ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.11
Committed: Thu Apr 28 17:46:25 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.10: +4 -13 lines
Log Message:
Minor fixes

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf_t.c,v 3.10 2011/04/28 04:05:11 greg Exp $";
3 #endif
4 /*
5 * bsdf_t.c
6 *
7 * Definitions for variable-resolution BSDF trees
8 *
9 * Created by Greg Ward on 2/2/11.
10 *
11 */
12
13 #include "rtio.h"
14 #include <stdlib.h>
15 #include <math.h>
16 #include <ctype.h>
17 #include "ezxml.h"
18 #include "bsdf.h"
19 #include "bsdf_t.h"
20 #include "hilbert.h"
21
22 /* Callback function type for SDtraverseTre() */
23 typedef int SDtreCallback(float val, const double *cmin,
24 double csiz, void *cptr);
25
26 /* reference width maximum (1.0) */
27 static const unsigned iwbits = sizeof(unsigned)*4;
28 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
29 /* maximum cumulative value */
30 static const unsigned cumlmax = ~0;
31
32 /* Struct used for our distribution-building callback */
33 typedef struct {
34 int nic; /* number of input coordinates */
35 unsigned alen; /* current array length */
36 unsigned nall; /* number of allocated entries */
37 unsigned wmin; /* minimum square size so far */
38 unsigned wmax; /* maximum square size */
39 struct outdir_s {
40 unsigned hent; /* entering Hilbert index */
41 int wid; /* this square size */
42 float bsdf; /* BSDF for this square */
43 } *darr; /* output direction array */
44 } SDdistScaffold;
45
46 /* Allocate a new scattering distribution node */
47 static SDNode *
48 SDnewNode(int nd, int lg)
49 {
50 SDNode *st;
51
52 if (nd <= 0) {
53 strcpy(SDerrorDetail, "Zero dimension BSDF node request");
54 return NULL;
55 }
56 if (nd > SD_MAXDIM) {
57 sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
58 nd, SD_MAXDIM);
59 return NULL;
60 }
61 if (lg < 0) {
62 st = (SDNode *)malloc(sizeof(SDNode) +
63 sizeof(st->u.t[0])*((1<<nd) - 1));
64 if (st != NULL)
65 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
66 } else
67 st = (SDNode *)malloc(sizeof(SDNode) +
68 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
69
70 if (st == NULL) {
71 if (lg < 0)
72 sprintf(SDerrorDetail,
73 "Cannot allocate %d branch BSDF tree", 1<<nd);
74 else
75 sprintf(SDerrorDetail,
76 "Cannot allocate %d BSDF leaves", 1 << nd*lg);
77 return NULL;
78 }
79 st->ndim = nd;
80 st->log2GR = lg;
81 return st;
82 }
83
84 /* Free an SD tree */
85 static void
86 SDfreeTre(SDNode *st)
87 {
88 int i;
89
90 if (st == NULL)
91 return;
92 for (i = (st->log2GR < 0) << st->ndim; i--; )
93 SDfreeTre(st->u.t[i]);
94 free((void *)st);
95 }
96
97 /* Free a variable-resolution BSDF */
98 static void
99 SDFreeBTre(void *p)
100 {
101 SDTre *sdt = (SDTre *)p;
102
103 if (sdt == NULL)
104 return;
105 SDfreeTre(sdt->st);
106 free(sdt);
107 }
108
109 /* Fill branch's worth of grid values from subtree */
110 static void
111 fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
112 {
113 unsigned n = 1 << (shft-1);
114
115 if (!--nd) { /* end on the line */
116 memcpy(dptr, sptr, sizeof(*dptr)*n);
117 return;
118 }
119 while (n--) /* recurse on each slice */
120 fill_grid_branch(dptr + (n << shft*nd),
121 sptr + (n << (shft-1)*nd), nd, shft);
122 }
123
124 /* Get pointer at appropriate offset for the given branch */
125 static float *
126 grid_branch_start(SDNode *st, int n)
127 {
128 unsigned skipsiz = 1 << st->log2GR;
129 float *vptr = st->u.v;
130 int i;
131
132 for (i = 0; i < st->ndim; skipsiz <<= st->log2GR)
133 if (1<<i++ & n)
134 vptr += skipsiz >> 1;
135 return vptr;
136 }
137
138 /* Simplify (consolidate) a tree by flattening uniform depth regions */
139 static SDNode *
140 SDsimplifyTre(SDNode *st)
141 {
142 int match, n;
143
144 if (st == NULL) /* check for invalid tree */
145 return NULL;
146 if (st->log2GR >= 0) /* grid just returns unaltered */
147 return st;
148 match = 1; /* check if grids below match */
149 for (n = 0; n < 1<<st->ndim; n++) {
150 if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
151 return NULL; /* propogate error up call stack */
152 match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
153 }
154 if (match && (match = st->u.t[0]->log2GR) >= 0) {
155 SDNode *stn = SDnewNode(st->ndim, match + 1);
156 if (stn == NULL) /* out of memory? */
157 return st;
158 /* transfer values to new grid */
159 for (n = 1 << st->ndim; n--; )
160 fill_grid_branch(grid_branch_start(stn, n),
161 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
162 SDfreeTre(st); /* free old tree */
163 st = stn; /* return new one */
164 }
165 return st;
166 }
167
168 /* Find smallest leaf in tree */
169 static double
170 SDsmallestLeaf(const SDNode *st)
171 {
172 if (st->log2GR < 0) { /* tree branches */
173 double lmin = 1.;
174 int n;
175 for (n = 1<<st->ndim; n--; ) {
176 double lsiz = SDsmallestLeaf(st->u.t[n]);
177 if (lsiz < lmin)
178 lmin = lsiz;
179 }
180 return .5*lmin;
181 }
182 /* leaf grid width */
183 return 1. / (double)(1 << st->log2GR);
184 }
185
186 /* Add up N-dimensional hypercube array values over the given box */
187 static double
188 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
189 {
190 const unsigned skipsiz = 1 << --nd*shft;
191 double sum = .0;
192 int i;
193
194 if (skipsiz == 1)
195 for (i = *imin; i < *imax; i++)
196 sum += va[i];
197 else
198 for (i = *imin; i < *imax; i++)
199 sum += SDiterSum(va + i*skipsiz, nd, shft, imin+1, imax+1);
200 return sum;
201 }
202
203 /* Average BSDF leaves over an orthotope defined by the unit hypercube */
204 static double
205 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
206 {
207 int imin[SD_MAXDIM], imax[SD_MAXDIM];
208 unsigned n;
209 int i;
210
211 if (!st)
212 return .0;
213 /* check box limits */
214 for (i = st->ndim; i--; ) {
215 if (bmin[i] >= 1.)
216 return .0;
217 if (bmax[i] <= .0)
218 return .0;
219 if (bmin[i] >= bmax[i])
220 return .0;
221 }
222 if (st->log2GR < 0) { /* iterate on subtree */
223 double sum = .0, wsum = 1e-20;
224 double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
225
226 for (n = 1 << st->ndim; n--; ) {
227 w = 1.;
228 for (i = st->ndim; i--; ) {
229 sbmin[i] = 2.*bmin[i];
230 sbmax[i] = 2.*bmax[i];
231 if (n & 1<<i) {
232 sbmin[i] -= 1.;
233 sbmax[i] -= 1.;
234 }
235 if (sbmin[i] < .0) sbmin[i] = .0;
236 if (sbmax[i] > 1.) sbmax[i] = 1.;
237 w *= sbmax[i] - sbmin[i];
238 }
239 if (w > 1e-10) {
240 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
241 wsum += w;
242 }
243 }
244 return sum / wsum;
245 }
246 n = 1; /* iterate over leaves */
247 for (i = st->ndim; i--; ) {
248 imin[i] = (bmin[i] <= 0) ? 0
249 : (int)((1 << st->log2GR)*bmin[i]);
250 imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR)
251 : (int)((1 << st->log2GR)*bmax[i] + .999999);
252 n *= imax[i] - imin[i];
253 }
254 if (!n)
255 return .0;
256
257 return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n;
258 }
259
260 /* Recursive call for SDtraverseTre() */
261 static int
262 SDdotravTre(const SDNode *st, const double *pos, int cmask,
263 SDtreCallback *cf, void *cptr,
264 const double *cmin, double csiz)
265 {
266 int rv, rval = 0;
267 double bmin[SD_MAXDIM];
268 int i, n;
269 /* in branches? */
270 if (st->log2GR < 0) {
271 unsigned skipmask = 0;
272
273 csiz *= .5;
274 for (i = st->ndim; i--; )
275 if (1<<i & cmask)
276 if (pos[i] < cmin[i] + csiz)
277 for (n = 1 << st->ndim; n--; )
278 if (n & 1<<i)
279 skipmask |= 1<<n;
280 else
281 for (n = 1 << st->ndim; n--; )
282 if (!(n & 1<<i))
283 skipmask |= 1<<n;
284 for (n = 1 << st->ndim; n--; ) {
285 if (1<<n & skipmask)
286 continue;
287 for (i = st->ndim; i--; )
288 if (1<<i & n)
289 bmin[i] = cmin[i] + csiz;
290 else
291 bmin[i] = cmin[i];
292
293 rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
294 cf, cptr, bmin, csiz);
295 if (rv < 0)
296 return rv;
297 }
298 } else { /* else traverse leaves */
299 int clim[SD_MAXDIM][2];
300 int cpos[SD_MAXDIM];
301
302 if (st->log2GR == 0) /* short cut */
303 return (*cf)(st->u.v[0], cmin, csiz, cptr);
304
305 csiz /= (double)(1 << st->log2GR);
306 /* assign coord. ranges */
307 for (i = st->ndim; i--; )
308 if (1<<i & cmask) {
309 clim[i][0] = (pos[i] - cmin[i])/csiz;
310 /* check overflow from f.p. error */
311 clim[i][0] -= clim[i][0] >> st->log2GR;
312 clim[i][1] = clim[i][0] + 1;
313 } else {
314 clim[i][0] = 0;
315 clim[i][1] = 1 << st->log2GR;
316 }
317 /* fill in unused dimensions */
318 for (i = SD_MAXDIM; i-- > st->ndim; ) {
319 clim[i][0] = 0; clim[i][1] = 1;
320 }
321 #if (SD_MAXDIM == 4)
322 bmin[0] = cmin[0] + csiz*clim[0][0];
323 for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
324 bmin[1] = cmin[1] + csiz*clim[1][0];
325 for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
326 bmin[2] = cmin[2] + csiz*clim[2][0];
327 for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
328 bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
329 n = cpos[0];
330 for (i = 1; i < st->ndim; i++)
331 n = (n << st->log2GR) + cpos[i];
332 for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
333 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
334 if (rv < 0)
335 return rv;
336 bmin[3] += csiz;
337 }
338 bmin[2] += csiz;
339 }
340 bmin[1] += csiz;
341 }
342 bmin[0] += csiz;
343 }
344 #else
345 _!_ "broken code segment!"
346 #endif
347 }
348 return rval;
349 }
350
351 /* Traverse a tree, visiting nodes in a slice that fits partial position */
352 static int
353 SDtraverseTre(const SDNode *st, const double *pos, int cmask,
354 SDtreCallback *cf, void *cptr)
355 {
356 static double czero[SD_MAXDIM];
357 int i;
358 /* check arguments */
359 if ((st == NULL) | (cf == NULL))
360 return -1;
361 for (i = st->ndim; i--; )
362 if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
363 return -1;
364
365 return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
366 }
367
368 /* Look up tree value at the given grid position */
369 static float
370 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
371 {
372 double spos[SD_MAXDIM];
373 int i, n, t;
374 /* initialize voxel return */
375 if (hcube) {
376 hcube[i = st->ndim] = 1.;
377 while (i--)
378 hcube[i] = .0;
379 }
380 /* climb the tree */
381 while (st->log2GR < 0) {
382 n = 0; /* move to appropriate branch */
383 if (hcube) hcube[st->ndim] *= .5;
384 for (i = st->ndim; i--; ) {
385 spos[i] = 2.*pos[i];
386 t = (spos[i] >= 1.);
387 n |= t<<i;
388 spos[i] -= (double)t;
389 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
390 }
391 st = st->u.t[n]; /* avoids tail recursion */
392 pos = spos;
393 }
394 if (st->log2GR == 0) /* short cut */
395 return st->u.v[0];
396 n = t = 0; /* find grid array index */
397 for (i = st->ndim; i--; ) {
398 n += (int)((1<<st->log2GR)*pos[i]) << t;
399 t += st->log2GR;
400 }
401 if (hcube) { /* compute final hypercube */
402 hcube[st->ndim] /= (double)(1<<st->log2GR);
403 for (i = st->ndim; i--; )
404 hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
405 }
406 return st->u.v[n]; /* no interpolation */
407 }
408
409 /* Query BSDF value and sample hypercube for the given vectors */
410 static float
411 SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
412 {
413 static const FVECT zvec = {.0, .0, 1.};
414 FVECT rOutVec;
415 double gridPos[4];
416
417 switch (sdt->sidef) { /* whose side are you on? */
418 case SD_UFRONT:
419 if ((outVec[2] < 0) | (inVec[2] < 0))
420 return -1.;
421 break;
422 case SD_UBACK:
423 if ((outVec[2] > 0) | (inVec[2] > 0))
424 return -1.;
425 break;
426 case SD_XMIT:
427 if ((outVec[2] > 0) == (inVec[2] > 0))
428 return -1.;
429 break;
430 default:
431 return -1.;
432 }
433 /* convert vector coordinates */
434 if (sdt->st->ndim == 3) {
435 spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0]));
436 gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
437 SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
438 } else if (sdt->st->ndim == 4) {
439 SDdisk2square(gridPos, -inVec[0], -inVec[1]);
440 SDdisk2square(gridPos+2, outVec[0], outVec[1]);
441 } else
442 return -1.; /* should be internal error */
443
444 return SDlookupTre(sdt->st, gridPos, hc);
445 }
446
447 /* Compute non-diffuse component for variable-resolution BSDF */
448 static int
449 SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
450 const FVECT inVec, SDComponent *sdc)
451 {
452 /* check arguments */
453 if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
454 || sdc->dist == NULL)
455 return 0;
456 /* get nearest BSDF value */
457 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
458 return (coef[0] >= 0); /* monochromatic for now */
459 }
460
461 /* Callback to build cumulative distribution using SDtraverseTre() */
462 static int
463 build_scaffold(float val, const double *cmin, double csiz, void *cptr)
464 {
465 SDdistScaffold *sp = (SDdistScaffold *)cptr;
466 int wid = csiz*(double)iwmax + .5;
467 bitmask_t bmin[2], bmax[2];
468
469 cmin += sp->nic; /* skip to output coords */
470 if (wid < sp->wmin) /* new minimum width? */
471 sp->wmin = wid;
472 if (wid > sp->wmax) /* new maximum? */
473 sp->wmax = wid;
474 if (sp->alen >= sp->nall) { /* need more space? */
475 struct outdir_s *ndarr;
476 sp->nall += 8192;
477 ndarr = (struct outdir_s *)realloc(sp->darr,
478 sizeof(struct outdir_s)*sp->nall);
479 if (ndarr == NULL)
480 return -1; /* abort build */
481 sp->darr = ndarr;
482 }
483 /* find Hilbert entry index */
484 bmin[0] = cmin[0]*(double)iwmax + .5;
485 bmin[1] = cmin[1]*(double)iwmax + .5;
486 bmax[0] = bmin[0] + wid-1;
487 bmax[1] = bmin[1] + wid-1;
488 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
489 sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
490 sp->darr[sp->alen].wid = wid;
491 sp->darr[sp->alen].bsdf = val;
492 sp->alen++; /* on to the next entry */
493 return 0;
494 }
495
496 /* Scaffold comparison function for qsort -- ascending Hilbert index */
497 static int
498 sscmp(const void *p1, const void *p2)
499 {
500 unsigned h1 = (*(const struct outdir_s *)p1).hent;
501 unsigned h2 = (*(const struct outdir_s *)p2).hent;
502
503 if (h1 > h2)
504 return 1;
505 if (h1 < h2)
506 return -1;
507 return 0;
508 }
509
510 /* Create a new cumulative distribution for the given input direction */
511 static SDTreCDst *
512 make_cdist(const SDTre *sdt, const double *pos)
513 {
514 SDdistScaffold myScaffold;
515 SDTreCDst *cd;
516 struct outdir_s *sp;
517 double scale, cursum;
518 int i;
519 /* initialize scaffold */
520 myScaffold.wmin = iwmax;
521 myScaffold.wmax = 0;
522 myScaffold.nic = sdt->st->ndim - 2;
523 myScaffold.alen = 0;
524 myScaffold.nall = 8192;
525 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
526 myScaffold.nall);
527 if (myScaffold.darr == NULL)
528 return NULL;
529 /* grow the distribution */
530 if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
531 &build_scaffold, &myScaffold) < 0) {
532 free(myScaffold.darr);
533 return NULL;
534 }
535 /* allocate result holder */
536 cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
537 sizeof(cd->carr[0])*myScaffold.alen);
538 if (cd == NULL) {
539 free(myScaffold.darr);
540 return NULL;
541 }
542 /* sort the distribution */
543 qsort(myScaffold.darr, cd->calen = myScaffold.alen,
544 sizeof(struct outdir_s), &sscmp);
545
546 /* record input range */
547 scale = myScaffold.wmin / (double)iwmax;
548 for (i = myScaffold.nic; i--; ) {
549 cd->clim[i][0] = floor(pos[i]/scale) * scale;
550 cd->clim[i][1] = cd->clim[i][0] + scale;
551 }
552 cd->max_psa = myScaffold.wmax / (double)iwmax;
553 cd->max_psa *= cd->max_psa * M_PI;
554 cd->sidef = sdt->sidef;
555 cd->cTotal = 1e-20; /* compute directional total */
556 sp = myScaffold.darr;
557 for (i = myScaffold.alen; i--; sp++)
558 cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
559 cursum = .0; /* go back and get cumulative values */
560 scale = (double)cumlmax / cd->cTotal;
561 sp = myScaffold.darr;
562 for (i = 0; i < cd->calen; i++, sp++) {
563 cd->carr[i].hndx = sp->hent;
564 cd->carr[i].cuml = scale*cursum + .5;
565 cursum += sp->bsdf * (double)sp->wid * sp->wid;
566 }
567 cd->carr[i].hndx = ~0; /* make final entry */
568 cd->carr[i].cuml = cumlmax;
569 cd->cTotal *= M_PI/(double)iwmax/iwmax;
570 /* all done, clean up and return */
571 free(myScaffold.darr);
572 return cd;
573 }
574
575 /* Find or allocate a cumulative distribution for the given incoming vector */
576 const SDCDst *
577 SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
578 {
579 const SDTre *sdt;
580 double inCoord[2];
581 int vflags;
582 int i;
583 SDTreCDst *cd, *cdlast;
584 /* check arguments */
585 if ((inVec == NULL) | (sdc == NULL) ||
586 (sdt = (SDTre *)sdc->dist) == NULL)
587 return NULL;
588 if (sdt->st->ndim == 3) /* isotropic BSDF? */
589 inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
590 else if (sdt->st->ndim == 4)
591 SDdisk2square(inCoord, -inVec[0], -inVec[1]);
592 else
593 return NULL; /* should be internal error */
594 cdlast = NULL; /* check for direction in cache list */
595 for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
596 cdlast = cd, cd = (SDTreCDst *)cd->next) {
597 for (i = sdt->st->ndim - 2; i--; )
598 if ((cd->clim[i][0] > inCoord[i]) |
599 (inCoord[i] >= cd->clim[i][1]))
600 break;
601 if (i < 0)
602 break; /* means we have a match */
603 }
604 if (cd == NULL) /* need to create new entry? */
605 cdlast = cd = make_cdist(sdt, inCoord);
606 if (cdlast != NULL) { /* move entry to head of cache list */
607 cdlast->next = cd->next;
608 cd->next = sdc->cdList;
609 sdc->cdList = (SDCDst *)cd;
610 }
611 return (SDCDst *)cd; /* ready to go */
612 }
613
614 /* Query solid angle for vector(s) */
615 static SDError
616 SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
617 int qflags, SDComponent *sdc)
618 {
619 double myPSA[2];
620 /* check arguments */
621 if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
622 sdc->dist == NULL)
623 return SDEargument;
624 /* get projected solid angle(s) */
625 if (v2 != NULL) {
626 const SDTre *sdt = (SDTre *)sdc->dist;
627 double hcube[SD_MAXDIM];
628 if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
629 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
630 return SDEinternal;
631 }
632 myPSA[0] = hcube[sdt->st->ndim];
633 myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
634 } else {
635 const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
636 if (cd == NULL)
637 return SDEmemory;
638 myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
639 (cd->clim[1][1] - cd->clim[1][0]);
640 myPSA[1] = cd->max_psa;
641 }
642 switch (qflags) { /* record based on flag settings */
643 case SDqueryVal:
644 *psa = myPSA[0];
645 break;
646 case SDqueryMax:
647 if (myPSA[1] > *psa)
648 *psa = myPSA[1];
649 break;
650 case SDqueryMin+SDqueryMax:
651 if (myPSA[1] > psa[1])
652 psa[1] = myPSA[1];
653 /* fall through */
654 case SDqueryMin:
655 if (myPSA[0] < psa[0])
656 psa[0] = myPSA[0];
657 break;
658 }
659 return SDEnone;
660 }
661
662 /* Sample cumulative distribution */
663 static SDError
664 SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
665 {
666 const unsigned nBitsC = 4*sizeof(bitmask_t);
667 const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
668 const SDTreCDst *cd = (const SDTreCDst *)cdp;
669 const unsigned target = randX*cumlmax;
670 bitmask_t hndx, hcoord[2];
671 double gpos[3];
672 int i, iupper, ilower;
673 /* check arguments */
674 if ((ioVec == NULL) | (cd == NULL))
675 return SDEargument;
676 if (ioVec[2] > 0) {
677 if (!(cd->sidef & SD_UFRONT))
678 return SDEargument;
679 } else if (!(cd->sidef & SD_UBACK))
680 return SDEargument;
681 /* binary search to find position */
682 ilower = 0; iupper = cd->calen;
683 while ((i = (iupper + ilower) >> 1) != ilower)
684 if ((long)target >= (long)cd->carr[i].cuml)
685 ilower = i;
686 else
687 iupper = i;
688 /* localize random position */
689 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
690 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
691 /* index in longer Hilbert curve */
692 hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
693 * (double)((bitmask_t)1 << nExtraBits);
694 /* convert Hilbert index to vector */
695 hilbert_i2c(2, nBitsC, hndx, hcoord);
696 for (i = 2; i--; )
697 gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
698 (double)((bitmask_t)1 << nBitsC);
699 SDsquare2disk(gpos, gpos[0], gpos[1]);
700 /* compute Z-coordinate */
701 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
702 if (gpos[2] > 0) /* paranoia, I hope */
703 gpos[2] = sqrt(gpos[2]);
704 /* emit from back? */
705 if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
706 gpos[2] = -gpos[2];
707 VCOPY(ioVec, gpos);
708 return SDEnone;
709 }
710
711 /* Advance pointer to the next non-white character in the string (or nul) */
712 static int
713 next_token(char **spp)
714 {
715 while (isspace(**spp))
716 ++*spp;
717 return **spp;
718 }
719
720 #define eat_token(spp,c) (next_token(spp)==(c) ? *(*(spp))++ : 0)
721
722 /* Count words from this point in string to '}' */
723 static int
724 count_values(char *cp)
725 {
726 int n = 0;
727
728 while (next_token(&cp) != '}' && *cp) {
729 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
730 if (!*++cp)
731 break;
732 ++n;
733 eat_token(&cp, ',');
734 }
735 return n;
736 }
737
738 /* Load an array of real numbers, returning total */
739 static int
740 load_values(char **spp, float *va, int n)
741 {
742 float *v = va;
743 char *svnext;
744
745 while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
746 *v++ = atof(*spp);
747 *spp = svnext;
748 eat_token(spp, ',');
749 }
750 return v - va;
751 }
752
753 /* Load BSDF tree data */
754 static SDNode *
755 load_tree_data(char **spp, int nd)
756 {
757 SDNode *st;
758 int n;
759
760 if (!eat_token(spp, '{')) {
761 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
762 return NULL;
763 }
764 if (next_token(spp) == '{') { /* tree branches */
765 st = SDnewNode(nd, -1);
766 if (st == NULL)
767 return NULL;
768 for (n = 0; n < 1<<nd; n++)
769 if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
770 SDfreeTre(st);
771 return NULL;
772 }
773 } else { /* else load value grid */
774 int bsiz;
775 n = count_values(*spp); /* see how big the grid is */
776 for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd)
777 if (1<<bsiz == n)
778 break;
779 if (bsiz >= 8*sizeof(size_t)) {
780 strcpy(SDerrorDetail, "Illegal value count in tensor tree");
781 return NULL;
782 }
783 st = SDnewNode(nd, bsiz/nd);
784 if (st == NULL)
785 return NULL;
786 if (load_values(spp, st->u.v, n) != n) {
787 strcpy(SDerrorDetail, "Real format error in tensor tree");
788 SDfreeTre(st);
789 return NULL;
790 }
791 }
792 if (!eat_token(spp, '}')) {
793 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
794 SDfreeTre(st);
795 return NULL;
796 }
797 eat_token(spp, ',');
798 return st;
799 }
800
801 /* Compute min. proj. solid angle and max. direct hemispherical scattering */
802 static SDError
803 get_extrema(SDSpectralDF *df)
804 {
805 SDNode *st = (*(SDTre *)df->comp[0].dist).st;
806 double stepWidth, dhemi, bmin[4], bmax[4];
807
808 stepWidth = SDsmallestLeaf(st);
809 df->minProjSA = M_PI*stepWidth*stepWidth;
810 if (stepWidth < .03125)
811 stepWidth = .03125; /* 1/32 resolution good enough */
812 df->maxHemi = .0;
813 if (st->ndim == 3) { /* isotropic BSDF */
814 bmin[1] = bmin[2] = .0;
815 bmax[1] = bmax[2] = 1.;
816 for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
817 bmax[0] = bmin[0] + stepWidth;
818 dhemi = SDavgTreBox(st, bmin, bmax);
819 if (dhemi > df->maxHemi)
820 df->maxHemi = dhemi;
821 }
822 } else if (st->ndim == 4) { /* anisotropic BSDF */
823 bmin[2] = bmin[3] = .0;
824 bmax[2] = bmax[3] = 1.;
825 for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
826 bmax[0] = bmin[0] + stepWidth;
827 for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
828 bmax[1] = bmin[1] + stepWidth;
829 dhemi = SDavgTreBox(st, bmin, bmax);
830 if (dhemi > df->maxHemi)
831 df->maxHemi = dhemi;
832 }
833 }
834 } else
835 return SDEinternal;
836 /* correct hemispherical value */
837 df->maxHemi *= M_PI;
838 return SDEnone;
839 }
840
841 /* Load BSDF distribution for this wavelength */
842 static SDError
843 load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
844 {
845 SDSpectralDF *df;
846 SDTre *sdt;
847 char *sdata;
848 int i;
849 /* allocate BSDF component */
850 sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
851 if (!sdata)
852 return SDEnone;
853 /*
854 * Remember that front and back are reversed from WINDOW 6 orientations
855 */
856 if (!strcasecmp(sdata, "Transmission")) {
857 if (sd->tf != NULL)
858 SDfreeSpectralDF(sd->tf);
859 if ((sd->tf = SDnewSpectralDF(1)) == NULL)
860 return SDEmemory;
861 df = sd->tf;
862 } else if (!strcasecmp(sdata, "Reflection Front")) {
863 if (sd->rb != NULL) /* note back-front reversal */
864 SDfreeSpectralDF(sd->rb);
865 if ((sd->rb = SDnewSpectralDF(1)) == NULL)
866 return SDEmemory;
867 df = sd->rb;
868 } else if (!strcasecmp(sdata, "Reflection Back")) {
869 if (sd->rf != NULL) /* note front-back reversal */
870 SDfreeSpectralDF(sd->rf);
871 if ((sd->rf = SDnewSpectralDF(1)) == NULL)
872 return SDEmemory;
873 df = sd->rf;
874 } else
875 return SDEnone;
876 /* XXX should also check "ScatteringDataType" for consistency? */
877 /* get angle bases */
878 sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
879 if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
880 sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
881 !sdata ? "Missing" : "Unsupported", sd->name);
882 return !sdata ? SDEformat : SDEsupport;
883 }
884 /* allocate BSDF tree */
885 sdt = (SDTre *)malloc(sizeof(SDTre));
886 if (sdt == NULL)
887 return SDEmemory;
888 if (df == sd->rf)
889 sdt->sidef = SD_UFRONT;
890 else if (df == sd->rb)
891 sdt->sidef = SD_UBACK;
892 else
893 sdt->sidef = SD_XMIT;
894 sdt->st = NULL;
895 df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
896 df->comp[0].dist = sdt;
897 df->comp[0].func = &SDhandleTre;
898 /* read BSDF data */
899 sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
900 if (!sdata || !next_token(&sdata)) {
901 sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
902 sd->name);
903 return SDEformat;
904 }
905 sdt->st = load_tree_data(&sdata, ndim);
906 if (sdt->st == NULL)
907 return SDEformat;
908 if (next_token(&sdata)) { /* check for unconsumed characters */
909 sprintf(SDerrorDetail,
910 "Extra characters at end of ScatteringData in '%s'",
911 sd->name);
912 return SDEformat;
913 }
914 /* flatten branches where possible */
915 sdt->st = SDsimplifyTre(sdt->st);
916 if (sdt->st == NULL)
917 return SDEinternal;
918 return get_extrema(df); /* compute global quantities */
919 }
920
921 /* Find minimum value in tree */
922 static float
923 SDgetTreMin(const SDNode *st)
924 {
925 float vmin = FHUGE;
926 int n;
927
928 if (st->log2GR < 0) {
929 for (n = 1<<st->ndim; n--; ) {
930 float v = SDgetTreMin(st->u.t[n]);
931 if (v < vmin)
932 vmin = v;
933 }
934 } else {
935 for (n = 1<<(st->ndim*st->log2GR); n--; )
936 if (st->u.v[n] < vmin)
937 vmin = st->u.v[n];
938 }
939 return vmin;
940 }
941
942 /* Subtract the given value from all tree nodes */
943 static void
944 SDsubtractTreVal(SDNode *st, float val)
945 {
946 int n;
947
948 if (st->log2GR < 0) {
949 for (n = 1<<st->ndim; n--; )
950 SDsubtractTreVal(st->u.t[n], val);
951 } else {
952 for (n = 1<<(st->ndim*st->log2GR); n--; )
953 st->u.v[n] -= val;
954 }
955 }
956
957 /* Subtract minimum value from BSDF */
958 static double
959 subtract_min(SDNode *st)
960 {
961 float vmin;
962 /* be sure to skip unused portion */
963 if (st->ndim == 3) {
964 int n;
965 vmin = 1./M_PI;
966 if (st->log2GR < 0) {
967 for (n = 0; n < 4; n++) {
968 float v = SDgetTreMin(st->u.t[n]);
969 if (v < vmin)
970 vmin = v;
971 }
972 } else if (st->log2GR) {
973 for (n = 1 << (3*st->log2GR - 1); n--; )
974 if (st->u.v[n] < vmin)
975 vmin = st->u.v[n];
976 } else
977 vmin = st->u.v[0];
978 } else /* anisotropic covers entire tree */
979 vmin = SDgetTreMin(st);
980
981 if (vmin <= FTINY)
982 return .0;
983
984 SDsubtractTreVal(st, vmin);
985
986 return M_PI * vmin; /* return hemispherical value */
987 }
988
989 /* Extract and separate diffuse portion of BSDF */
990 static void
991 extract_diffuse(SDValue *dv, SDSpectralDF *df)
992 {
993 int n;
994
995 if (df == NULL || df->ncomp <= 0) {
996 dv->spec = c_dfcolor;
997 dv->cieY = .0;
998 return;
999 }
1000 dv->spec = df->comp[0].cspec[0];
1001 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1002 /* in case of multiple components */
1003 for (n = df->ncomp; --n; ) {
1004 double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1005 c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1006 dv->cieY += ymin;
1007 }
1008 df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1009 /* make sure everything is set */
1010 c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1011 }
1012
1013 /* Load a variable-resolution BSDF tree from an open XML file */
1014 SDError
1015 SDloadTre(SDData *sd, ezxml_t wtl)
1016 {
1017 SDError ec;
1018 ezxml_t wld, wdb;
1019 int rank;
1020 char *txt;
1021 /* basic checks and tensor rank */
1022 txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1023 "DataDefinition"), "IncidentDataStructure"));
1024 if (txt == NULL || !*txt) {
1025 sprintf(SDerrorDetail,
1026 "BSDF \"%s\": missing IncidentDataStructure",
1027 sd->name);
1028 return SDEformat;
1029 }
1030 if (!strcasecmp(txt, "TensorTree3"))
1031 rank = 3;
1032 else if (!strcasecmp(txt, "TensorTree4"))
1033 rank = 4;
1034 else {
1035 sprintf(SDerrorDetail,
1036 "BSDF \"%s\": unsupported IncidentDataStructure",
1037 sd->name);
1038 return SDEsupport;
1039 }
1040 /* load BSDF components */
1041 for (wld = ezxml_child(wtl, "WavelengthData");
1042 wld != NULL; wld = wld->next) {
1043 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1044 "Visible"))
1045 continue; /* just visible for now */
1046 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1047 wdb != NULL; wdb = wdb->next)
1048 if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1049 return ec;
1050 }
1051 /* separate diffuse components */
1052 extract_diffuse(&sd->rLambFront, sd->rf);
1053 extract_diffuse(&sd->rLambBack, sd->rb);
1054 extract_diffuse(&sd->tLamb, sd->tf);
1055 /* return success */
1056 return SDEnone;
1057 }
1058
1059 /* Variable resolution BSDF methods */
1060 SDFunc SDhandleTre = {
1061 &SDgetTreBSDF,
1062 &SDqueryTreProjSA,
1063 &SDgetTreCDist,
1064 &SDsampTreCDist,
1065 &SDFreeBTre,
1066 };