get_extrema(df); /* compute global quantities */
926 }
927
928 /* Find minimum value in tree */
929 static float
930 SDgetTreMin(const SDNode *st)
931 {
932 float vmin = FHUGE;
933 int n;
934
935 if (st->log2GR < 0) {
936 for (n = 1<<st->ndim; n--; ) {
937 float v = SDgetTreMin(st->u.t[n]);
938 if (v < vmin)
939 vmin = v;
940 }
941 } else {
942 for (n = 1<<(st->ndim*st->log2GR); n--; )
943 if (st->u.v[n] < vmin)
944 vmin = st->u.v[n];
945 }
946 return vmin;
947 }
948
949 /* Subtract the given value from all tree nodes */
950 static void
951 SDsubtractTreVal(SDNode *st, float val)
952 {
953 int n;
954
955 if (st->log2GR < 0) {
956 for (n = 1<<st->ndim; n--; )
957 SDsubtractTreVal(st->u.t[n], val);
958 } else {
959 for (n = 1<<(st->ndim*st->log2GR); n--; )
960 st->u.v[n] -= val;
961 }
962 }
963
964 /* Subtract minimum value from BSDF */
965 static double
966 subtract_min(SDNode *st)
967 {
968 float vmin;
969 /* be sure to skip unused portion */
970 if (st->ndim == 3) {
971 int n;
972 vmin = 1./M_PI;
973 if (st->log2GR < 0) {
974 for (n = 0; n < 4; n++) {
975 float v = SDgetTreMin(st->u.t[n]);
976 if (v < vmin)
977 vmin = v;
978 }
979 } else if (st->log2GR) {
980 for (n = 1 << (3*st->log2GR - 1); n--; )
981 if (st->u.v[n] < vmin)
982 vmin = st->u.v[n];
983 } else
984 vmin = st->u.v[0];
985 } else /* anisotropic covers entire tree */
986 vmin = SDgetTreMin(st);
987
988 if (vmin <= FTINY)
989 return .0;
990
991 SDsubtractTreVal(st, vmin);
992
993 return M_PI * vmin; /* return hemispherical value */
994 }
995
996 /* Extract and separate diffuse portion of BSDF */
997 static void
998 extract_diffuse(SDValue *dv, SDSpectralDF *df)
999 {
1000 int n;
1001
1002 if (df == NULL || df->ncomp <= 0) {
1003 dv->spec = c_dfcolor;
1004 dv->cieY = .0;
1005 return;
1006 }
1007 dv->spec = df->comp[0].cspec[0];
1008 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1009 /* in case of multiple components */
1010 for (n = df->ncomp; --n; ) {
1011 double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1012 c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1013 dv->cieY += ymin;
1014 }
1015 df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1016 /* make sure everything is set */
1017 c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1018 }
1019
1020 /* Load a variable-resolution BSDF tree from an open XML file */
1021 SDError
1022 SDloadTre(SDData *sd, ezxml_t wtl)
1023 {
1024 SDError ec;
1025 ezxml_t wld, wdb;
1026 int rank;
1027 char *txt;
1028 /* basic checks and tensor rank */
1029 txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1030 "DataDefinition"), "IncidentDataStructure"));
1031 if (txt == NULL || !*txt) {
1032 sprintf(SDerrorDetail,
1033 "BSDF \"%s\": missing IncidentDataStructure",
1034 sd->name);
1035 return SDEformat;
1036 }
1037 if (!strcasecmp(txt, "TensorTree3"))
1038 rank = 3;
1039 else if (!strcasecmp(txt, "TensorTree4"))
1040 rank = 4;
1041 else {
1042 sprintf(SDerrorDetail,
1043 "BSDF \"%s\": unsupported IncidentDataStructure",
1044 sd->name);
1045 return SDEsupport;
1046 }
1047 /* load BSDF components */
1048 for (wld = ezxml_child(wtl, "WavelengthData");
1049 wld != NULL; wld = wld->next) {
1050 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1051 "Visible"))
1052 continue; /* just visible for now */
1053 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1054 wdb != NULL; wdb = wdb->next)
1055 if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1056 return ec;
1057 }
1058 /* separate diffuse components */
1059 extract_diffuse(&sd->rLambFront, sd->rf);
1060 extract_diffuse(&sd->rLambBack, sd->rb);
1061 extract_diffuse(&sd->tLamb, sd->tf);
1062 /* return success */
1063 return SDEnone;
1064 }
1065
1066 /* Variable resolution BSDF methods */
1067 SDFunc SDhandleTre = {
1068 &SDgetTreBSDF,
1069 &SDqueryTreProjSA,
1070 &SDgetTreCDist,
1071 &SDsampTreCDist,
1072 &SDFreeBTre,
1073 };