ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.13
Committed: Wed Jun 1 00:29:40 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.12: +10 -5 lines
Log Message:
Fixes to get working version of variable-resolution BSDF

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf_t.c,v 3.12 2011/05/01 16:34:37 greg Exp $";
3 #endif
4 /*
5 * bsdf_t.c
6 *
7 * Definitions for variable-resolution BSDF trees
8 *
9 * Created by Greg Ward on 2/2/11.
10 *
11 */
12
13 #include "rtio.h"
14 #include <stdlib.h>
15 #include <math.h>
16 #include <ctype.h>
17 #include "ezxml.h"
18 #include "bsdf.h"
19 #include "bsdf_t.h"
20 #include "hilbert.h"
21
22 /* Callback function type for SDtraverseTre() */
23 typedef int SDtreCallback(float val, const double *cmin,
24 double csiz, void *cptr);
25
26 /* reference width maximum (1.0) */
27 static const unsigned iwbits = sizeof(unsigned)*4;
28 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
29 /* maximum cumulative value */
30 static const unsigned cumlmax = ~0;
31
32 /* Struct used for our distribution-building callback */
33 typedef struct {
34 int nic; /* number of input coordinates */
35 unsigned alen; /* current array length */
36 unsigned nall; /* number of allocated entries */
37 unsigned wmin; /* minimum square size so far */
38 unsigned wmax; /* maximum square size */
39 struct outdir_s {
40 unsigned hent; /* entering Hilbert index */
41 int wid; /* this square size */
42 float bsdf; /* BSDF for this square */
43 } *darr; /* output direction array */
44 } SDdistScaffold;
45
46 /* Allocate a new scattering distribution node */
47 static SDNode *
48 SDnewNode(int nd, int lg)
49 {
50 SDNode *st;
51
52 if (nd <= 0) {
53 strcpy(SDerrorDetail, "Zero dimension BSDF node request");
54 return NULL;
55 }
56 if (nd > SD_MAXDIM) {
57 sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
58 nd, SD_MAXDIM);
59 return NULL;
60 }
61 if (lg < 0) {
62 st = (SDNode *)malloc(sizeof(SDNode) +
63 sizeof(st->u.t[0])*((1<<nd) - 1));
64 if (st == NULL) {
65 sprintf(SDerrorDetail,
66 "Cannot allocate %d branch BSDF tree", 1<<nd);
67 return NULL;
68 }
69 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
70 } else {
71 st = (SDNode *)malloc(sizeof(SDNode) +
72 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
73 if (st == NULL) {
74 sprintf(SDerrorDetail,
75 "Cannot allocate %d BSDF leaves", 1 << nd*lg);
76 return NULL;
77 }
78 }
79 st->ndim = nd;
80 st->log2GR = lg;
81 return st;
82 }
83
84 /* Free an SD tree */
85 static void
86 SDfreeTre(SDNode *st)
87 {
88 int n;
89
90 if (st == NULL)
91 return;
92 for (n = (st->log2GR < 0) << st->ndim; n--; )
93 SDfreeTre(st->u.t[n]);
94 free((void *)st);
95 }
96
97 /* Free a variable-resolution BSDF */
98 static void
99 SDFreeBTre(void *p)
100 {
101 SDTre *sdt = (SDTre *)p;
102
103 if (sdt == NULL)
104 return;
105 SDfreeTre(sdt->st);
106 free(sdt);
107 }
108
109 /* Fill branch's worth of grid values from subtree */
110 static void
111 fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
112 {
113 unsigned n = 1 << (shft-1);
114
115 if (!--nd) { /* end on the line */
116 memcpy(dptr, sptr, sizeof(*dptr)*n);
117 return;
118 }
119 while (n--) /* recurse on each slice */
120 fill_grid_branch(dptr + (n << shft*nd),
121 sptr + (n << (shft-1)*nd), nd, shft);
122 }
123
124 /* Get pointer at appropriate offset for the given branch */
125 static float *
126 grid_branch_start(SDNode *st, int n)
127 {
128 unsigned skipsiz = 1 << st->log2GR;
129 float *vptr = st->u.v;
130 int i;
131
132 for (i = 0; i < st->ndim; skipsiz <<= st->log2GR)
133 if (1<<i++ & n)
134 vptr += skipsiz >> 1;
135 return vptr;
136 }
137
138 /* Simplify (consolidate) a tree by flattening uniform depth regions */
139 static SDNode *
140 SDsimplifyTre(SDNode *st)
141 {
142 int match, n;
143
144 if (st == NULL) /* check for invalid tree */
145 return NULL;
146 if (st->log2GR >= 0) /* grid just returns unaltered */
147 return st;
148 match = 1; /* check if grids below match */
149 for (n = 0; n < 1<<st->ndim; n++) {
150 if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
151 return NULL; /* propogate error up call stack */
152 match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
153 }
154 if (match && (match = st->u.t[0]->log2GR) >= 0) {
155 SDNode *stn = SDnewNode(st->ndim, match + 1);
156 if (stn == NULL) /* out of memory? */
157 return st;
158 /* transfer values to new grid */
159 for (n = 1 << st->ndim; n--; )
160 fill_grid_branch(grid_branch_start(stn, n),
161 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
162 SDfreeTre(st); /* free old tree */
163 st = stn; /* return new one */
164 }
165 return st;
166 }
167
168 /* Find smallest leaf in tree */
169 static double
170 SDsmallestLeaf(const SDNode *st)
171 {
172 if (st->log2GR < 0) { /* tree branches */
173 double lmin = 1.;
174 int n;
175 for (n = 1<<st->ndim; n--; ) {
176 double lsiz = SDsmallestLeaf(st->u.t[n]);
177 if (lsiz < lmin)
178 lmin = lsiz;
179 }
180 return .5*lmin;
181 }
182 /* leaf grid width */
183 return 1. / (double)(1 << st->log2GR);
184 }
185
186 /* Add up N-dimensional hypercube array values over the given box */
187 static double
188 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
189 {
190 const unsigned skipsiz = 1 << --nd*shft;
191 double sum = .0;
192 int i;
193
194 if (skipsiz == 1)
195 for (i = *imin; i < *imax; i++)
196 sum += va[i];
197 else
198 for (i = *imin; i < *imax; i++)
199 sum += SDiterSum(va + i*skipsiz, nd, shft, imin+1, imax+1);
200 return sum;
201 }
202
203 /* Average BSDF leaves over an orthotope defined by the unit hypercube */
204 static double
205 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
206 {
207 int imin[SD_MAXDIM], imax[SD_MAXDIM];
208 unsigned n;
209 int i;
210
211 if (!st)
212 return .0;
213 /* check box limits */
214 for (i = st->ndim; i--; ) {
215 if (bmin[i] >= 1.)
216 return .0;
217 if (bmax[i] <= 0)
218 return .0;
219 if (bmin[i] >= bmax[i])
220 return .0;
221 }
222 if (st->log2GR < 0) { /* iterate on subtree */
223 double sum = .0, wsum = 1e-20;
224 double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
225
226 for (n = 1 << st->ndim; n--; ) {
227 w = 1.;
228 for (i = st->ndim; i--; ) {
229 sbmin[i] = 2.*bmin[i];
230 sbmax[i] = 2.*bmax[i];
231 if (n & 1<<i) {
232 sbmin[i] -= 1.;
233 sbmax[i] -= 1.;
234 }
235 if (sbmin[i] < .0) sbmin[i] = .0;
236 if (sbmax[i] > 1.) sbmax[i] = 1.;
237 if (sbmin[i] >= sbmax[i]) {
238 w = .0;
239 break;
240 }
241 w *= sbmax[i] - sbmin[i];
242 }
243 if (w > 1e-10) {
244 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
245 wsum += w;
246 }
247 }
248 return sum / wsum;
249 }
250 n = 1; /* iterate over leaves */
251 for (i = st->ndim; i--; ) {
252 imin[i] = (bmin[i] <= 0) ? 0
253 : (int)((1 << st->log2GR)*bmin[i]);
254 imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR)
255 : (int)((1 << st->log2GR)*bmax[i] + .999999);
256 n *= imax[i] - imin[i];
257 }
258 if (!n)
259 return .0;
260
261 return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n;
262 }
263
264 /* Recursive call for SDtraverseTre() */
265 static int
266 SDdotravTre(const SDNode *st, const double *pos, int cmask,
267 SDtreCallback *cf, void *cptr,
268 const double *cmin, double csiz)
269 {
270 int rv, rval = 0;
271 double bmin[SD_MAXDIM];
272 int i, n;
273 /* in branches? */
274 if (st->log2GR < 0) {
275 unsigned skipmask = 0;
276 csiz *= .5;
277 for (i = st->ndim; i--; )
278 if (1<<i & cmask)
279 if (pos[i] < cmin[i] + csiz)
280 for (n = 1 << st->ndim; n--; ) {
281 if (n & 1<<i)
282 skipmask |= 1<<n;
283 }
284 else
285 for (n = 1 << st->ndim; n--; ) {
286 if (!(n & 1<<i))
287 skipmask |= 1<<n;
288 }
289 for (n = 1 << st->ndim; n--; ) {
290 if (1<<n & skipmask)
291 continue;
292 for (i = st->ndim; i--; )
293 if (1<<i & n)
294 bmin[i] = cmin[i] + csiz;
295 else
296 bmin[i] = cmin[i];
297
298 rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
299 cf, cptr, bmin, csiz);
300 if (rv < 0)
301 return rv;
302 }
303 } else { /* else traverse leaves */
304 int clim[SD_MAXDIM][2];
305 int cpos[SD_MAXDIM];
306
307 if (st->log2GR == 0) /* short cut */
308 return (*cf)(st->u.v[0], cmin, csiz, cptr);
309
310 csiz /= (double)(1 << st->log2GR);
311 /* assign coord. ranges */
312 for (i = st->ndim; i--; )
313 if (1<<i & cmask) {
314 clim[i][0] = (pos[i] - cmin[i])/csiz;
315 /* check overflow from f.p. error */
316 clim[i][0] -= clim[i][0] >> st->log2GR;
317 clim[i][1] = clim[i][0] + 1;
318 } else {
319 clim[i][0] = 0;
320 clim[i][1] = 1 << st->log2GR;
321 }
322 /* fill in unused dimensions */
323 for (i = SD_MAXDIM; i-- > st->ndim; ) {
324 clim[i][0] = 0; clim[i][1] = 1;
325 }
326 #if (SD_MAXDIM == 4)
327 bmin[0] = cmin[0] + csiz*clim[0][0];
328 for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
329 bmin[1] = cmin[1] + csiz*clim[1][0];
330 for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
331 bmin[2] = cmin[2] + csiz*clim[2][0];
332 for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
333 bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
334 n = cpos[0];
335 for (i = 1; i < st->ndim; i++)
336 n = (n << st->log2GR) + cpos[i];
337 for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
338 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
339 if (rv < 0)
340 return rv;
341 bmin[3] += csiz;
342 }
343 bmin[2] += csiz;
344 }
345 bmin[1] += csiz;
346 }
347 bmin[0] += csiz;
348 }
349 #else
350 _!_ "broken code segment!"
351 #endif
352 }
353 return rval;
354 }
355
356 /* Traverse a tree, visiting nodes in a slice that fits partial position */
357 static int
358 SDtraverseTre(const SDNode *st, const double *pos, int cmask,
359 SDtreCallback *cf, void *cptr)
360 {
361 static double czero[SD_MAXDIM];
362 int i;
363 /* check arguments */
364 if ((st == NULL) | (cf == NULL))
365 return -1;
366 for (i = st->ndim; i--; )
367 if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
368 return -1;
369
370 return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
371 }
372
373 /* Look up tree value at the given grid position */
374 static float
375 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
376 {
377 double spos[SD_MAXDIM];
378 int i, n, t;
379 /* initialize voxel return */
380 if (hcube) {
381 hcube[i = st->ndim] = 1.;
382 while (i--)
383 hcube[i] = .0;
384 }
385 /* climb the tree */
386 while (st->log2GR < 0) {
387 n = 0; /* move to appropriate branch */
388 if (hcube) hcube[st->ndim] *= .5;
389 for (i = st->ndim; i--; ) {
390 spos[i] = 2.*pos[i];
391 t = (spos[i] >= 1.);
392 n |= t<<i;
393 spos[i] -= (double)t;
394 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
395 }
396 st = st->u.t[n]; /* avoids tail recursion */
397 pos = spos;
398 }
399 if (st->log2GR == 0) /* short cut */
400 return st->u.v[0];
401 n = t = 0; /* find grid array index */
402 for (i = st->ndim; i--; ) {
403 n += (int)((1<<st->log2GR)*pos[i]) << t;
404 t += st->log2GR;
405 }
406 if (hcube) { /* compute final hypercube */
407 hcube[st->ndim] /= (double)(1<<st->log2GR);
408 for (i = st->ndim; i--; )
409 hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
410 }
411 return st->u.v[n]; /* no interpolation */
412 }
413
414 /* Query BSDF value and sample hypercube for the given vectors */
415 static float
416 SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
417 {
418 static const FVECT zvec = {.0, .0, 1.};
419 FVECT rOutVec;
420 double gridPos[4];
421
422 switch (sdt->sidef) { /* whose side are you on? */
423 case SD_UFRONT:
424 if ((outVec[2] < 0) | (inVec[2] < 0))
425 return -1.;
426 break;
427 case SD_UBACK:
428 if ((outVec[2] > 0) | (inVec[2] > 0))
429 return -1.;
430 break;
431 case SD_XMIT:
432 if ((outVec[2] > 0) == (inVec[2] > 0))
433 return -1.;
434 break;
435 default:
436 return -1.;
437 }
438 /* convert vector coordinates */
439 if (sdt->st->ndim == 3) {
440 spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0]));
441 gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
442 SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
443 } else if (sdt->st->ndim == 4) {
444 SDdisk2square(gridPos, -inVec[0], -inVec[1]);
445 SDdisk2square(gridPos+2, outVec[0], outVec[1]);
446 } else
447 return -1.; /* should be internal error */
448
449 return SDlookupTre(sdt->st, gridPos, hc);
450 }
451
452 /* Compute non-diffuse component for variable-resolution BSDF */
453 static int
454 SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
455 const FVECT inVec, SDComponent *sdc)
456 {
457 /* check arguments */
458 if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
459 || sdc->dist == NULL)
460 return 0;
461 /* get nearest BSDF value */
462 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
463 return (coef[0] >= 0); /* monochromatic for now */
464 }
465
466 /* Callback to build cumulative distribution using SDtraverseTre() */
467 static int
468 build_scaffold(float val, const double *cmin, double csiz, void *cptr)
469 {
470 SDdistScaffold *sp = (SDdistScaffold *)cptr;
471 int wid = csiz*(double)iwmax + .5;
472 bitmask_t bmin[2], bmax[2];
473
474 cmin += sp->nic; /* skip to output coords */
475 if (wid < sp->wmin) /* new minimum width? */
476 sp->wmin = wid;
477 if (wid > sp->wmax) /* new maximum? */
478 sp->wmax = wid;
479 if (sp->alen >= sp->nall) { /* need more space? */
480 struct outdir_s *ndarr;
481 sp->nall += 1024;
482 ndarr = (struct outdir_s *)realloc(sp->darr,
483 sizeof(struct outdir_s)*sp->nall);
484 if (ndarr == NULL) {
485 sprintf(SDerrorDetail,
486 "Cannot grow scaffold to %u entries", sp->nall);
487 return -1; /* abort build */
488 }
489 sp->darr = ndarr;
490 }
491 /* find Hilbert entry index */
492 bmin[0] = cmin[0]*(double)iwmax + .5;
493 bmin[1] = cmin[1]*(double)iwmax + .5;
494 bmax[0] = bmin[0] + wid-1;
495 bmax[1] = bmin[1] + wid-1;
496 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
497 sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
498 sp->darr[sp->alen].wid = wid;
499 sp->darr[sp->alen].bsdf = val;
500 sp->alen++; /* on to the next entry */
501 return 0;
502 }
503
504 /* Scaffold comparison function for qsort -- ascending Hilbert index */
505 static int
506 sscmp(const void *p1, const void *p2)
507 {
508 unsigned h1 = (*(const struct outdir_s *)p1).hent;
509 unsigned h2 = (*(const struct outdir_s *)p2).hent;
510
511 if (h1 > h2)
512 return 1;
513 if (h1 < h2)
514 return -1;
515 return 0;
516 }
517
518 /* Create a new cumulative distribution for the given input direction */
519 static SDTreCDst *
520 make_cdist(const SDTre *sdt, const double *pos)
521 {
522 SDdistScaffold myScaffold;
523 SDTreCDst *cd;
524 struct outdir_s *sp;
525 double scale, cursum;
526 int i;
527 /* initialize scaffold */
528 myScaffold.wmin = iwmax;
529 myScaffold.wmax = 0;
530 myScaffold.nic = sdt->st->ndim - 2;
531 myScaffold.alen = 0;
532 myScaffold.nall = 512;
533 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
534 myScaffold.nall);
535 if (myScaffold.darr == NULL)
536 return NULL;
537 /* grow the distribution */
538 if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
539 &build_scaffold, &myScaffold) < 0) {
540 free(myScaffold.darr);
541 return NULL;
542 }
543 /* allocate result holder */
544 cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
545 sizeof(cd->carr[0])*myScaffold.alen);
546 if (cd == NULL) {
547 sprintf(SDerrorDetail,
548 "Cannot allocate %u entry cumulative distribution",
549 myScaffold.alen);
550 free(myScaffold.darr);
551 return NULL;
552 }
553 /* sort the distribution */
554 qsort(myScaffold.darr, cd->calen = myScaffold.alen,
555 sizeof(struct outdir_s), &sscmp);
556
557 /* record input range */
558 scale = myScaffold.wmin / (double)iwmax;
559 for (i = myScaffold.nic; i--; ) {
560 cd->clim[i][0] = floor(pos[i]/scale) * scale;
561 cd->clim[i][1] = cd->clim[i][0] + scale;
562 }
563 cd->max_psa = myScaffold.wmax / (double)iwmax;
564 cd->max_psa *= cd->max_psa * M_PI;
565 cd->sidef = sdt->sidef;
566 cd->cTotal = 1e-20; /* compute directional total */
567 sp = myScaffold.darr;
568 for (i = myScaffold.alen; i--; sp++)
569 cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
570 cursum = .0; /* go back and get cumulative values */
571 scale = (double)cumlmax / cd->cTotal;
572 sp = myScaffold.darr;
573 for (i = 0; i < cd->calen; i++, sp++) {
574 cd->carr[i].hndx = sp->hent;
575 cd->carr[i].cuml = scale*cursum + .5;
576 cursum += sp->bsdf * (double)sp->wid * sp->wid;
577 }
578 cd->carr[i].hndx = ~0; /* make final entry */
579 cd->carr[i].cuml = cumlmax;
580 cd->cTotal *= M_PI/(double)iwmax/iwmax;
581 /* all done, clean up and return */
582 free(myScaffold.darr);
583 return cd;
584 }
585
586 /* Find or allocate a cumulative distribution for the given incoming vector */
587 const SDCDst *
588 SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
589 {
590 const SDTre *sdt;
591 double inCoord[2];
592 int vflags;
593 int i;
594 SDTreCDst *cd, *cdlast;
595 /* check arguments */
596 if ((inVec == NULL) | (sdc == NULL) ||
597 (sdt = (SDTre *)sdc->dist) == NULL)
598 return NULL;
599 if (sdt->st->ndim == 3) /* isotropic BSDF? */
600 inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
601 else if (sdt->st->ndim == 4)
602 SDdisk2square(inCoord, -inVec[0], -inVec[1]);
603 else
604 return NULL; /* should be internal error */
605 cdlast = NULL; /* check for direction in cache list */
606 for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
607 cdlast = cd, cd = (SDTreCDst *)cd->next) {
608 for (i = sdt->st->ndim - 2; i--; )
609 if ((cd->clim[i][0] > inCoord[i]) |
610 (inCoord[i] >= cd->clim[i][1]))
611 break;
612 if (i < 0)
613 break; /* means we have a match */
614 }
615 if (cd == NULL) /* need to create new entry? */
616 cdlast = cd = make_cdist(sdt, inCoord);
617 if (cdlast != NULL) { /* move entry to head of cache list */
618 cdlast->next = cd->next;
619 cd->next = sdc->cdList;
620 sdc->cdList = (SDCDst *)cd;
621 }
622 return (SDCDst *)cd; /* ready to go */
623 }
624
625 /* Query solid angle for vector(s) */
626 static SDError
627 SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
628 int qflags, SDComponent *sdc)
629 {
630 double myPSA[2];
631 /* check arguments */
632 if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
633 sdc->dist == NULL)
634 return SDEargument;
635 /* get projected solid angle(s) */
636 if (v2 != NULL) {
637 const SDTre *sdt = (SDTre *)sdc->dist;
638 double hcube[SD_MAXDIM];
639 if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
640 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
641 return SDEinternal;
642 }
643 myPSA[0] = hcube[sdt->st->ndim];
644 myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
645 } else {
646 const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
647 if (cd == NULL)
648 return SDEmemory;
649 myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
650 (cd->clim[1][1] - cd->clim[1][0]);
651 myPSA[1] = cd->max_psa;
652 }
653 switch (qflags) { /* record based on flag settings */
654 case SDqueryVal:
655 *psa = myPSA[0];
656 break;
657 case SDqueryMax:
658 if (myPSA[1] > *psa)
659 *psa = myPSA[1];
660 break;
661 case SDqueryMin+SDqueryMax:
662 if (myPSA[1] > psa[1])
663 psa[1] = myPSA[1];
664 /* fall through */
665 case SDqueryMin:
666 if (myPSA[0] < psa[0])
667 psa[0] = myPSA[0];
668 break;
669 }
670 return SDEnone;
671 }
672
673 /* Sample cumulative distribution */
674 static SDError
675 SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
676 {
677 const unsigned nBitsC = 4*sizeof(bitmask_t);
678 const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
679 const SDTreCDst *cd = (const SDTreCDst *)cdp;
680 const unsigned target = randX*cumlmax;
681 bitmask_t hndx, hcoord[2];
682 double gpos[3];
683 int i, iupper, ilower;
684 /* check arguments */
685 if ((ioVec == NULL) | (cd == NULL))
686 return SDEargument;
687 if (ioVec[2] > 0) {
688 if (!(cd->sidef & SD_UFRONT))
689 return SDEargument;
690 } else if (!(cd->sidef & SD_UBACK))
691 return SDEargument;
692 /* binary search to find position */
693 ilower = 0; iupper = cd->calen;
694 while ((i = (iupper + ilower) >> 1) != ilower)
695 if ((long)target >= (long)cd->carr[i].cuml)
696 ilower = i;
697 else
698 iupper = i;
699 /* localize random position */
700 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
701 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
702 /* index in longer Hilbert curve */
703 hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
704 * (double)((bitmask_t)1 << nExtraBits);
705 /* convert Hilbert index to vector */
706 hilbert_i2c(2, nBitsC, hndx, hcoord);
707 for (i = 2; i--; )
708 gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
709 (double)((bitmask_t)1 << nBitsC);
710 SDsquare2disk(gpos, gpos[0], gpos[1]);
711 /* compute Z-coordinate */
712 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
713 if (gpos[2] > 0) /* paranoia, I hope */
714 gpos[2] = sqrt(gpos[2]);
715 /* emit from back? */
716 if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
717 gpos[2] = -gpos[2];
718 VCOPY(ioVec, gpos);
719 return SDEnone;
720 }
721
722 /* Advance pointer to the next non-white character in the string (or nul) */
723 static int
724 next_token(char **spp)
725 {
726 while (isspace(**spp))
727 ++*spp;
728 return **spp;
729 }
730
731 /* Advance pointer past matching token (or any token if c==0) */
732 #define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0)
733
734 /* Count words from this point in string to '}' */
735 static int
736 count_values(char *cp)
737 {
738 int n = 0;
739
740 while (next_token(&cp) != '}' && *cp) {
741 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
742 if (!*++cp)
743 break;
744 ++n;
745 eat_token(&cp, ',');
746 }
747 return n;
748 }
749
750 /* Load an array of real numbers, returning total */
751 static int
752 load_values(char **spp, float *va, int n)
753 {
754 float *v = va;
755 char *svnext;
756
757 while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
758 *v++ = atof(*spp);
759 *spp = svnext;
760 eat_token(spp, ',');
761 }
762 return v - va;
763 }
764
765 /* Load BSDF tree data */
766 static SDNode *
767 load_tree_data(char **spp, int nd)
768 {
769 SDNode *st;
770 int n;
771
772 if (!eat_token(spp, '{')) {
773 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
774 return NULL;
775 }
776 if (next_token(spp) == '{') { /* tree branches */
777 st = SDnewNode(nd, -1);
778 if (st == NULL)
779 return NULL;
780 for (n = 0; n < 1<<nd; n++)
781 if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
782 SDfreeTre(st);
783 return NULL;
784 }
785 } else { /* else load value grid */
786 int bsiz;
787 n = count_values(*spp); /* see how big the grid is */
788 for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd)
789 if (1<<bsiz == n)
790 break;
791 if (bsiz >= 8*sizeof(size_t)) {
792 strcpy(SDerrorDetail, "Illegal value count in tensor tree");
793 return NULL;
794 }
795 st = SDnewNode(nd, bsiz/nd);
796 if (st == NULL)
797 return NULL;
798 if (load_values(spp, st->u.v, n) != n) {
799 strcpy(SDerrorDetail, "Real format error in tensor tree");
800 SDfreeTre(st);
801 return NULL;
802 }
803 }
804 if (!eat_token(spp, '}')) {
805 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
806 SDfreeTre(st);
807 return NULL;
808 }
809 eat_token(spp, ',');
810 return st;
811 }
812
813 /* Compute min. proj. solid angle and max. direct hemispherical scattering */
814 static SDError
815 get_extrema(SDSpectralDF *df)
816 {
817 SDNode *st = (*(SDTre *)df->comp[0].dist).st;
818 double stepWidth, dhemi, bmin[4], bmax[4];
819
820 stepWidth = SDsmallestLeaf(st);
821 df->minProjSA = M_PI*stepWidth*stepWidth;
822 if (stepWidth < .03125)
823 stepWidth = .03125; /* 1/32 resolution good enough */
824 df->maxHemi = .0;
825 if (st->ndim == 3) { /* isotropic BSDF */
826 bmin[1] = bmin[2] = .0;
827 bmax[1] = bmax[2] = 1.;
828 for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
829 bmax[0] = bmin[0] + stepWidth;
830 dhemi = SDavgTreBox(st, bmin, bmax);
831 if (dhemi > df->maxHemi)
832 df->maxHemi = dhemi;
833 }
834 } else if (st->ndim == 4) { /* anisotropic BSDF */
835 bmin[2] = bmin[3] = .0;
836 bmax[2] = bmax[3] = 1.;
837 for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
838 bmax[0] = bmin[0] + stepWidth;
839 for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
840 bmax[1] = bmin[1] + stepWidth;
841 dhemi = SDavgTreBox(st, bmin, bmax);
842 if (dhemi > df->maxHemi)
843 df->maxHemi = dhemi;
844 }
845 }
846 } else
847 return SDEinternal;
848 /* correct hemispherical value */
849 df->maxHemi *= M_PI;
850 return SDEnone;
851 }
852
853 /* Load BSDF distribution for this wavelength */
854 static SDError
855 load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
856 {
857 SDSpectralDF *df;
858 SDTre *sdt;
859 char *sdata;
860 int i;
861 /* allocate BSDF component */
862 sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
863 if (!sdata)
864 return SDEnone;
865 /*
866 * Remember that front and back are reversed from WINDOW 6 orientations
867 */
868 if (!strcasecmp(sdata, "Transmission")) {
869 if (sd->tf != NULL)
870 SDfreeSpectralDF(sd->tf);
871 if ((sd->tf = SDnewSpectralDF(1)) == NULL)
872 return SDEmemory;
873 df = sd->tf;
874 } else if (!strcasecmp(sdata, "Reflection Front")) {
875 if (sd->rb != NULL) /* note back-front reversal */
876 SDfreeSpectralDF(sd->rb);
877 if ((sd->rb = SDnewSpectralDF(1)) == NULL)
878 return SDEmemory;
879 df = sd->rb;
880 } else if (!strcasecmp(sdata, "Reflection Back")) {
881 if (sd->rf != NULL) /* note front-back reversal */
882 SDfreeSpectralDF(sd->rf);
883 if ((sd->rf = SDnewSpectralDF(1)) == NULL)
884 return SDEmemory;
885 df = sd->rf;
886 } else
887 return SDEnone;
888 /* XXX should also check "ScatteringDataType" for consistency? */
889 /* get angle bases */
890 sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
891 if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
892 sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
893 !sdata ? "Missing" : "Unsupported", sd->name);
894 return !sdata ? SDEformat : SDEsupport;
895 }
896 /* allocate BSDF tree */
897 sdt = (SDTre *)malloc(sizeof(SDTre));
898 if (sdt == NULL)
899 return SDEmemory;
900 if (df == sd->rf)
901 sdt->sidef = SD_UFRONT;
902 else if (df == sd->rb)
903 sdt->sidef = SD_UBACK;
904 else
905 sdt->sidef = SD_XMIT;
906 sdt->st = NULL;
907 df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
908 df->comp[0].dist = sdt;
909 df->comp[0].func = &SDhandleTre;
910 /* read BSDF data */
911 sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
912 if (!sdata || !next_token(&sdata)) {
913 sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
914 sd->name);
915 return SDEformat;
916 }
917 sdt->st = load_tree_data(&sdata, ndim);
918 if (sdt->st == NULL)
919 return SDEformat;
920 if (next_token(&sdata)) { /* check for unconsumed characters */
921 sprintf(SDerrorDetail,
922 "Extra characters at end of ScatteringData in '%s'",
923 sd->name);
924 return SDEformat;
925 }
926 /* flatten branches where possible */
927 sdt->st = SDsimplifyTre(sdt->st);
928 if (sdt->st == NULL)
929 return SDEinternal;
930 return get_extrema(df); /* compute global quantities */
931 }
932
933 /* Find minimum value in tree */
934 static float
935 SDgetTreMin(const SDNode *st)
936 {
937 float vmin = FHUGE;
938 int n;
939
940 if (st->log2GR < 0) {
941 for (n = 1<<st->ndim; n--; ) {
942 float v = SDgetTreMin(st->u.t[n]);
943 if (v < vmin)
944 vmin = v;
945 }
946 } else {
947 for (n = 1<<(st->ndim*st->log2GR); n--; )
948 if (st->u.v[n] < vmin)
949 vmin = st->u.v[n];
950 }
951 return vmin;
952 }
953
954 /* Subtract the given value from all tree nodes */
955 static void
956 SDsubtractTreVal(SDNode *st, float val)
957 {
958 int n;
959
960 if (st->log2GR < 0) {
961 for (n = 1<<st->ndim; n--; )
962 SDsubtractTreVal(st->u.t[n], val);
963 } else {
964 for (n = 1<<(st->ndim*st->log2GR); n--; )
965 st->u.v[n] -= val;
966 }
967 }
968
969 /* Subtract minimum value from BSDF */
970 static double
971 subtract_min(SDNode *st)
972 {
973 float vmin;
974 /* be sure to skip unused portion */
975 if (st->ndim == 3) {
976 int n;
977 vmin = 1./M_PI;
978 if (st->log2GR < 0) {
979 for (n = 0; n < 4; n++) {
980 float v = SDgetTreMin(st->u.t[n]);
981 if (v < vmin)
982 vmin = v;
983 }
984 } else if (st->log2GR) {
985 for (n = 1 << (3*st->log2GR - 1); n--; )
986 if (st->u.v[n] < vmin)
987 vmin = st->u.v[n];
988 } else
989 vmin = st->u.v[0];
990 } else /* anisotropic covers entire tree */
991 vmin = SDgetTreMin(st);
992
993 if (vmin <= FTINY)
994 return .0;
995
996 SDsubtractTreVal(st, vmin);
997
998 return M_PI * vmin; /* return hemispherical value */
999 }
1000
1001 /* Extract and separate diffuse portion of BSDF */
1002 static void
1003 extract_diffuse(SDValue *dv, SDSpectralDF *df)
1004 {
1005 int n;
1006
1007 if (df == NULL || df->ncomp <= 0) {
1008 dv->spec = c_dfcolor;
1009 dv->cieY = .0;
1010 return;
1011 }
1012 dv->spec = df->comp[0].cspec[0];
1013 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1014 /* in case of multiple components */
1015 for (n = df->ncomp; --n; ) {
1016 double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1017 c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1018 dv->cieY += ymin;
1019 }
1020 df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1021 /* make sure everything is set */
1022 c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1023 }
1024
1025 /* Load a variable-resolution BSDF tree from an open XML file */
1026 SDError
1027 SDloadTre(SDData *sd, ezxml_t wtl)
1028 {
1029 SDError ec;
1030 ezxml_t wld, wdb;
1031 int rank;
1032 char *txt;
1033 /* basic checks and tensor rank */
1034 txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1035 "DataDefinition"), "IncidentDataStructure"));
1036 if (txt == NULL || !*txt) {
1037 sprintf(SDerrorDetail,
1038 "BSDF \"%s\": missing IncidentDataStructure",
1039 sd->name);
1040 return SDEformat;
1041 }
1042 if (!strcasecmp(txt, "TensorTree3"))
1043 rank = 3;
1044 else if (!strcasecmp(txt, "TensorTree4"))
1045 rank = 4;
1046 else {
1047 sprintf(SDerrorDetail,
1048 "BSDF \"%s\": unsupported IncidentDataStructure",
1049 sd->name);
1050 return SDEsupport;
1051 }
1052 /* load BSDF components */
1053 for (wld = ezxml_child(wtl, "WavelengthData");
1054 wld != NULL; wld = wld->next) {
1055 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1056 "Visible"))
1057 continue; /* just visible for now */
1058 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1059 wdb != NULL; wdb = wdb->next)
1060 if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1061 return ec;
1062 }
1063 /* separate diffuse components */
1064 extract_diffuse(&sd->rLambFront, sd->rf);
1065 extract_diffuse(&sd->rLambBack, sd->rb);
1066 extract_diffuse(&sd->tLamb, sd->tf);
1067 /* return success */
1068 return SDEnone;
1069 }
1070
1071 /* Variable resolution BSDF methods */
1072 SDFunc SDhandleTre = {
1073 &SDgetTreBSDF,
1074 &SDqueryTreProjSA,
1075 &SDgetTreCDist,
1076 &SDsampTreCDist,
1077 &SDFreeBTre,
1078 };