10 |
|
* |
11 |
|
*/ |
12 |
|
|
13 |
+ |
#define _USE_MATH_DEFINES |
14 |
|
#include "rtio.h" |
15 |
|
#include <stdlib.h> |
16 |
|
#include <math.h> |
18 |
|
#include "ezxml.h" |
19 |
|
#include "bsdf.h" |
20 |
|
#include "bsdf_t.h" |
21 |
+ |
#include "hilbert.h" |
22 |
|
|
23 |
+ |
/* Callback function type for SDtraverseTre() */ |
24 |
+ |
typedef int SDtreCallback(float val, const double *cmin, |
25 |
+ |
double csiz, void *cptr); |
26 |
+ |
|
27 |
+ |
/* reference width maximum (1.0) */ |
28 |
+ |
static const unsigned iwbits = sizeof(unsigned)*4; |
29 |
+ |
static const unsigned iwmax = 1<<(sizeof(unsigned)*4); |
30 |
+ |
/* maximum cumulative value */ |
31 |
+ |
static const unsigned cumlmax = ~0; |
32 |
+ |
/* constant z-vector */ |
33 |
+ |
static const FVECT zvec = {.0, .0, 1.}; |
34 |
+ |
/* quantization value */ |
35 |
+ |
static double quantum = 1./256.; |
36 |
+ |
|
37 |
+ |
/* Struct used for our distribution-building callback */ |
38 |
+ |
typedef struct { |
39 |
+ |
short nic; /* number of input coordinates */ |
40 |
+ |
short rev; /* reversing query */ |
41 |
+ |
unsigned alen; /* current array length */ |
42 |
+ |
unsigned nall; /* number of allocated entries */ |
43 |
+ |
unsigned wmin; /* minimum square size so far */ |
44 |
+ |
unsigned wmax; /* maximum square size */ |
45 |
+ |
struct outdir_s { |
46 |
+ |
unsigned hent; /* entering Hilbert index */ |
47 |
+ |
int wid; /* this square size */ |
48 |
+ |
float bsdf; /* BSDF for this square */ |
49 |
+ |
} *darr; /* output direction array */ |
50 |
+ |
} SDdistScaffold; |
51 |
+ |
|
52 |
|
/* Allocate a new scattering distribution node */ |
53 |
|
static SDNode * |
54 |
|
SDnewNode(int nd, int lg) |
66 |
|
} |
67 |
|
if (lg < 0) { |
68 |
|
st = (SDNode *)malloc(sizeof(SDNode) + |
69 |
< |
((1<<nd) - 1)*sizeof(st->u.t[0])); |
70 |
< |
if (st != NULL) |
71 |
< |
memset(st->u.t, 0, (1<<nd)*sizeof(st->u.t[0])); |
72 |
< |
} else |
69 |
> |
sizeof(st->u.t[0])*((1<<nd) - 1)); |
70 |
> |
if (st == NULL) { |
71 |
> |
sprintf(SDerrorDetail, |
72 |
> |
"Cannot allocate %d branch BSDF tree", 1<<nd); |
73 |
> |
return NULL; |
74 |
> |
} |
75 |
> |
memset(st->u.t, 0, sizeof(st->u.t[0])<<nd); |
76 |
> |
} else { |
77 |
|
st = (SDNode *)malloc(sizeof(SDNode) + |
78 |
< |
((1 << nd*lg) - 1)*sizeof(st->u.v[0])); |
79 |
< |
|
45 |
< |
if (st == NULL) { |
46 |
< |
if (lg < 0) |
78 |
> |
sizeof(st->u.v[0])*((1 << nd*lg) - 1)); |
79 |
> |
if (st == NULL) { |
80 |
|
sprintf(SDerrorDetail, |
48 |
– |
"Cannot allocate %d branch BSDF tree", nd); |
49 |
– |
else |
50 |
– |
sprintf(SDerrorDetail, |
81 |
|
"Cannot allocate %d BSDF leaves", 1 << nd*lg); |
82 |
< |
return NULL; |
82 |
> |
return NULL; |
83 |
> |
} |
84 |
|
} |
85 |
|
st->ndim = nd; |
86 |
|
st->log2GR = lg; |
89 |
|
|
90 |
|
/* Free an SD tree */ |
91 |
|
static void |
92 |
< |
SDfreeTree(void *p) |
92 |
> |
SDfreeTre(SDNode *st) |
93 |
|
{ |
94 |
< |
SDNode *st = (SDNode *)p; |
64 |
< |
int i; |
94 |
> |
int n; |
95 |
|
|
96 |
|
if (st == NULL) |
97 |
|
return; |
98 |
< |
for (i = (st->log2GR < 0) << st->ndim; i--; ) |
99 |
< |
SDfreeTree(st->u.t[i]); |
100 |
< |
free((void *)st); |
98 |
> |
for (n = (st->log2GR < 0) << st->ndim; n--; ) |
99 |
> |
SDfreeTre(st->u.t[n]); |
100 |
> |
free(st); |
101 |
|
} |
102 |
|
|
103 |
+ |
/* Free a variable-resolution BSDF */ |
104 |
+ |
static void |
105 |
+ |
SDFreeBTre(void *p) |
106 |
+ |
{ |
107 |
+ |
SDTre *sdt = (SDTre *)p; |
108 |
+ |
|
109 |
+ |
if (sdt == NULL) |
110 |
+ |
return; |
111 |
+ |
SDfreeTre(sdt->st); |
112 |
+ |
free(sdt); |
113 |
+ |
} |
114 |
+ |
|
115 |
+ |
/* Fill branch's worth of grid values from subtree */ |
116 |
+ |
static void |
117 |
+ |
fill_grid_branch(float *dptr, const float *sptr, int nd, int shft) |
118 |
+ |
{ |
119 |
+ |
unsigned n = 1 << (shft-1); |
120 |
+ |
|
121 |
+ |
if (!--nd) { /* end on the line */ |
122 |
+ |
memcpy(dptr, sptr, sizeof(*dptr)*n); |
123 |
+ |
return; |
124 |
+ |
} |
125 |
+ |
while (n--) /* recurse on each slice */ |
126 |
+ |
fill_grid_branch(dptr + (n << shft*nd), |
127 |
+ |
sptr + (n << (shft-1)*nd), nd, shft); |
128 |
+ |
} |
129 |
+ |
|
130 |
+ |
/* Get pointer at appropriate offset for the given branch */ |
131 |
+ |
static float * |
132 |
+ |
grid_branch_start(SDNode *st, int n) |
133 |
+ |
{ |
134 |
+ |
unsigned skipsiz = 1 << (st->log2GR - 1); |
135 |
+ |
float *vptr = st->u.v; |
136 |
+ |
int i; |
137 |
+ |
|
138 |
+ |
for (i = st->ndim; i--; skipsiz <<= st->log2GR) |
139 |
+ |
if (1<<i & n) |
140 |
+ |
vptr += skipsiz; |
141 |
+ |
return vptr; |
142 |
+ |
} |
143 |
+ |
|
144 |
+ |
/* Simplify (consolidate) a tree by flattening uniform depth regions */ |
145 |
+ |
static SDNode * |
146 |
+ |
SDsimplifyTre(SDNode *st) |
147 |
+ |
{ |
148 |
+ |
int match, n; |
149 |
+ |
|
150 |
+ |
if (st == NULL) /* check for invalid tree */ |
151 |
+ |
return NULL; |
152 |
+ |
if (st->log2GR >= 0) /* grid just returns unaltered */ |
153 |
+ |
return st; |
154 |
+ |
match = 1; /* check if grids below match */ |
155 |
+ |
for (n = 0; n < 1<<st->ndim; n++) { |
156 |
+ |
if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL) |
157 |
+ |
return NULL; /* propogate error up call stack */ |
158 |
+ |
match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR); |
159 |
+ |
} |
160 |
+ |
if (match && (match = st->u.t[0]->log2GR) >= 0) { |
161 |
+ |
SDNode *stn = SDnewNode(st->ndim, match + 1); |
162 |
+ |
if (stn == NULL) /* out of memory? */ |
163 |
+ |
return st; |
164 |
+ |
/* transfer values to new grid */ |
165 |
+ |
for (n = 1 << st->ndim; n--; ) |
166 |
+ |
fill_grid_branch(grid_branch_start(stn, n), |
167 |
+ |
st->u.t[n]->u.v, stn->ndim, stn->log2GR); |
168 |
+ |
SDfreeTre(st); /* free old tree */ |
169 |
+ |
st = stn; /* return new one */ |
170 |
+ |
} |
171 |
+ |
return st; |
172 |
+ |
} |
173 |
+ |
|
174 |
+ |
/* Find smallest leaf in tree */ |
175 |
+ |
static double |
176 |
+ |
SDsmallestLeaf(const SDNode *st) |
177 |
+ |
{ |
178 |
+ |
if (st->log2GR < 0) { /* tree branches */ |
179 |
+ |
double lmin = 1.; |
180 |
+ |
int n; |
181 |
+ |
for (n = 1<<st->ndim; n--; ) { |
182 |
+ |
double lsiz = SDsmallestLeaf(st->u.t[n]); |
183 |
+ |
if (lsiz < lmin) |
184 |
+ |
lmin = lsiz; |
185 |
+ |
} |
186 |
+ |
return .5*lmin; |
187 |
+ |
} |
188 |
+ |
/* leaf grid width */ |
189 |
+ |
return 1. / (double)(1 << st->log2GR); |
190 |
+ |
} |
191 |
+ |
|
192 |
|
/* Add up N-dimensional hypercube array values over the given box */ |
193 |
|
static double |
194 |
< |
SDiterSum(const float *va, int nd, int siz, const int *imin, const int *imax) |
194 |
> |
SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax) |
195 |
|
{ |
196 |
+ |
const unsigned skipsiz = 1 << --nd*shft; |
197 |
|
double sum = .0; |
78 |
– |
unsigned skipsiz = 1; |
198 |
|
int i; |
199 |
< |
|
200 |
< |
for (i = nd; --i > 0; ) |
201 |
< |
skipsiz *= siz; |
199 |
> |
|
200 |
> |
va += *imin * skipsiz; |
201 |
> |
|
202 |
|
if (skipsiz == 1) |
203 |
|
for (i = *imin; i < *imax; i++) |
204 |
< |
sum += va[i]; |
204 |
> |
sum += *va++; |
205 |
|
else |
206 |
< |
for (i = *imin; i < *imax; i++) |
207 |
< |
sum += SDiterSum(va + i*skipsiz, |
89 |
< |
nd-1, siz, imin+1, imax+1); |
206 |
> |
for (i = *imin; i < *imax; i++, va += skipsiz) |
207 |
> |
sum += SDiterSum(va, nd, shft, imin+1, imax+1); |
208 |
|
return sum; |
209 |
|
} |
210 |
|
|
211 |
|
/* Average BSDF leaves over an orthotope defined by the unit hypercube */ |
212 |
|
static double |
213 |
< |
SDavgBox(const SDNode *st, const double *bmin, const double *bmax) |
213 |
> |
SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax) |
214 |
|
{ |
97 |
– |
int imin[SD_MAXDIM], imax[SD_MAXDIM]; |
215 |
|
unsigned n; |
216 |
|
int i; |
217 |
|
|
221 |
|
for (i = st->ndim; i--; ) { |
222 |
|
if (bmin[i] >= 1.) |
223 |
|
return .0; |
224 |
< |
if (bmax[i] <= .0) |
224 |
> |
if (bmax[i] <= 0) |
225 |
|
return .0; |
226 |
|
if (bmin[i] >= bmax[i]) |
227 |
|
return .0; |
229 |
|
if (st->log2GR < 0) { /* iterate on subtree */ |
230 |
|
double sum = .0, wsum = 1e-20; |
231 |
|
double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w; |
115 |
– |
|
232 |
|
for (n = 1 << st->ndim; n--; ) { |
233 |
|
w = 1.; |
234 |
|
for (i = st->ndim; i--; ) { |
240 |
|
} |
241 |
|
if (sbmin[i] < .0) sbmin[i] = .0; |
242 |
|
if (sbmax[i] > 1.) sbmax[i] = 1.; |
243 |
+ |
if (sbmin[i] >= sbmax[i]) { |
244 |
+ |
w = .0; |
245 |
+ |
break; |
246 |
+ |
} |
247 |
|
w *= sbmax[i] - sbmin[i]; |
248 |
|
} |
249 |
|
if (w > 1e-10) { |
250 |
< |
sum += w * SDavgBox(st->u.t[n], sbmin, sbmax); |
250 |
> |
sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax); |
251 |
|
wsum += w; |
252 |
|
} |
253 |
|
} |
254 |
|
return sum / wsum; |
255 |
+ |
} else { /* iterate over leaves */ |
256 |
+ |
int imin[SD_MAXDIM], imax[SD_MAXDIM]; |
257 |
+ |
|
258 |
+ |
n = 1; |
259 |
+ |
for (i = st->ndim; i--; ) { |
260 |
+ |
imin[i] = (bmin[i] <= 0) ? 0 : |
261 |
+ |
(int)((1 << st->log2GR)*bmin[i]); |
262 |
+ |
imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) : |
263 |
+ |
(int)((1 << st->log2GR)*bmax[i] + .999999); |
264 |
+ |
n *= imax[i] - imin[i]; |
265 |
+ |
} |
266 |
+ |
if (n) |
267 |
+ |
return SDiterSum(st->u.v, st->ndim, |
268 |
+ |
st->log2GR, imin, imax) / (double)n; |
269 |
|
} |
270 |
< |
n = 1; /* iterate over leaves */ |
270 |
> |
return .0; |
271 |
> |
} |
272 |
> |
|
273 |
> |
/* Recursive call for SDtraverseTre() */ |
274 |
> |
static int |
275 |
> |
SDdotravTre(const SDNode *st, const double *pos, int cmask, |
276 |
> |
SDtreCallback *cf, void *cptr, |
277 |
> |
const double *cmin, double csiz) |
278 |
> |
{ |
279 |
> |
int rv, rval = 0; |
280 |
> |
double bmin[SD_MAXDIM]; |
281 |
> |
int i, n; |
282 |
> |
/* in branches? */ |
283 |
> |
if (st->log2GR < 0) { |
284 |
> |
unsigned skipmask = 0; |
285 |
> |
csiz *= .5; |
286 |
> |
for (i = st->ndim; i--; ) |
287 |
> |
if (1<<i & cmask) |
288 |
> |
if (pos[i] < cmin[i] + csiz) |
289 |
> |
for (n = 1 << st->ndim; n--; ) { |
290 |
> |
if (n & 1<<i) |
291 |
> |
skipmask |= 1<<n; |
292 |
> |
} |
293 |
> |
else |
294 |
> |
for (n = 1 << st->ndim; n--; ) { |
295 |
> |
if (!(n & 1<<i)) |
296 |
> |
skipmask |= 1<<n; |
297 |
> |
} |
298 |
> |
for (n = 1 << st->ndim; n--; ) { |
299 |
> |
if (1<<n & skipmask) |
300 |
> |
continue; |
301 |
> |
for (i = st->ndim; i--; ) |
302 |
> |
if (1<<i & n) |
303 |
> |
bmin[i] = cmin[i] + csiz; |
304 |
> |
else |
305 |
> |
bmin[i] = cmin[i]; |
306 |
> |
|
307 |
> |
rval += rv = SDdotravTre(st->u.t[n], pos, cmask, |
308 |
> |
cf, cptr, bmin, csiz); |
309 |
> |
if (rv < 0) |
310 |
> |
return rv; |
311 |
> |
} |
312 |
> |
} else { /* else traverse leaves */ |
313 |
> |
int clim[SD_MAXDIM][2]; |
314 |
> |
int cpos[SD_MAXDIM]; |
315 |
> |
|
316 |
> |
if (st->log2GR == 0) /* short cut */ |
317 |
> |
return (*cf)(st->u.v[0], cmin, csiz, cptr); |
318 |
> |
|
319 |
> |
csiz /= (double)(1 << st->log2GR); |
320 |
> |
/* assign coord. ranges */ |
321 |
> |
for (i = st->ndim; i--; ) |
322 |
> |
if (1<<i & cmask) { |
323 |
> |
clim[i][0] = (pos[i] - cmin[i])/csiz; |
324 |
> |
/* check overflow from f.p. error */ |
325 |
> |
clim[i][0] -= clim[i][0] >> st->log2GR; |
326 |
> |
clim[i][1] = clim[i][0] + 1; |
327 |
> |
} else { |
328 |
> |
clim[i][0] = 0; |
329 |
> |
clim[i][1] = 1 << st->log2GR; |
330 |
> |
} |
331 |
> |
#if (SD_MAXDIM == 4) |
332 |
> |
bmin[0] = cmin[0] + csiz*clim[0][0]; |
333 |
> |
for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) { |
334 |
> |
bmin[1] = cmin[1] + csiz*clim[1][0]; |
335 |
> |
for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) { |
336 |
> |
bmin[2] = cmin[2] + csiz*clim[2][0]; |
337 |
> |
if (st->ndim == 3) { |
338 |
> |
cpos[2] = clim[2][0]; |
339 |
> |
n = cpos[0]; |
340 |
> |
for (i = 1; i < 3; i++) |
341 |
> |
n = (n << st->log2GR) + cpos[i]; |
342 |
> |
for ( ; cpos[2] < clim[2][1]; cpos[2]++) { |
343 |
> |
rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); |
344 |
> |
if (rv < 0) |
345 |
> |
return rv; |
346 |
> |
bmin[2] += csiz; |
347 |
> |
} |
348 |
> |
} else { |
349 |
> |
for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) { |
350 |
> |
bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]); |
351 |
> |
n = cpos[0]; |
352 |
> |
for (i = 1; i < 4; i++) |
353 |
> |
n = (n << st->log2GR) + cpos[i]; |
354 |
> |
for ( ; cpos[3] < clim[3][1]; cpos[3]++) { |
355 |
> |
rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); |
356 |
> |
if (rv < 0) |
357 |
> |
return rv; |
358 |
> |
bmin[3] += csiz; |
359 |
> |
} |
360 |
> |
bmin[2] += csiz; |
361 |
> |
} |
362 |
> |
} |
363 |
> |
bmin[1] += csiz; |
364 |
> |
} |
365 |
> |
bmin[0] += csiz; |
366 |
> |
} |
367 |
> |
#else |
368 |
> |
_!_ "broken code segment!" |
369 |
> |
#endif |
370 |
> |
} |
371 |
> |
return rval; |
372 |
> |
} |
373 |
> |
|
374 |
> |
/* Traverse a tree, visiting nodes in a slice that fits partial position */ |
375 |
> |
static int |
376 |
> |
SDtraverseTre(const SDNode *st, const double *pos, int cmask, |
377 |
> |
SDtreCallback *cf, void *cptr) |
378 |
> |
{ |
379 |
> |
static double czero[SD_MAXDIM]; |
380 |
> |
int i; |
381 |
> |
/* check arguments */ |
382 |
> |
if ((st == NULL) | (cf == NULL)) |
383 |
> |
return -1; |
384 |
> |
for (i = st->ndim; i--; ) |
385 |
> |
if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.)) |
386 |
> |
return -1; |
387 |
> |
|
388 |
> |
return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.); |
389 |
> |
} |
390 |
> |
|
391 |
> |
/* Look up tree value at the given grid position */ |
392 |
> |
static float |
393 |
> |
SDlookupTre(const SDNode *st, const double *pos, double *hcube) |
394 |
> |
{ |
395 |
> |
double spos[SD_MAXDIM]; |
396 |
> |
int i, n, t; |
397 |
> |
/* initialize voxel return */ |
398 |
> |
if (hcube) { |
399 |
> |
hcube[i = st->ndim] = 1.; |
400 |
> |
while (i--) |
401 |
> |
hcube[i] = .0; |
402 |
> |
} |
403 |
> |
/* climb the tree */ |
404 |
> |
while (st->log2GR < 0) { |
405 |
> |
n = 0; /* move to appropriate branch */ |
406 |
> |
if (hcube) hcube[st->ndim] *= .5; |
407 |
> |
for (i = st->ndim; i--; ) { |
408 |
> |
spos[i] = 2.*pos[i]; |
409 |
> |
t = (spos[i] >= 1.); |
410 |
> |
n |= t<<i; |
411 |
> |
spos[i] -= (double)t; |
412 |
> |
if (hcube) hcube[i] += (double)t * hcube[st->ndim]; |
413 |
> |
} |
414 |
> |
st = st->u.t[n]; /* avoids tail recursion */ |
415 |
> |
pos = spos; |
416 |
> |
} |
417 |
> |
if (st->log2GR == 0) /* short cut */ |
418 |
> |
return st->u.v[0]; |
419 |
> |
n = t = 0; /* find grid array index */ |
420 |
|
for (i = st->ndim; i--; ) { |
421 |
< |
imin[i] = (bmin[i] <= .0) ? 0 |
422 |
< |
: (int)((1 << st->log2GR)*bmin[i]); |
140 |
< |
imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) |
141 |
< |
: (int)((1 << st->log2GR)*bmax[i] + .999999); |
142 |
< |
n *= imax[i] - imin[i]; |
421 |
> |
n += (int)((1<<st->log2GR)*pos[i]) << t; |
422 |
> |
t += st->log2GR; |
423 |
|
} |
424 |
< |
if (!n) |
424 |
> |
if (hcube) { /* compute final hypercube */ |
425 |
> |
hcube[st->ndim] /= (double)(1<<st->log2GR); |
426 |
> |
for (i = st->ndim; i--; ) |
427 |
> |
hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim]; |
428 |
> |
} |
429 |
> |
return st->u.v[n]; /* no interpolation */ |
430 |
> |
} |
431 |
> |
|
432 |
> |
/* Query BSDF value and sample hypercube for the given vectors */ |
433 |
> |
static float |
434 |
> |
SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc) |
435 |
> |
{ |
436 |
> |
const RREAL *vtmp; |
437 |
> |
FVECT rOutVec; |
438 |
> |
double gridPos[4]; |
439 |
> |
|
440 |
> |
switch (sdt->sidef) { /* whose side are you on? */ |
441 |
> |
case SD_FREFL: |
442 |
> |
if ((outVec[2] < 0) | (inVec[2] < 0)) |
443 |
> |
return -1.; |
444 |
> |
break; |
445 |
> |
case SD_BREFL: |
446 |
> |
if ((outVec[2] > 0) | (inVec[2] > 0)) |
447 |
> |
return -1.; |
448 |
> |
break; |
449 |
> |
case SD_FXMIT: |
450 |
> |
if (outVec[2] > 0) { |
451 |
> |
if (inVec[2] > 0) |
452 |
> |
return -1.; |
453 |
> |
vtmp = outVec; outVec = inVec; inVec = vtmp; |
454 |
> |
} else if (inVec[2] < 0) |
455 |
> |
return -1.; |
456 |
> |
break; |
457 |
> |
case SD_BXMIT: |
458 |
> |
if (inVec[2] > 0) { |
459 |
> |
if (outVec[2] > 0) |
460 |
> |
return -1.; |
461 |
> |
vtmp = outVec; outVec = inVec; inVec = vtmp; |
462 |
> |
} else if (outVec[2] < 0) |
463 |
> |
return -1.; |
464 |
> |
break; |
465 |
> |
default: |
466 |
> |
return -1.; |
467 |
> |
} |
468 |
> |
/* convert vector coordinates */ |
469 |
> |
if (sdt->st->ndim == 3) { |
470 |
> |
spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0])); |
471 |
> |
gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
472 |
> |
SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]); |
473 |
> |
} else if (sdt->st->ndim == 4) { |
474 |
> |
SDdisk2square(gridPos, -inVec[0], -inVec[1]); |
475 |
> |
SDdisk2square(gridPos+2, outVec[0], outVec[1]); |
476 |
> |
} else |
477 |
> |
return -1.; /* should be internal error */ |
478 |
> |
|
479 |
> |
return SDlookupTre(sdt->st, gridPos, hc); |
480 |
> |
} |
481 |
> |
|
482 |
> |
/* Compute non-diffuse component for variable-resolution BSDF */ |
483 |
> |
static int |
484 |
> |
SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec, |
485 |
> |
const FVECT inVec, SDComponent *sdc) |
486 |
> |
{ |
487 |
> |
/* check arguments */ |
488 |
> |
if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL) |
489 |
> |
|| sdc->dist == NULL) |
490 |
> |
return 0; |
491 |
> |
/* get nearest BSDF value */ |
492 |
> |
coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL); |
493 |
> |
return (coef[0] >= 0); /* monochromatic for now */ |
494 |
> |
} |
495 |
> |
|
496 |
> |
/* Callback to build cumulative distribution using SDtraverseTre() */ |
497 |
> |
static int |
498 |
> |
build_scaffold(float val, const double *cmin, double csiz, void *cptr) |
499 |
> |
{ |
500 |
> |
SDdistScaffold *sp = (SDdistScaffold *)cptr; |
501 |
> |
int wid = csiz*(double)iwmax + .5; |
502 |
> |
double revcmin[2]; |
503 |
> |
bitmask_t bmin[2], bmax[2]; |
504 |
> |
|
505 |
> |
if (sp->rev) { /* need to reverse sense? */ |
506 |
> |
revcmin[0] = 1. - cmin[0] - csiz; |
507 |
> |
revcmin[1] = 1. - cmin[1] - csiz; |
508 |
> |
cmin = revcmin; |
509 |
> |
} else { |
510 |
> |
cmin += sp->nic; /* else skip to output coords */ |
511 |
> |
} |
512 |
> |
if (wid < sp->wmin) /* new minimum width? */ |
513 |
> |
sp->wmin = wid; |
514 |
> |
if (wid > sp->wmax) /* new maximum? */ |
515 |
> |
sp->wmax = wid; |
516 |
> |
if (sp->alen >= sp->nall) { /* need more space? */ |
517 |
> |
struct outdir_s *ndarr; |
518 |
> |
sp->nall += 1024; |
519 |
> |
ndarr = (struct outdir_s *)realloc(sp->darr, |
520 |
> |
sizeof(struct outdir_s)*sp->nall); |
521 |
> |
if (ndarr == NULL) { |
522 |
> |
sprintf(SDerrorDetail, |
523 |
> |
"Cannot grow scaffold to %u entries", sp->nall); |
524 |
> |
return -1; /* abort build */ |
525 |
> |
} |
526 |
> |
sp->darr = ndarr; |
527 |
> |
} |
528 |
> |
/* find Hilbert entry index */ |
529 |
> |
bmin[0] = cmin[0]*(double)iwmax + .5; |
530 |
> |
bmin[1] = cmin[1]*(double)iwmax + .5; |
531 |
> |
bmax[0] = bmin[0] + wid-1; |
532 |
> |
bmax[1] = bmin[1] + wid-1; |
533 |
> |
hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax); |
534 |
> |
sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin); |
535 |
> |
sp->darr[sp->alen].wid = wid; |
536 |
> |
sp->darr[sp->alen].bsdf = val; |
537 |
> |
sp->alen++; /* on to the next entry */ |
538 |
> |
return 0; |
539 |
> |
} |
540 |
> |
|
541 |
> |
/* Scaffold comparison function for qsort -- ascending Hilbert index */ |
542 |
> |
static int |
543 |
> |
sscmp(const void *p1, const void *p2) |
544 |
> |
{ |
545 |
> |
unsigned h1 = (*(const struct outdir_s *)p1).hent; |
546 |
> |
unsigned h2 = (*(const struct outdir_s *)p2).hent; |
547 |
> |
|
548 |
> |
if (h1 > h2) |
549 |
> |
return 1; |
550 |
> |
if (h1 < h2) |
551 |
> |
return -1; |
552 |
> |
return 0; |
553 |
> |
} |
554 |
> |
|
555 |
> |
/* Create a new cumulative distribution for the given input direction */ |
556 |
> |
static SDTreCDst * |
557 |
> |
make_cdist(const SDTre *sdt, const double *invec, int rev) |
558 |
> |
{ |
559 |
> |
SDdistScaffold myScaffold; |
560 |
> |
double pos[4]; |
561 |
> |
int cmask; |
562 |
> |
SDTreCDst *cd; |
563 |
> |
struct outdir_s *sp; |
564 |
> |
double scale, cursum; |
565 |
> |
int i; |
566 |
> |
/* initialize scaffold */ |
567 |
> |
myScaffold.wmin = iwmax; |
568 |
> |
myScaffold.wmax = 0; |
569 |
> |
myScaffold.nic = sdt->st->ndim - 2; |
570 |
> |
myScaffold.rev = rev; |
571 |
> |
myScaffold.alen = 0; |
572 |
> |
myScaffold.nall = 512; |
573 |
> |
myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) * |
574 |
> |
myScaffold.nall); |
575 |
> |
if (myScaffold.darr == NULL) |
576 |
> |
return NULL; |
577 |
> |
/* set up traversal */ |
578 |
> |
cmask = (1<<myScaffold.nic) - 1; |
579 |
> |
for (i = myScaffold.nic; i--; ) |
580 |
> |
pos[i+2*rev] = invec[i]; |
581 |
> |
cmask <<= 2*rev; |
582 |
> |
/* grow the distribution */ |
583 |
> |
if (SDtraverseTre(sdt->st, pos, cmask, |
584 |
> |
&build_scaffold, &myScaffold) < 0) { |
585 |
> |
free(myScaffold.darr); |
586 |
> |
return NULL; |
587 |
> |
} |
588 |
> |
/* allocate result holder */ |
589 |
> |
cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) + |
590 |
> |
sizeof(cd->carr[0])*myScaffold.alen); |
591 |
> |
if (cd == NULL) { |
592 |
> |
sprintf(SDerrorDetail, |
593 |
> |
"Cannot allocate %u entry cumulative distribution", |
594 |
> |
myScaffold.alen); |
595 |
> |
free(myScaffold.darr); |
596 |
> |
return NULL; |
597 |
> |
} |
598 |
> |
cd->isodist = (myScaffold.nic == 1); |
599 |
> |
/* sort the distribution */ |
600 |
> |
qsort(myScaffold.darr, cd->calen = myScaffold.alen, |
601 |
> |
sizeof(struct outdir_s), &sscmp); |
602 |
> |
|
603 |
> |
/* record input range */ |
604 |
> |
scale = myScaffold.wmin / (double)iwmax; |
605 |
> |
for (i = myScaffold.nic; i--; ) { |
606 |
> |
cd->clim[i][0] = floor(pos[i+2*rev]/scale) * scale; |
607 |
> |
cd->clim[i][1] = cd->clim[i][0] + scale; |
608 |
> |
} |
609 |
> |
if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */ |
610 |
> |
cd->clim[1][0] = cd->clim[0][0]; |
611 |
> |
cd->clim[1][1] = cd->clim[0][1]; |
612 |
> |
} |
613 |
> |
cd->max_psa = myScaffold.wmax / (double)iwmax; |
614 |
> |
cd->max_psa *= cd->max_psa * M_PI; |
615 |
> |
if (rev) |
616 |
> |
cd->sidef = (sdt->sidef==SD_BXMIT) ? SD_FXMIT : SD_BXMIT; |
617 |
> |
else |
618 |
> |
cd->sidef = sdt->sidef; |
619 |
> |
cd->cTotal = 1e-20; /* compute directional total */ |
620 |
> |
sp = myScaffold.darr; |
621 |
> |
for (i = myScaffold.alen; i--; sp++) |
622 |
> |
cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid; |
623 |
> |
cursum = .0; /* go back and get cumulative values */ |
624 |
> |
scale = (double)cumlmax / cd->cTotal; |
625 |
> |
sp = myScaffold.darr; |
626 |
> |
for (i = 0; i < cd->calen; i++, sp++) { |
627 |
> |
cd->carr[i].hndx = sp->hent; |
628 |
> |
cd->carr[i].cuml = scale*cursum + .5; |
629 |
> |
cursum += sp->bsdf * (double)sp->wid * sp->wid; |
630 |
> |
} |
631 |
> |
cd->carr[i].hndx = ~0; /* make final entry */ |
632 |
> |
cd->carr[i].cuml = cumlmax; |
633 |
> |
cd->cTotal *= M_PI/(double)iwmax/iwmax; |
634 |
> |
/* all done, clean up and return */ |
635 |
> |
free(myScaffold.darr); |
636 |
> |
return cd; |
637 |
> |
} |
638 |
> |
|
639 |
> |
/* Find or allocate a cumulative distribution for the given incoming vector */ |
640 |
> |
const SDCDst * |
641 |
> |
SDgetTreCDist(const FVECT inVec, SDComponent *sdc) |
642 |
> |
{ |
643 |
> |
const SDTre *sdt; |
644 |
> |
double inCoord[2]; |
645 |
> |
int i; |
646 |
> |
int mode; |
647 |
> |
SDTreCDst *cd, *cdlast; |
648 |
> |
/* check arguments */ |
649 |
> |
if ((inVec == NULL) | (sdc == NULL) || |
650 |
> |
(sdt = (SDTre *)sdc->dist) == NULL) |
651 |
> |
return NULL; |
652 |
> |
switch (mode = sdt->sidef) { /* check direction */ |
653 |
> |
case SD_FREFL: |
654 |
> |
if (inVec[2] < 0) |
655 |
> |
return NULL; |
656 |
> |
break; |
657 |
> |
case SD_BREFL: |
658 |
> |
if (inVec[2] > 0) |
659 |
> |
return NULL; |
660 |
> |
break; |
661 |
> |
case SD_FXMIT: |
662 |
> |
if (inVec[2] < 0) |
663 |
> |
mode = SD_BXMIT; |
664 |
> |
break; |
665 |
> |
case SD_BXMIT: |
666 |
> |
if (inVec[2] > 0) |
667 |
> |
mode = SD_FXMIT; |
668 |
> |
break; |
669 |
> |
default: |
670 |
> |
return NULL; |
671 |
> |
} |
672 |
> |
if (sdt->st->ndim == 3) { /* isotropic BSDF? */ |
673 |
> |
if (mode != sdt->sidef) /* XXX unhandled reciprocity */ |
674 |
> |
return &SDemptyCD; |
675 |
> |
inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
676 |
> |
} else if (sdt->st->ndim == 4) { |
677 |
> |
if (mode != sdt->sidef) /* use reciprocity? */ |
678 |
> |
SDdisk2square(inCoord, inVec[0], inVec[1]); |
679 |
> |
else |
680 |
> |
SDdisk2square(inCoord, -inVec[0], -inVec[1]); |
681 |
> |
} else |
682 |
> |
return NULL; /* should be internal error */ |
683 |
> |
/* quantize to avoid f.p. errors */ |
684 |
> |
for (i = sdt->st->ndim - 2; i--; ) |
685 |
> |
inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum; |
686 |
> |
cdlast = NULL; /* check for direction in cache list */ |
687 |
> |
for (cd = (SDTreCDst *)sdc->cdList; cd != NULL; |
688 |
> |
cdlast = cd, cd = cd->next) { |
689 |
> |
if (cd->sidef != mode) |
690 |
> |
continue; |
691 |
> |
for (i = sdt->st->ndim - 2; i--; ) |
692 |
> |
if ((cd->clim[i][0] > inCoord[i]) | |
693 |
> |
(inCoord[i] >= cd->clim[i][1])) |
694 |
> |
break; |
695 |
> |
if (i < 0) |
696 |
> |
break; /* means we have a match */ |
697 |
> |
} |
698 |
> |
if (cd == NULL) /* need to create new entry? */ |
699 |
> |
cdlast = cd = make_cdist(sdt, inCoord, mode != sdt->sidef); |
700 |
> |
if (cdlast != NULL) { /* move entry to head of cache list */ |
701 |
> |
cdlast->next = cd->next; |
702 |
> |
cd->next = (SDTreCDst *)sdc->cdList; |
703 |
> |
sdc->cdList = (SDCDst *)cd; |
704 |
> |
} |
705 |
> |
return (SDCDst *)cd; /* ready to go */ |
706 |
> |
} |
707 |
> |
|
708 |
> |
/* Query solid angle for vector(s) */ |
709 |
> |
static SDError |
710 |
> |
SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2, |
711 |
> |
int qflags, SDComponent *sdc) |
712 |
> |
{ |
713 |
> |
double myPSA[2]; |
714 |
> |
/* check arguments */ |
715 |
> |
if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) || |
716 |
> |
sdc->dist == NULL) |
717 |
> |
return SDEargument; |
718 |
> |
/* get projected solid angle(s) */ |
719 |
> |
if (v2 != NULL) { |
720 |
> |
const SDTre *sdt = (SDTre *)sdc->dist; |
721 |
> |
double hcube[SD_MAXDIM]; |
722 |
> |
if (SDqueryTre(sdt, v1, v2, hcube) < 0) { |
723 |
> |
strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA"); |
724 |
> |
return SDEinternal; |
725 |
> |
} |
726 |
> |
myPSA[0] = hcube[sdt->st->ndim]; |
727 |
> |
myPSA[1] = myPSA[0] *= myPSA[0] * M_PI; |
728 |
> |
} else { |
729 |
> |
const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc); |
730 |
> |
if (cd == NULL) |
731 |
> |
myPSA[0] = myPSA[1] = 0; |
732 |
> |
else { |
733 |
> |
myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) * |
734 |
> |
(cd->clim[1][1] - cd->clim[1][0]); |
735 |
> |
myPSA[1] = cd->max_psa; |
736 |
> |
} |
737 |
> |
} |
738 |
> |
switch (qflags) { /* record based on flag settings */ |
739 |
> |
case SDqueryVal: |
740 |
> |
*psa = myPSA[0]; |
741 |
> |
break; |
742 |
> |
case SDqueryMax: |
743 |
> |
if (myPSA[1] > *psa) |
744 |
> |
*psa = myPSA[1]; |
745 |
> |
break; |
746 |
> |
case SDqueryMin+SDqueryMax: |
747 |
> |
if (myPSA[1] > psa[1]) |
748 |
> |
psa[1] = myPSA[1]; |
749 |
> |
/* fall through */ |
750 |
> |
case SDqueryMin: |
751 |
> |
if ((myPSA[0] > 0) & (myPSA[0] < psa[0])) |
752 |
> |
psa[0] = myPSA[0]; |
753 |
> |
break; |
754 |
> |
} |
755 |
> |
return SDEnone; |
756 |
> |
} |
757 |
> |
|
758 |
> |
/* Sample cumulative distribution */ |
759 |
> |
static SDError |
760 |
> |
SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp) |
761 |
> |
{ |
762 |
> |
const unsigned nBitsC = 4*sizeof(bitmask_t); |
763 |
> |
const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned)); |
764 |
> |
const SDTreCDst *cd = (const SDTreCDst *)cdp; |
765 |
> |
const unsigned target = randX*cumlmax; |
766 |
> |
bitmask_t hndx, hcoord[2]; |
767 |
> |
double gpos[3], rotangle; |
768 |
> |
int i, iupper, ilower; |
769 |
> |
/* check arguments */ |
770 |
> |
if ((ioVec == NULL) | (cd == NULL)) |
771 |
> |
return SDEargument; |
772 |
> |
if (!cd->sidef) |
773 |
> |
return SDEnone; /* XXX should never happen */ |
774 |
> |
if (ioVec[2] > 0) { |
775 |
> |
if ((cd->sidef != SD_FREFL) & (cd->sidef != SD_FXMIT)) |
776 |
> |
return SDEargument; |
777 |
> |
} else if ((cd->sidef != SD_BREFL) & (cd->sidef != SD_BXMIT)) |
778 |
> |
return SDEargument; |
779 |
> |
/* binary search to find position */ |
780 |
> |
ilower = 0; iupper = cd->calen; |
781 |
> |
while ((i = (iupper + ilower) >> 1) != ilower) |
782 |
> |
if (target >= cd->carr[i].cuml) |
783 |
> |
ilower = i; |
784 |
> |
else |
785 |
> |
iupper = i; |
786 |
> |
/* localize random position */ |
787 |
> |
randX = (randX*cumlmax - cd->carr[ilower].cuml) / |
788 |
> |
(double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml); |
789 |
> |
/* index in longer Hilbert curve */ |
790 |
> |
hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx) |
791 |
> |
* (double)((bitmask_t)1 << nExtraBits); |
792 |
> |
/* convert Hilbert index to vector */ |
793 |
> |
hilbert_i2c(2, nBitsC, hndx, hcoord); |
794 |
> |
for (i = 2; i--; ) |
795 |
> |
gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) / |
796 |
> |
(double)((bitmask_t)1 << nBitsC); |
797 |
> |
SDsquare2disk(gpos, gpos[0], gpos[1]); |
798 |
> |
/* compute Z-coordinate */ |
799 |
> |
gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1]; |
800 |
> |
if (gpos[2] > 0) /* paranoia, I hope */ |
801 |
> |
gpos[2] = sqrt(gpos[2]); |
802 |
> |
/* emit from back? */ |
803 |
> |
if ((cd->sidef == SD_BREFL) | (cd->sidef == SD_FXMIT)) |
804 |
> |
gpos[2] = -gpos[2]; |
805 |
> |
if (cd->isodist) { /* rotate isotropic result */ |
806 |
> |
rotangle = atan2(-ioVec[1],-ioVec[0]); |
807 |
> |
VCOPY(ioVec, gpos); |
808 |
> |
spinvector(ioVec, ioVec, zvec, rotangle); |
809 |
> |
} else |
810 |
> |
VCOPY(ioVec, gpos); |
811 |
> |
return SDEnone; |
812 |
> |
} |
813 |
> |
|
814 |
> |
/* Advance pointer to the next non-white character in the string (or nul) */ |
815 |
> |
static int |
816 |
> |
next_token(char **spp) |
817 |
> |
{ |
818 |
> |
while (isspace(**spp)) |
819 |
> |
++*spp; |
820 |
> |
return **spp; |
821 |
> |
} |
822 |
> |
|
823 |
> |
/* Advance pointer past matching token (or any token if c==0) */ |
824 |
> |
#define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0) |
825 |
> |
|
826 |
> |
/* Count words from this point in string to '}' */ |
827 |
> |
static int |
828 |
> |
count_values(char *cp) |
829 |
> |
{ |
830 |
> |
int n = 0; |
831 |
> |
|
832 |
> |
while (next_token(&cp) != '}' && *cp) { |
833 |
> |
while (!isspace(*cp) & (*cp != ',') & (*cp != '}')) |
834 |
> |
if (!*++cp) |
835 |
> |
break; |
836 |
> |
++n; |
837 |
> |
eat_token(&cp, ','); |
838 |
> |
} |
839 |
> |
return n; |
840 |
> |
} |
841 |
> |
|
842 |
> |
/* Load an array of real numbers, returning total */ |
843 |
> |
static int |
844 |
> |
load_values(char **spp, float *va, int n) |
845 |
> |
{ |
846 |
> |
float *v = va; |
847 |
> |
char *svnext; |
848 |
> |
|
849 |
> |
while (n-- > 0 && (svnext = fskip(*spp)) != NULL) { |
850 |
> |
*v++ = atof(*spp); |
851 |
> |
*spp = svnext; |
852 |
> |
eat_token(spp, ','); |
853 |
> |
} |
854 |
> |
return v - va; |
855 |
> |
} |
856 |
> |
|
857 |
> |
/* Load BSDF tree data */ |
858 |
> |
static SDNode * |
859 |
> |
load_tree_data(char **spp, int nd) |
860 |
> |
{ |
861 |
> |
SDNode *st; |
862 |
> |
int n; |
863 |
> |
|
864 |
> |
if (!eat_token(spp, '{')) { |
865 |
> |
strcpy(SDerrorDetail, "Missing '{' in tensor tree"); |
866 |
> |
return NULL; |
867 |
> |
} |
868 |
> |
if (next_token(spp) == '{') { /* tree branches */ |
869 |
> |
st = SDnewNode(nd, -1); |
870 |
> |
if (st == NULL) |
871 |
> |
return NULL; |
872 |
> |
for (n = 0; n < 1<<nd; n++) |
873 |
> |
if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) { |
874 |
> |
SDfreeTre(st); |
875 |
> |
return NULL; |
876 |
> |
} |
877 |
> |
} else { /* else load value grid */ |
878 |
> |
int bsiz; |
879 |
> |
n = count_values(*spp); /* see how big the grid is */ |
880 |
> |
for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd) |
881 |
> |
if (1<<bsiz == n) |
882 |
> |
break; |
883 |
> |
if (bsiz >= 8*sizeof(size_t)) { |
884 |
> |
strcpy(SDerrorDetail, "Illegal value count in tensor tree"); |
885 |
> |
return NULL; |
886 |
> |
} |
887 |
> |
st = SDnewNode(nd, bsiz/nd); |
888 |
> |
if (st == NULL) |
889 |
> |
return NULL; |
890 |
> |
if (load_values(spp, st->u.v, n) != n) { |
891 |
> |
strcpy(SDerrorDetail, "Real format error in tensor tree"); |
892 |
> |
SDfreeTre(st); |
893 |
> |
return NULL; |
894 |
> |
} |
895 |
> |
} |
896 |
> |
if (!eat_token(spp, '}')) { |
897 |
> |
strcpy(SDerrorDetail, "Missing '}' in tensor tree"); |
898 |
> |
SDfreeTre(st); |
899 |
> |
return NULL; |
900 |
> |
} |
901 |
> |
eat_token(spp, ','); |
902 |
> |
return st; |
903 |
> |
} |
904 |
> |
|
905 |
> |
/* Compute min. proj. solid angle and max. direct hemispherical scattering */ |
906 |
> |
static SDError |
907 |
> |
get_extrema(SDSpectralDF *df) |
908 |
> |
{ |
909 |
> |
SDNode *st = (*(SDTre *)df->comp[0].dist).st; |
910 |
> |
double stepWidth, dhemi, bmin[4], bmax[4]; |
911 |
> |
|
912 |
> |
stepWidth = SDsmallestLeaf(st); |
913 |
> |
if (quantum > stepWidth) /* adjust quantization factor */ |
914 |
> |
quantum = stepWidth; |
915 |
> |
df->minProjSA = M_PI*stepWidth*stepWidth; |
916 |
> |
if (stepWidth < .03125) |
917 |
> |
stepWidth = .03125; /* 1/32 resolution good enough */ |
918 |
> |
df->maxHemi = .0; |
919 |
> |
if (st->ndim == 3) { /* isotropic BSDF */ |
920 |
> |
bmin[1] = bmin[2] = .0; |
921 |
> |
bmax[1] = bmax[2] = 1.; |
922 |
> |
for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) { |
923 |
> |
bmax[0] = bmin[0] + stepWidth; |
924 |
> |
dhemi = SDavgTreBox(st, bmin, bmax); |
925 |
> |
if (dhemi > df->maxHemi) |
926 |
> |
df->maxHemi = dhemi; |
927 |
> |
} |
928 |
> |
} else if (st->ndim == 4) { /* anisotropic BSDF */ |
929 |
> |
bmin[2] = bmin[3] = .0; |
930 |
> |
bmax[2] = bmax[3] = 1.; |
931 |
> |
for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) { |
932 |
> |
bmax[0] = bmin[0] + stepWidth; |
933 |
> |
for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) { |
934 |
> |
bmax[1] = bmin[1] + stepWidth; |
935 |
> |
dhemi = SDavgTreBox(st, bmin, bmax); |
936 |
> |
if (dhemi > df->maxHemi) |
937 |
> |
df->maxHemi = dhemi; |
938 |
> |
} |
939 |
> |
} |
940 |
> |
} else |
941 |
> |
return SDEinternal; |
942 |
> |
/* correct hemispherical value */ |
943 |
> |
df->maxHemi *= M_PI; |
944 |
> |
return SDEnone; |
945 |
> |
} |
946 |
> |
|
947 |
> |
/* Load BSDF distribution for this wavelength */ |
948 |
> |
static SDError |
949 |
> |
load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim) |
950 |
> |
{ |
951 |
> |
SDSpectralDF *df; |
952 |
> |
SDTre *sdt; |
953 |
> |
char *sdata; |
954 |
> |
/* allocate BSDF component */ |
955 |
> |
sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection")); |
956 |
> |
if (!sdata) |
957 |
> |
return SDEnone; |
958 |
> |
/* |
959 |
> |
* Remember that front and back are reversed from WINDOW 6 orientations |
960 |
> |
*/ |
961 |
> |
if (!strcasecmp(sdata, "Transmission Front")) { |
962 |
> |
if (sd->tb != NULL) |
963 |
> |
SDfreeSpectralDF(sd->tb); |
964 |
> |
if ((sd->tb = SDnewSpectralDF(1)) == NULL) |
965 |
> |
return SDEmemory; |
966 |
> |
df = sd->tb; |
967 |
> |
} else if (!strcasecmp(sdata, "Transmission Back")) { |
968 |
> |
if (sd->tf != NULL) |
969 |
> |
SDfreeSpectralDF(sd->tf); |
970 |
> |
if ((sd->tf = SDnewSpectralDF(1)) == NULL) |
971 |
> |
return SDEmemory; |
972 |
> |
df = sd->tf; |
973 |
> |
} else if (!strcasecmp(sdata, "Reflection Front")) { |
974 |
> |
if (sd->rb != NULL) |
975 |
> |
SDfreeSpectralDF(sd->rb); |
976 |
> |
if ((sd->rb = SDnewSpectralDF(1)) == NULL) |
977 |
> |
return SDEmemory; |
978 |
> |
df = sd->rb; |
979 |
> |
} else if (!strcasecmp(sdata, "Reflection Back")) { |
980 |
> |
if (sd->rf != NULL) |
981 |
> |
SDfreeSpectralDF(sd->rf); |
982 |
> |
if ((sd->rf = SDnewSpectralDF(1)) == NULL) |
983 |
> |
return SDEmemory; |
984 |
> |
df = sd->rf; |
985 |
> |
} else |
986 |
> |
return SDEnone; |
987 |
> |
/* XXX should also check "ScatteringDataType" for consistency? */ |
988 |
> |
/* get angle bases */ |
989 |
> |
sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis")); |
990 |
> |
if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) { |
991 |
> |
sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'", |
992 |
> |
!sdata ? "Missing" : "Unsupported", sd->name); |
993 |
> |
return !sdata ? SDEformat : SDEsupport; |
994 |
> |
} |
995 |
> |
/* allocate BSDF tree */ |
996 |
> |
sdt = (SDTre *)malloc(sizeof(SDTre)); |
997 |
> |
if (sdt == NULL) |
998 |
> |
return SDEmemory; |
999 |
> |
if (df == sd->rf) |
1000 |
> |
sdt->sidef = SD_FREFL; |
1001 |
> |
else if (df == sd->rb) |
1002 |
> |
sdt->sidef = SD_BREFL; |
1003 |
> |
else if (df == sd->tf) |
1004 |
> |
sdt->sidef = SD_FXMIT; |
1005 |
> |
else /* df == sd->tb */ |
1006 |
> |
sdt->sidef = SD_BXMIT; |
1007 |
> |
sdt->st = NULL; |
1008 |
> |
df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */ |
1009 |
> |
df->comp[0].dist = sdt; |
1010 |
> |
df->comp[0].func = &SDhandleTre; |
1011 |
> |
/* read BSDF data */ |
1012 |
> |
sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData")); |
1013 |
> |
if (!sdata || !next_token(&sdata)) { |
1014 |
> |
sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'", |
1015 |
> |
sd->name); |
1016 |
> |
return SDEformat; |
1017 |
> |
} |
1018 |
> |
sdt->st = load_tree_data(&sdata, ndim); |
1019 |
> |
if (sdt->st == NULL) |
1020 |
> |
return SDEformat; |
1021 |
> |
if (next_token(&sdata)) { /* check for unconsumed characters */ |
1022 |
> |
sprintf(SDerrorDetail, |
1023 |
> |
"Extra characters at end of ScatteringData in '%s'", |
1024 |
> |
sd->name); |
1025 |
> |
return SDEformat; |
1026 |
> |
} |
1027 |
> |
/* flatten branches where possible */ |
1028 |
> |
sdt->st = SDsimplifyTre(sdt->st); |
1029 |
> |
if (sdt->st == NULL) |
1030 |
> |
return SDEinternal; |
1031 |
> |
return get_extrema(df); /* compute global quantities */ |
1032 |
> |
} |
1033 |
> |
|
1034 |
> |
/* Find minimum value in tree */ |
1035 |
> |
static float |
1036 |
> |
SDgetTreMin(const SDNode *st) |
1037 |
> |
{ |
1038 |
> |
float vmin = FHUGE; |
1039 |
> |
int n; |
1040 |
> |
|
1041 |
> |
if (st->log2GR < 0) { |
1042 |
> |
for (n = 1<<st->ndim; n--; ) { |
1043 |
> |
float v = SDgetTreMin(st->u.t[n]); |
1044 |
> |
if (v < vmin) |
1045 |
> |
vmin = v; |
1046 |
> |
} |
1047 |
> |
} else { |
1048 |
> |
for (n = 1<<(st->ndim*st->log2GR); n--; ) |
1049 |
> |
if (st->u.v[n] < vmin) |
1050 |
> |
vmin = st->u.v[n]; |
1051 |
> |
} |
1052 |
> |
return vmin; |
1053 |
> |
} |
1054 |
> |
|
1055 |
> |
/* Subtract the given value from all tree nodes */ |
1056 |
> |
static void |
1057 |
> |
SDsubtractTreVal(SDNode *st, float val) |
1058 |
> |
{ |
1059 |
> |
int n; |
1060 |
> |
|
1061 |
> |
if (st->log2GR < 0) { |
1062 |
> |
for (n = 1<<st->ndim; n--; ) |
1063 |
> |
SDsubtractTreVal(st->u.t[n], val); |
1064 |
> |
} else { |
1065 |
> |
for (n = 1<<(st->ndim*st->log2GR); n--; ) |
1066 |
> |
if ((st->u.v[n] -= val) < 0) |
1067 |
> |
st->u.v[n] = .0f; |
1068 |
> |
} |
1069 |
> |
} |
1070 |
> |
|
1071 |
> |
/* Subtract minimum value from BSDF */ |
1072 |
> |
static double |
1073 |
> |
subtract_min(SDNode *st) |
1074 |
> |
{ |
1075 |
> |
float vmin; |
1076 |
> |
/* be sure to skip unused portion */ |
1077 |
> |
if (st->ndim == 3) { |
1078 |
> |
int n; |
1079 |
> |
vmin = 1./M_PI; |
1080 |
> |
if (st->log2GR < 0) { |
1081 |
> |
for (n = 0; n < 8; n += 2) { |
1082 |
> |
float v = SDgetTreMin(st->u.t[n]); |
1083 |
> |
if (v < vmin) |
1084 |
> |
vmin = v; |
1085 |
> |
} |
1086 |
> |
} else if (st->log2GR) { |
1087 |
> |
for (n = 1 << (3*st->log2GR - 1); n--; ) |
1088 |
> |
if (st->u.v[n] < vmin) |
1089 |
> |
vmin = st->u.v[n]; |
1090 |
> |
} else |
1091 |
> |
vmin = st->u.v[0]; |
1092 |
> |
} else /* anisotropic covers entire tree */ |
1093 |
> |
vmin = SDgetTreMin(st); |
1094 |
> |
|
1095 |
> |
if (vmin <= FTINY) |
1096 |
|
return .0; |
1097 |
< |
|
1098 |
< |
return SDiterSum(st->u.v, st->ndim, 1 << st->log2GR, imin, imax) / |
1099 |
< |
(double)n; |
1097 |
> |
|
1098 |
> |
SDsubtractTreVal(st, vmin); |
1099 |
> |
|
1100 |
> |
return M_PI * vmin; /* return hemispherical value */ |
1101 |
|
} |
1102 |
|
|
1103 |
+ |
/* Extract and separate diffuse portion of BSDF */ |
1104 |
+ |
static void |
1105 |
+ |
extract_diffuse(SDValue *dv, SDSpectralDF *df) |
1106 |
+ |
{ |
1107 |
+ |
int n; |
1108 |
+ |
|
1109 |
+ |
if (df == NULL || df->ncomp <= 0) { |
1110 |
+ |
dv->spec = c_dfcolor; |
1111 |
+ |
dv->cieY = .0; |
1112 |
+ |
return; |
1113 |
+ |
} |
1114 |
+ |
dv->spec = df->comp[0].cspec[0]; |
1115 |
+ |
dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st); |
1116 |
+ |
/* in case of multiple components */ |
1117 |
+ |
for (n = df->ncomp; --n; ) { |
1118 |
+ |
double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st); |
1119 |
+ |
c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]); |
1120 |
+ |
dv->cieY += ymin; |
1121 |
+ |
} |
1122 |
+ |
df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */ |
1123 |
+ |
/* make sure everything is set */ |
1124 |
+ |
c_ccvt(&dv->spec, C_CSXY+C_CSSPEC); |
1125 |
+ |
} |
1126 |
+ |
|
1127 |
|
/* Load a variable-resolution BSDF tree from an open XML file */ |
1128 |
|
SDError |
1129 |
|
SDloadTre(SDData *sd, ezxml_t wtl) |
1130 |
|
{ |
1131 |
< |
return SDEsupport; |
1131 |
> |
SDError ec; |
1132 |
> |
ezxml_t wld, wdb; |
1133 |
> |
int rank; |
1134 |
> |
char *txt; |
1135 |
> |
/* basic checks and tensor rank */ |
1136 |
> |
txt = ezxml_txt(ezxml_child(ezxml_child(wtl, |
1137 |
> |
"DataDefinition"), "IncidentDataStructure")); |
1138 |
> |
if (txt == NULL || !*txt) { |
1139 |
> |
sprintf(SDerrorDetail, |
1140 |
> |
"BSDF \"%s\": missing IncidentDataStructure", |
1141 |
> |
sd->name); |
1142 |
> |
return SDEformat; |
1143 |
> |
} |
1144 |
> |
if (!strcasecmp(txt, "TensorTree3")) |
1145 |
> |
rank = 3; |
1146 |
> |
else if (!strcasecmp(txt, "TensorTree4")) |
1147 |
> |
rank = 4; |
1148 |
> |
else { |
1149 |
> |
sprintf(SDerrorDetail, |
1150 |
> |
"BSDF \"%s\": unsupported IncidentDataStructure", |
1151 |
> |
sd->name); |
1152 |
> |
return SDEsupport; |
1153 |
> |
} |
1154 |
> |
/* load BSDF components */ |
1155 |
> |
for (wld = ezxml_child(wtl, "WavelengthData"); |
1156 |
> |
wld != NULL; wld = wld->next) { |
1157 |
> |
if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")), |
1158 |
> |
"Visible")) |
1159 |
> |
continue; /* just visible for now */ |
1160 |
> |
for (wdb = ezxml_child(wld, "WavelengthDataBlock"); |
1161 |
> |
wdb != NULL; wdb = wdb->next) |
1162 |
> |
if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone) |
1163 |
> |
return ec; |
1164 |
> |
} |
1165 |
> |
/* separate diffuse components */ |
1166 |
> |
extract_diffuse(&sd->rLambFront, sd->rf); |
1167 |
> |
extract_diffuse(&sd->rLambBack, sd->rb); |
1168 |
> |
if (sd->tf != NULL) |
1169 |
> |
extract_diffuse(&sd->tLamb, sd->tf); |
1170 |
> |
if (sd->tb != NULL) |
1171 |
> |
extract_diffuse(&sd->tLamb, sd->tb); |
1172 |
> |
/* return success */ |
1173 |
> |
return SDEnone; |
1174 |
|
} |
1175 |
|
|
1176 |
|
/* Variable resolution BSDF methods */ |
1177 |
< |
const SDFunc SDhandleTre = { |
1178 |
< |
NULL, |
1179 |
< |
NULL, |
1180 |
< |
NULL, |
1181 |
< |
NULL, |
1182 |
< |
&SDfreeTree, |
1177 |
> |
SDFunc SDhandleTre = { |
1178 |
> |
&SDgetTreBSDF, |
1179 |
> |
&SDqueryTreProjSA, |
1180 |
> |
&SDgetTreCDist, |
1181 |
> |
&SDsampTreCDist, |
1182 |
> |
&SDFreeBTre, |
1183 |
|
}; |