1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: bsdf_t.c,v 3.45 2018/01/05 21:00:24 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* bsdf_t.c |
6 |
* |
7 |
* Definitions for variable-resolution BSDF trees |
8 |
* |
9 |
* Created by Greg Ward on 2/2/11. |
10 |
* |
11 |
*/ |
12 |
|
13 |
#define _USE_MATH_DEFINES |
14 |
#include "rtio.h" |
15 |
#include <stdlib.h> |
16 |
#include <math.h> |
17 |
#include <ctype.h> |
18 |
#include "ezxml.h" |
19 |
#include "bsdf.h" |
20 |
#include "bsdf_t.h" |
21 |
#include "hilbert.h" |
22 |
|
23 |
/* Callback function type for SDtraverseTre() */ |
24 |
typedef int SDtreCallback(float val, const double *cmin, double csiz, |
25 |
void *cptr); |
26 |
/* reference width maximum (1.0) */ |
27 |
static const unsigned iwbits = sizeof(unsigned)*4; |
28 |
static const unsigned iwmax = 1<<(sizeof(unsigned)*4); |
29 |
/* maximum cumulative value */ |
30 |
static const unsigned cumlmax = ~0; |
31 |
/* constant z-vector */ |
32 |
static const FVECT zvec = {.0, .0, 1.}; |
33 |
/* quantization value */ |
34 |
static double quantum = 1./256.; |
35 |
/* our RGB primaries */ |
36 |
static C_COLOR tt_RGB_prim[3]; |
37 |
static float tt_RGB_coef[3]; |
38 |
|
39 |
static const double czero[SD_MAXDIM]; |
40 |
|
41 |
enum {tt_Y, tt_u, tt_v}; /* tree components (tt_Y==0) */ |
42 |
|
43 |
/* Struct used for our distribution-building callback */ |
44 |
typedef struct { |
45 |
short nic; /* number of input coordinates */ |
46 |
short rev; /* reversing query */ |
47 |
unsigned alen; /* current array length */ |
48 |
unsigned nall; /* number of allocated entries */ |
49 |
unsigned wmin; /* minimum square size so far */ |
50 |
unsigned wmax; /* maximum square size */ |
51 |
struct outdir_s { |
52 |
unsigned hent; /* entering Hilbert index */ |
53 |
int wid; /* this square size */ |
54 |
float bsdf; /* BSDF for this square */ |
55 |
} *darr; /* output direction array */ |
56 |
} SDdistScaffold; |
57 |
|
58 |
/* Allocate a new scattering distribution node */ |
59 |
static SDNode * |
60 |
SDnewNode(int nd, int lg) |
61 |
{ |
62 |
SDNode *st; |
63 |
|
64 |
if (nd <= 0) { |
65 |
strcpy(SDerrorDetail, "Zero dimension BSDF node request"); |
66 |
return NULL; |
67 |
} |
68 |
if (nd > SD_MAXDIM) { |
69 |
sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)", |
70 |
nd, SD_MAXDIM); |
71 |
return NULL; |
72 |
} |
73 |
if (lg < 0) { |
74 |
st = (SDNode *)malloc(sizeof(SDNode) + |
75 |
sizeof(st->u.t[0])*((1<<nd) - 1)); |
76 |
if (st == NULL) { |
77 |
sprintf(SDerrorDetail, |
78 |
"Cannot allocate %d branch BSDF tree", 1<<nd); |
79 |
return NULL; |
80 |
} |
81 |
memset(st->u.t, 0, sizeof(st->u.t[0])<<nd); |
82 |
} else { |
83 |
st = (SDNode *)malloc(sizeof(SDNode) + |
84 |
sizeof(st->u.v[0])*((1 << nd*lg) - 1)); |
85 |
if (st == NULL) { |
86 |
sprintf(SDerrorDetail, |
87 |
"Cannot allocate %d BSDF leaves", 1 << nd*lg); |
88 |
return NULL; |
89 |
} |
90 |
} |
91 |
st->ndim = nd; |
92 |
st->log2GR = lg; |
93 |
return st; |
94 |
} |
95 |
|
96 |
/* Free an SD tree */ |
97 |
static void |
98 |
SDfreeTre(SDNode *st) |
99 |
{ |
100 |
int n; |
101 |
|
102 |
if (st == NULL) |
103 |
return; |
104 |
for (n = (st->log2GR < 0) << st->ndim; n--; ) |
105 |
SDfreeTre(st->u.t[n]); |
106 |
free(st); |
107 |
} |
108 |
|
109 |
/* Free a variable-resolution BSDF */ |
110 |
static void |
111 |
SDFreeBTre(void *p) |
112 |
{ |
113 |
SDTre *sdt = (SDTre *)p; |
114 |
|
115 |
if (sdt == NULL) |
116 |
return; |
117 |
SDfreeTre(sdt->stc[tt_Y]); |
118 |
SDfreeTre(sdt->stc[tt_u]); |
119 |
SDfreeTre(sdt->stc[tt_v]); |
120 |
free(sdt); |
121 |
} |
122 |
|
123 |
/* Fill branch's worth of grid values from subtree */ |
124 |
static void |
125 |
fill_grid_branch(float *dptr, const float *sptr, int nd, int shft) |
126 |
{ |
127 |
unsigned n = 1 << (shft-1); |
128 |
|
129 |
if (!--nd) { /* end on the line */ |
130 |
memcpy(dptr, sptr, sizeof(*dptr)*n); |
131 |
return; |
132 |
} |
133 |
while (n--) /* recurse on each slice */ |
134 |
fill_grid_branch(dptr + (n << shft*nd), |
135 |
sptr + (n << (shft-1)*nd), nd, shft); |
136 |
} |
137 |
|
138 |
/* Get pointer at appropriate offset for the given branch */ |
139 |
static float * |
140 |
grid_branch_start(SDNode *st, int n) |
141 |
{ |
142 |
unsigned skipsiz = 1 << (st->log2GR - 1); |
143 |
float *vptr = st->u.v; |
144 |
int i; |
145 |
|
146 |
for (i = st->ndim; i--; skipsiz <<= st->log2GR) |
147 |
if (1<<i & n) |
148 |
vptr += skipsiz; |
149 |
return vptr; |
150 |
} |
151 |
|
152 |
/* Simplify (consolidate) a tree by flattening uniform depth regions */ |
153 |
static SDNode * |
154 |
SDsimplifyTre(SDNode *st) |
155 |
{ |
156 |
int match, n; |
157 |
|
158 |
if (st == NULL) /* check for invalid tree */ |
159 |
return NULL; |
160 |
if (st->log2GR >= 0) /* grid just returns unaltered */ |
161 |
return st; |
162 |
match = 1; /* check if grids below match */ |
163 |
for (n = 0; n < 1<<st->ndim; n++) { |
164 |
if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL) |
165 |
return NULL; /* propogate error up call stack */ |
166 |
match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR); |
167 |
} |
168 |
if (match && (match = st->u.t[0]->log2GR) >= 0) { |
169 |
SDNode *stn = SDnewNode(st->ndim, match + 1); |
170 |
if (stn == NULL) /* out of memory? */ |
171 |
return st; |
172 |
/* transfer values to new grid */ |
173 |
for (n = 1 << st->ndim; n--; ) |
174 |
fill_grid_branch(grid_branch_start(stn, n), |
175 |
st->u.t[n]->u.v, stn->ndim, stn->log2GR); |
176 |
SDfreeTre(st); /* free old tree */ |
177 |
st = stn; /* return new one */ |
178 |
} |
179 |
return st; |
180 |
} |
181 |
|
182 |
/* Assign the given voxel in tree (produces no grid nodes) */ |
183 |
static SDNode * |
184 |
SDsetVoxel(SDNode *sroot, int nd, const double *tmin, const double tsiz, float val) |
185 |
{ |
186 |
double ctrk[SD_MAXDIM]; |
187 |
double csiz = 1.; |
188 |
SDNode *st; |
189 |
int i, n; |
190 |
/* check arguments */ |
191 |
for (i = nd; i-- > 0; ) |
192 |
if ((tmin[i] < .0) | (tmin[i] >= 1.-FTINY)) |
193 |
break; |
194 |
if ((i >= 0) | (nd <= 0) | (tsiz <= FTINY) | (tsiz > 1.+FTINY) | |
195 |
(sroot != NULL && sroot->ndim != nd)) { |
196 |
SDfreeTre(sroot); |
197 |
return NULL; |
198 |
} |
199 |
if (tsiz >= 1.-FTINY) { /* special case when tree is a leaf */ |
200 |
SDfreeTre(sroot); |
201 |
if ((sroot = SDnewNode(nd, 0)) != NULL) |
202 |
sroot->u.v[0] = val; |
203 |
return sroot; |
204 |
} |
205 |
/* make sure we have branching root */ |
206 |
if (sroot != NULL && sroot->log2GR >= 0) { |
207 |
SDfreeTre(sroot); sroot = NULL; |
208 |
} |
209 |
if (sroot == NULL && (sroot = SDnewNode(nd, -1)) == NULL) |
210 |
return NULL; |
211 |
st = sroot; /* climb/grow tree */ |
212 |
memset(ctrk, 0, sizeof(ctrk)); |
213 |
for ( ; ; ) { |
214 |
csiz *= .5; /* find appropriate branch */ |
215 |
n = 0; |
216 |
for (i = nd; i--; ) |
217 |
if (ctrk[i]+csiz <= tmin[i]+FTINY) { |
218 |
ctrk[i] += csiz; |
219 |
n |= 1 << i; |
220 |
} |
221 |
/* reached desired voxel? */ |
222 |
if (csiz <= tsiz+FTINY) { |
223 |
SDfreeTre(st->u.t[n]); |
224 |
st = st->u.t[n] = SDnewNode(nd, 0); |
225 |
break; |
226 |
} |
227 |
/* else grow tree as needed */ |
228 |
if (st->u.t[n] != NULL && st->u.t[n]->log2GR >= 0) { |
229 |
SDfreeTre(st->u.t[n]); st->u.t[n] = NULL; |
230 |
} |
231 |
if (st->u.t[n] == NULL) |
232 |
st->u.t[n] = SDnewNode(nd, -1); |
233 |
if ((st = st->u.t[n]) == NULL) |
234 |
break; |
235 |
} |
236 |
if (st == NULL) { |
237 |
SDfreeTre(sroot); |
238 |
return NULL; |
239 |
} |
240 |
st->u.v[0] = val; /* assign leaf and return root */ |
241 |
return sroot; |
242 |
} |
243 |
|
244 |
/* Find smallest leaf in tree */ |
245 |
static double |
246 |
SDsmallestLeaf(const SDNode *st) |
247 |
{ |
248 |
if (st->log2GR < 0) { /* tree branches */ |
249 |
double lmin = 1.; |
250 |
int n; |
251 |
for (n = 1<<st->ndim; n--; ) { |
252 |
double lsiz = SDsmallestLeaf(st->u.t[n]); |
253 |
if (lsiz < lmin) |
254 |
lmin = lsiz; |
255 |
} |
256 |
return .5*lmin; |
257 |
} |
258 |
/* leaf grid width */ |
259 |
return 1. / (double)(1 << st->log2GR); |
260 |
} |
261 |
|
262 |
/* Add up N-dimensional hypercube array values over the given box */ |
263 |
static double |
264 |
SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax) |
265 |
{ |
266 |
const unsigned skipsiz = 1 << --nd*shft; |
267 |
double sum = .0; |
268 |
int i; |
269 |
|
270 |
va += *imin * skipsiz; |
271 |
|
272 |
if (skipsiz == 1) |
273 |
for (i = *imin; i < *imax; i++) |
274 |
sum += *va++; |
275 |
else |
276 |
for (i = *imin; i < *imax; i++, va += skipsiz) |
277 |
sum += SDiterSum(va, nd, shft, imin+1, imax+1); |
278 |
return sum; |
279 |
} |
280 |
|
281 |
/* Average BSDF leaves over an orthotope defined by the unit hypercube */ |
282 |
static double |
283 |
SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax) |
284 |
{ |
285 |
unsigned n; |
286 |
int i; |
287 |
|
288 |
if (!st) |
289 |
return .0; |
290 |
/* check box limits */ |
291 |
for (i = st->ndim; i--; ) { |
292 |
if (bmin[i] >= 1.) |
293 |
return .0; |
294 |
if (bmax[i] <= 0) |
295 |
return .0; |
296 |
if (bmin[i] >= bmax[i]) |
297 |
return .0; |
298 |
} |
299 |
if (st->log2GR < 0) { /* iterate on subtree */ |
300 |
double sum = .0, wsum = 1e-20; |
301 |
double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w; |
302 |
for (n = 1 << st->ndim; n--; ) { |
303 |
w = 1.; |
304 |
for (i = st->ndim; i--; ) { |
305 |
sbmin[i] = 2.*bmin[i]; |
306 |
sbmax[i] = 2.*bmax[i]; |
307 |
if (n & 1<<i) { |
308 |
sbmin[i] -= 1.; |
309 |
sbmax[i] -= 1.; |
310 |
} |
311 |
if (sbmin[i] < .0) sbmin[i] = .0; |
312 |
if (sbmax[i] > 1.) sbmax[i] = 1.; |
313 |
if (sbmin[i] >= sbmax[i]) { |
314 |
w = .0; |
315 |
break; |
316 |
} |
317 |
w *= sbmax[i] - sbmin[i]; |
318 |
} |
319 |
if (w > 1e-10) { |
320 |
sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax); |
321 |
wsum += w; |
322 |
} |
323 |
} |
324 |
return sum / wsum; |
325 |
} else { /* iterate over leaves */ |
326 |
int imin[SD_MAXDIM], imax[SD_MAXDIM]; |
327 |
|
328 |
n = 1; |
329 |
for (i = st->ndim; i--; ) { |
330 |
imin[i] = (bmin[i] <= 0) ? 0 : |
331 |
(int)((1 << st->log2GR)*bmin[i]); |
332 |
imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) : |
333 |
(int)((1 << st->log2GR)*bmax[i] + .999999); |
334 |
n *= imax[i] - imin[i]; |
335 |
} |
336 |
if (n) |
337 |
return SDiterSum(st->u.v, st->ndim, |
338 |
st->log2GR, imin, imax) / (double)n; |
339 |
} |
340 |
return .0; |
341 |
} |
342 |
|
343 |
/* Recursive call for SDtraverseTre() */ |
344 |
static int |
345 |
SDdotravTre(const SDNode *st, const double *pos, int cmask, |
346 |
SDtreCallback *cf, void *cptr, |
347 |
const double *cmin, double csiz) |
348 |
{ |
349 |
int rv, rval = 0; |
350 |
double bmin[SD_MAXDIM]; |
351 |
int i, n; |
352 |
/* paranoia */ |
353 |
if (st == NULL) |
354 |
return 0; |
355 |
/* in branches? */ |
356 |
if (st->log2GR < 0) { |
357 |
unsigned skipmask = 0; |
358 |
csiz *= .5; |
359 |
for (i = st->ndim; i--; ) |
360 |
if (1<<i & cmask) { |
361 |
if (pos[i] < cmin[i] + csiz) |
362 |
for (n = 1 << st->ndim; n--; ) { |
363 |
if (n & 1<<i) |
364 |
skipmask |= 1<<n; |
365 |
} |
366 |
else |
367 |
for (n = 1 << st->ndim; n--; ) { |
368 |
if (!(n & 1<<i)) |
369 |
skipmask |= 1<<n; |
370 |
} |
371 |
} |
372 |
for (n = 1 << st->ndim; n--; ) { |
373 |
if (1<<n & skipmask) |
374 |
continue; |
375 |
for (i = st->ndim; i--; ) |
376 |
if (1<<i & n) |
377 |
bmin[i] = cmin[i] + csiz; |
378 |
else |
379 |
bmin[i] = cmin[i]; |
380 |
|
381 |
rval += rv = SDdotravTre(st->u.t[n], pos, cmask, |
382 |
cf, cptr, bmin, csiz); |
383 |
if (rv < 0) |
384 |
return rv; |
385 |
} |
386 |
} else { /* else traverse leaves */ |
387 |
int clim[SD_MAXDIM][2]; |
388 |
int cpos[SD_MAXDIM]; |
389 |
|
390 |
if (st->log2GR == 0) /* short cut */ |
391 |
return (*cf)(st->u.v[0], cmin, csiz, cptr); |
392 |
|
393 |
csiz /= (double)(1 << st->log2GR); |
394 |
/* assign coord. ranges */ |
395 |
for (i = st->ndim; i--; ) |
396 |
if (1<<i & cmask) { |
397 |
clim[i][0] = (pos[i] - cmin[i])/csiz; |
398 |
/* check overflow from f.p. error */ |
399 |
clim[i][0] -= clim[i][0] >> st->log2GR; |
400 |
clim[i][1] = clim[i][0] + 1; |
401 |
} else { |
402 |
clim[i][0] = 0; |
403 |
clim[i][1] = 1 << st->log2GR; |
404 |
} |
405 |
#if (SD_MAXDIM == 4) |
406 |
bmin[0] = cmin[0] + csiz*clim[0][0]; |
407 |
for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) { |
408 |
bmin[1] = cmin[1] + csiz*clim[1][0]; |
409 |
for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) { |
410 |
bmin[2] = cmin[2] + csiz*clim[2][0]; |
411 |
if (st->ndim == 3) { |
412 |
cpos[2] = clim[2][0]; |
413 |
n = cpos[0]; |
414 |
for (i = 1; i < 3; i++) |
415 |
n = (n << st->log2GR) + cpos[i]; |
416 |
for ( ; cpos[2] < clim[2][1]; cpos[2]++) { |
417 |
rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); |
418 |
if (rv < 0) |
419 |
return rv; |
420 |
bmin[2] += csiz; |
421 |
} |
422 |
} else { |
423 |
for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) { |
424 |
bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]); |
425 |
n = cpos[0]; |
426 |
for (i = 1; i < 4; i++) |
427 |
n = (n << st->log2GR) + cpos[i]; |
428 |
for ( ; cpos[3] < clim[3][1]; cpos[3]++) { |
429 |
rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); |
430 |
if (rv < 0) |
431 |
return rv; |
432 |
bmin[3] += csiz; |
433 |
} |
434 |
bmin[2] += csiz; |
435 |
} |
436 |
} |
437 |
bmin[1] += csiz; |
438 |
} |
439 |
bmin[0] += csiz; |
440 |
} |
441 |
#else |
442 |
_!_ "broken code segment!" |
443 |
#endif |
444 |
} |
445 |
return rval; |
446 |
} |
447 |
|
448 |
/* Traverse a tree, visiting nodes in a slice that fits partial position */ |
449 |
static int |
450 |
SDtraverseTre(const SDNode *st, const double *pos, int cmask, |
451 |
SDtreCallback *cf, void *cptr) |
452 |
{ |
453 |
int i; |
454 |
/* check arguments */ |
455 |
if ((st == NULL) | (cf == NULL)) |
456 |
return -1; |
457 |
for (i = st->ndim; i--; ) |
458 |
if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.)) |
459 |
return -1; |
460 |
|
461 |
return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.); |
462 |
} |
463 |
|
464 |
/* Look up tree value at the given grid position */ |
465 |
static float |
466 |
SDlookupTre(const SDNode *st, const double *pos, double *hcube) |
467 |
{ |
468 |
double spos[SD_MAXDIM]; |
469 |
int i, n, t; |
470 |
/* initialize voxel return */ |
471 |
if (hcube) { |
472 |
hcube[i = st->ndim] = 1.; |
473 |
while (i--) |
474 |
hcube[i] = .0; |
475 |
} |
476 |
/* climb the tree */ |
477 |
while (st != NULL && st->log2GR < 0) { |
478 |
n = 0; /* move to appropriate branch */ |
479 |
if (hcube) hcube[st->ndim] *= .5; |
480 |
for (i = st->ndim; i--; ) { |
481 |
spos[i] = 2.*pos[i]; |
482 |
t = (spos[i] >= 1.); |
483 |
n |= t<<i; |
484 |
spos[i] -= (double)t; |
485 |
if (hcube) hcube[i] += (double)t * hcube[st->ndim]; |
486 |
} |
487 |
st = st->u.t[n]; /* avoids tail recursion */ |
488 |
pos = spos; |
489 |
} |
490 |
if (st == NULL) /* should never happen? */ |
491 |
return .0; |
492 |
if (st->log2GR == 0) /* short cut */ |
493 |
return st->u.v[0]; |
494 |
n = t = 0; /* find grid array index */ |
495 |
for (i = st->ndim; i--; ) { |
496 |
n += (int)((1<<st->log2GR)*pos[i]) << t; |
497 |
t += st->log2GR; |
498 |
} |
499 |
if (hcube) { /* compute final hypercube */ |
500 |
hcube[st->ndim] /= (double)(1<<st->log2GR); |
501 |
for (i = st->ndim; i--; ) |
502 |
hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim]; |
503 |
} |
504 |
return st->u.v[n]; /* no interpolation */ |
505 |
} |
506 |
|
507 |
/* Convert CIE (Y,u',v') color to our RGB */ |
508 |
static void |
509 |
SDyuv2rgb(double yval, double uprime, double vprime, float rgb[3]) |
510 |
{ |
511 |
const double dfact = 1./(6.*uprime - 16.*vprime + 12.); |
512 |
C_COLOR cxy; |
513 |
|
514 |
c_cset(&cxy, 9.*uprime*dfact, 4.*vprime*dfact); |
515 |
c_toSharpRGB(&cxy, yval, rgb); |
516 |
} |
517 |
|
518 |
/* Query BSDF value and sample hypercube for the given vectors */ |
519 |
static int |
520 |
SDqueryTre(const SDTre *sdt, float *coef, |
521 |
const FVECT outVec, const FVECT inVec, double *hc) |
522 |
{ |
523 |
const RREAL *vtmp; |
524 |
float yval; |
525 |
FVECT rOutVec; |
526 |
double gridPos[4]; |
527 |
|
528 |
if (sdt->stc[tt_Y] == NULL) /* paranoia, I hope */ |
529 |
return 0; |
530 |
|
531 |
switch (sdt->sidef) { /* whose side are you on? */ |
532 |
case SD_FREFL: |
533 |
if ((outVec[2] < 0) | (inVec[2] < 0)) |
534 |
return 0; |
535 |
break; |
536 |
case SD_BREFL: |
537 |
if ((outVec[2] > 0) | (inVec[2] > 0)) |
538 |
return 0; |
539 |
break; |
540 |
case SD_FXMIT: |
541 |
if (outVec[2] > 0) { |
542 |
if (inVec[2] > 0) |
543 |
return 0; |
544 |
vtmp = outVec; outVec = inVec; inVec = vtmp; |
545 |
} else if (inVec[2] < 0) |
546 |
return 0; |
547 |
break; |
548 |
case SD_BXMIT: |
549 |
if (inVec[2] > 0) { |
550 |
if (outVec[2] > 0) |
551 |
return 0; |
552 |
vtmp = outVec; outVec = inVec; inVec = vtmp; |
553 |
} else if (outVec[2] < 0) |
554 |
return 0; |
555 |
break; |
556 |
default: |
557 |
return 0; |
558 |
} |
559 |
/* convert vector coordinates */ |
560 |
if (sdt->stc[tt_Y]->ndim == 3) { |
561 |
spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0])); |
562 |
gridPos[0] = (.5-FTINY) - |
563 |
.5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
564 |
SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]); |
565 |
} else if (sdt->stc[tt_Y]->ndim == 4) { |
566 |
SDdisk2square(gridPos, -inVec[0], -inVec[1]); |
567 |
SDdisk2square(gridPos+2, outVec[0], outVec[1]); |
568 |
} else |
569 |
return 0; /* should be internal error */ |
570 |
/* get BSDF value */ |
571 |
yval = SDlookupTre(sdt->stc[tt_Y], gridPos, hc); |
572 |
if (coef == NULL) /* just getting hypercube? */ |
573 |
return 1; |
574 |
if (sdt->stc[tt_u] == NULL || sdt->stc[tt_v] == NULL) { |
575 |
*coef = yval; |
576 |
return 1; /* no color */ |
577 |
} |
578 |
/* else decode color */ |
579 |
SDyuv2rgb(yval, SDlookupTre(sdt->stc[tt_u], gridPos, NULL), |
580 |
SDlookupTre(sdt->stc[tt_v], gridPos, NULL), coef); |
581 |
coef[0] *= tt_RGB_coef[0]; |
582 |
coef[1] *= tt_RGB_coef[1]; |
583 |
coef[2] *= tt_RGB_coef[2]; |
584 |
return 3; |
585 |
} |
586 |
|
587 |
/* Compute non-diffuse component for variable-resolution BSDF */ |
588 |
static int |
589 |
SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec, |
590 |
const FVECT inVec, SDComponent *sdc) |
591 |
{ |
592 |
/* check arguments */ |
593 |
if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL) |
594 |
|| sdc->dist == NULL) |
595 |
return 0; |
596 |
/* get nearest BSDF value */ |
597 |
return SDqueryTre((SDTre *)sdc->dist, coef, outVec, inVec, NULL); |
598 |
} |
599 |
|
600 |
/* Callback to build cumulative distribution using SDtraverseTre() */ |
601 |
static int |
602 |
build_scaffold(float val, const double *cmin, double csiz, void *cptr) |
603 |
{ |
604 |
SDdistScaffold *sp = (SDdistScaffold *)cptr; |
605 |
int wid = csiz*(double)iwmax + .5; |
606 |
double revcmin[2]; |
607 |
bitmask_t bmin[2], bmax[2]; |
608 |
|
609 |
if (sp->rev) { /* need to reverse sense? */ |
610 |
revcmin[0] = 1. - cmin[0] - csiz; |
611 |
revcmin[1] = 1. - cmin[1] - csiz; |
612 |
cmin = revcmin; |
613 |
} else { |
614 |
cmin += sp->nic; /* else skip to output coords */ |
615 |
} |
616 |
if (wid < sp->wmin) /* new minimum width? */ |
617 |
sp->wmin = wid; |
618 |
if (wid > sp->wmax) /* new maximum? */ |
619 |
sp->wmax = wid; |
620 |
if (sp->alen >= sp->nall) { /* need more space? */ |
621 |
struct outdir_s *ndarr; |
622 |
sp->nall = (int)(1.5*sp->nall) + 256; |
623 |
ndarr = (struct outdir_s *)realloc(sp->darr, |
624 |
sizeof(struct outdir_s)*sp->nall); |
625 |
if (ndarr == NULL) { |
626 |
sprintf(SDerrorDetail, |
627 |
"Cannot grow scaffold to %u entries", sp->nall); |
628 |
return -1; /* abort build */ |
629 |
} |
630 |
sp->darr = ndarr; |
631 |
} |
632 |
/* find Hilbert entry index */ |
633 |
bmin[0] = cmin[0]*(double)iwmax + .5; |
634 |
bmin[1] = cmin[1]*(double)iwmax + .5; |
635 |
bmax[0] = bmin[0] + wid-1; |
636 |
bmax[1] = bmin[1] + wid-1; |
637 |
hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax); |
638 |
sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin); |
639 |
sp->darr[sp->alen].wid = wid; |
640 |
sp->darr[sp->alen].bsdf = val; |
641 |
sp->alen++; /* on to the next entry */ |
642 |
return 0; |
643 |
} |
644 |
|
645 |
/* Scaffold comparison function for qsort -- ascending Hilbert index */ |
646 |
static int |
647 |
sscmp(const void *p1, const void *p2) |
648 |
{ |
649 |
unsigned h1 = (*(const struct outdir_s *)p1).hent; |
650 |
unsigned h2 = (*(const struct outdir_s *)p2).hent; |
651 |
|
652 |
if (h1 > h2) |
653 |
return 1; |
654 |
if (h1 < h2) |
655 |
return -1; |
656 |
return 0; |
657 |
} |
658 |
|
659 |
/* Create a new cumulative distribution for the given input direction */ |
660 |
static SDTreCDst * |
661 |
make_cdist(const SDTre *sdt, const double *invec, int rev) |
662 |
{ |
663 |
SDdistScaffold myScaffold; |
664 |
double pos[4]; |
665 |
int cmask; |
666 |
SDTreCDst *cd; |
667 |
struct outdir_s *sp; |
668 |
double scale, cursum; |
669 |
int i; |
670 |
/* initialize scaffold */ |
671 |
myScaffold.wmin = iwmax; |
672 |
myScaffold.wmax = 0; |
673 |
myScaffold.nic = sdt->stc[tt_Y]->ndim - 2; |
674 |
myScaffold.rev = rev; |
675 |
myScaffold.alen = 0; |
676 |
myScaffold.nall = 512; |
677 |
myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) * |
678 |
myScaffold.nall); |
679 |
if (myScaffold.darr == NULL) |
680 |
return NULL; |
681 |
/* set up traversal */ |
682 |
cmask = (1<<myScaffold.nic) - 1; |
683 |
for (i = myScaffold.nic; i--; ) |
684 |
pos[i+2*rev] = invec[i]; |
685 |
cmask <<= 2*rev; |
686 |
/* grow the distribution */ |
687 |
if (SDtraverseTre(sdt->stc[tt_Y], pos, cmask, |
688 |
build_scaffold, &myScaffold) < 0) { |
689 |
free(myScaffold.darr); |
690 |
return NULL; |
691 |
} |
692 |
/* allocate result holder */ |
693 |
cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) + |
694 |
sizeof(cd->carr[0])*myScaffold.alen); |
695 |
if (cd == NULL) { |
696 |
sprintf(SDerrorDetail, |
697 |
"Cannot allocate %u entry cumulative distribution", |
698 |
myScaffold.alen); |
699 |
free(myScaffold.darr); |
700 |
return NULL; |
701 |
} |
702 |
cd->isodist = (myScaffold.nic == 1); |
703 |
/* sort the distribution */ |
704 |
qsort(myScaffold.darr, cd->calen = myScaffold.alen, |
705 |
sizeof(struct outdir_s), sscmp); |
706 |
|
707 |
/* record input range */ |
708 |
scale = myScaffold.wmin / (double)iwmax; |
709 |
for (i = myScaffold.nic; i--; ) { |
710 |
cd->clim[i][0] = floor(pos[i+2*rev]/scale) * scale; |
711 |
cd->clim[i][1] = cd->clim[i][0] + scale; |
712 |
} |
713 |
if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */ |
714 |
cd->clim[1][0] = cd->clim[0][0]; |
715 |
cd->clim[1][1] = cd->clim[0][1]; |
716 |
} |
717 |
cd->max_psa = myScaffold.wmax / (double)iwmax; |
718 |
cd->max_psa *= cd->max_psa * M_PI; |
719 |
if (rev) |
720 |
cd->sidef = (sdt->sidef==SD_BXMIT) ? SD_FXMIT : SD_BXMIT; |
721 |
else |
722 |
cd->sidef = sdt->sidef; |
723 |
cd->cTotal = 1e-20; /* compute directional total */ |
724 |
sp = myScaffold.darr; |
725 |
for (i = myScaffold.alen; i--; sp++) |
726 |
cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid; |
727 |
cursum = .0; /* go back and get cumulative values */ |
728 |
scale = (double)cumlmax / cd->cTotal; |
729 |
sp = myScaffold.darr; |
730 |
for (i = 0; i < cd->calen; i++, sp++) { |
731 |
cd->carr[i].hndx = sp->hent; |
732 |
cd->carr[i].cuml = scale*cursum + .5; |
733 |
cursum += sp->bsdf * (double)sp->wid * sp->wid; |
734 |
} |
735 |
cd->carr[i].hndx = ~0; /* make final entry */ |
736 |
cd->carr[i].cuml = cumlmax; |
737 |
cd->cTotal *= M_PI/(double)iwmax/iwmax; |
738 |
/* all done, clean up and return */ |
739 |
free(myScaffold.darr); |
740 |
return cd; |
741 |
} |
742 |
|
743 |
/* Find or allocate a cumulative distribution for the given incoming vector */ |
744 |
const SDCDst * |
745 |
SDgetTreCDist(const FVECT inVec, SDComponent *sdc) |
746 |
{ |
747 |
const SDTre *sdt; |
748 |
double inCoord[2]; |
749 |
int i; |
750 |
int mode; |
751 |
SDTreCDst *cd, *cdlast; |
752 |
/* check arguments */ |
753 |
if ((inVec == NULL) | (sdc == NULL) || |
754 |
(sdt = (SDTre *)sdc->dist) == NULL) |
755 |
return NULL; |
756 |
switch (mode = sdt->sidef) { /* check direction */ |
757 |
case SD_FREFL: |
758 |
if (inVec[2] < 0) |
759 |
return NULL; |
760 |
break; |
761 |
case SD_BREFL: |
762 |
if (inVec[2] > 0) |
763 |
return NULL; |
764 |
break; |
765 |
case SD_FXMIT: |
766 |
if (inVec[2] < 0) |
767 |
mode = SD_BXMIT; |
768 |
break; |
769 |
case SD_BXMIT: |
770 |
if (inVec[2] > 0) |
771 |
mode = SD_FXMIT; |
772 |
break; |
773 |
default: |
774 |
return NULL; |
775 |
} |
776 |
if (sdt->stc[tt_Y]->ndim == 3) { /* isotropic BSDF? */ |
777 |
if (mode != sdt->sidef) /* XXX unhandled reciprocity */ |
778 |
return &SDemptyCD; |
779 |
inCoord[0] = (.5-FTINY) - |
780 |
.5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
781 |
} else if (sdt->stc[tt_Y]->ndim == 4) { |
782 |
if (mode != sdt->sidef) /* use reciprocity? */ |
783 |
SDdisk2square(inCoord, inVec[0], inVec[1]); |
784 |
else |
785 |
SDdisk2square(inCoord, -inVec[0], -inVec[1]); |
786 |
} else |
787 |
return NULL; /* should be internal error */ |
788 |
/* quantize to avoid f.p. errors */ |
789 |
for (i = sdt->stc[tt_Y]->ndim - 2; i--; ) |
790 |
inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum; |
791 |
cdlast = NULL; /* check for direction in cache list */ |
792 |
/* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */ |
793 |
for (cd = (SDTreCDst *)sdc->cdList; cd != NULL; |
794 |
cdlast = cd, cd = cd->next) { |
795 |
if (cd->sidef != mode) |
796 |
continue; |
797 |
for (i = sdt->stc[tt_Y]->ndim - 2; i--; ) |
798 |
if ((cd->clim[i][0] > inCoord[i]) | |
799 |
(inCoord[i] >= cd->clim[i][1])) |
800 |
break; |
801 |
if (i < 0) |
802 |
break; /* means we have a match */ |
803 |
} |
804 |
if (cd == NULL) /* need to create new entry? */ |
805 |
cdlast = cd = make_cdist(sdt, inCoord, mode != sdt->sidef); |
806 |
if (cdlast != NULL) { /* move entry to head of cache list */ |
807 |
cdlast->next = cd->next; |
808 |
cd->next = (SDTreCDst *)sdc->cdList; |
809 |
sdc->cdList = (SDCDst *)cd; |
810 |
} |
811 |
/* END MUTEX LOCK */ |
812 |
return (SDCDst *)cd; /* ready to go */ |
813 |
} |
814 |
|
815 |
/* Query solid angle for vector(s) */ |
816 |
static SDError |
817 |
SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2, |
818 |
int qflags, SDComponent *sdc) |
819 |
{ |
820 |
double myPSA[2]; |
821 |
/* check arguments */ |
822 |
if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) || |
823 |
sdc->dist == NULL) |
824 |
return SDEargument; |
825 |
/* get projected solid angle(s) */ |
826 |
if (v2 != NULL) { |
827 |
const SDTre *sdt = (SDTre *)sdc->dist; |
828 |
double hcube[SD_MAXDIM+1]; |
829 |
if (!SDqueryTre(sdt, NULL, v1, v2, hcube)) { |
830 |
strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA"); |
831 |
return SDEinternal; |
832 |
} |
833 |
myPSA[0] = hcube[sdt->stc[tt_Y]->ndim]; |
834 |
myPSA[1] = myPSA[0] *= myPSA[0] * M_PI; |
835 |
} else { |
836 |
const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc); |
837 |
if (cd == NULL) |
838 |
myPSA[0] = myPSA[1] = 0; |
839 |
else { |
840 |
myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) * |
841 |
(cd->clim[1][1] - cd->clim[1][0]); |
842 |
myPSA[1] = cd->max_psa; |
843 |
} |
844 |
} |
845 |
switch (qflags) { /* record based on flag settings */ |
846 |
case SDqueryVal: |
847 |
*psa = myPSA[0]; |
848 |
break; |
849 |
case SDqueryMax: |
850 |
if (myPSA[1] > *psa) |
851 |
*psa = myPSA[1]; |
852 |
break; |
853 |
case SDqueryMin+SDqueryMax: |
854 |
if (myPSA[1] > psa[1]) |
855 |
psa[1] = myPSA[1]; |
856 |
/* fall through */ |
857 |
case SDqueryMin: |
858 |
if ((myPSA[0] > 0) & (myPSA[0] < psa[0])) |
859 |
psa[0] = myPSA[0]; |
860 |
break; |
861 |
} |
862 |
return SDEnone; |
863 |
} |
864 |
|
865 |
/* Sample cumulative distribution */ |
866 |
static SDError |
867 |
SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp) |
868 |
{ |
869 |
const unsigned nBitsC = 4*sizeof(bitmask_t); |
870 |
const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned)); |
871 |
const SDTreCDst *cd = (const SDTreCDst *)cdp; |
872 |
const unsigned target = randX*cumlmax; |
873 |
bitmask_t hndx, hcoord[2]; |
874 |
double gpos[3], rotangle; |
875 |
int i, iupper, ilower; |
876 |
/* check arguments */ |
877 |
if ((ioVec == NULL) | (cd == NULL)) |
878 |
return SDEargument; |
879 |
if (!cd->sidef) |
880 |
return SDEnone; /* XXX should never happen */ |
881 |
if (ioVec[2] > 0) { |
882 |
if ((cd->sidef != SD_FREFL) & (cd->sidef != SD_FXMIT)) |
883 |
return SDEargument; |
884 |
} else if ((cd->sidef != SD_BREFL) & (cd->sidef != SD_BXMIT)) |
885 |
return SDEargument; |
886 |
/* binary search to find position */ |
887 |
ilower = 0; iupper = cd->calen; |
888 |
while ((i = (iupper + ilower) >> 1) != ilower) |
889 |
if (target >= cd->carr[i].cuml) |
890 |
ilower = i; |
891 |
else |
892 |
iupper = i; |
893 |
/* localize random position */ |
894 |
randX = (randX*cumlmax - cd->carr[ilower].cuml) / |
895 |
(double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml); |
896 |
/* index in longer Hilbert curve */ |
897 |
hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx) |
898 |
* (double)((bitmask_t)1 << nExtraBits); |
899 |
/* convert Hilbert index to vector */ |
900 |
hilbert_i2c(2, nBitsC, hndx, hcoord); |
901 |
for (i = 2; i--; ) |
902 |
gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) / |
903 |
(double)((bitmask_t)1 << nBitsC); |
904 |
SDsquare2disk(gpos, gpos[0], gpos[1]); |
905 |
/* compute Z-coordinate */ |
906 |
gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1]; |
907 |
gpos[2] = sqrt(gpos[2]*(gpos[2]>0)); |
908 |
/* emit from back? */ |
909 |
if ((cd->sidef == SD_BREFL) | (cd->sidef == SD_FXMIT)) |
910 |
gpos[2] = -gpos[2]; |
911 |
if (cd->isodist) { /* rotate isotropic sample */ |
912 |
rotangle = atan2(-ioVec[1],-ioVec[0]); |
913 |
spinvector(ioVec, gpos, zvec, rotangle); |
914 |
} else |
915 |
VCOPY(ioVec, gpos); |
916 |
return SDEnone; |
917 |
} |
918 |
|
919 |
/* Advance pointer to the next non-white character in the string (or nul) */ |
920 |
static int |
921 |
next_token(char **spp) |
922 |
{ |
923 |
while (isspace(**spp)) |
924 |
++*spp; |
925 |
return **spp; |
926 |
} |
927 |
|
928 |
/* Advance pointer past matching token (or any token if c==0) */ |
929 |
#define eat_token(spp,c) ((next_token(spp)==(c)) ^ !(c) ? *(*(spp))++ : 0) |
930 |
|
931 |
/* Count words from this point in string to '}' */ |
932 |
static int |
933 |
count_values(char *cp) |
934 |
{ |
935 |
int n = 0; |
936 |
|
937 |
while (next_token(&cp) != '}' && *cp) { |
938 |
while (!isspace(*cp) & (*cp != ',') & (*cp != '}')) |
939 |
if (!*++cp) |
940 |
break; |
941 |
++n; |
942 |
eat_token(&cp, ','); |
943 |
} |
944 |
return n; |
945 |
} |
946 |
|
947 |
/* Load an array of real numbers, returning total */ |
948 |
static int |
949 |
load_values(char **spp, float *va, int n) |
950 |
{ |
951 |
float *v = va; |
952 |
char *svnext; |
953 |
|
954 |
while (n-- > 0 && (svnext = fskip(*spp)) != NULL) { |
955 |
if ((*v++ = atof(*spp)) < 0) |
956 |
v[-1] = 0; |
957 |
*spp = svnext; |
958 |
eat_token(spp, ','); |
959 |
} |
960 |
return v - va; |
961 |
} |
962 |
|
963 |
/* Load BSDF tree data */ |
964 |
static SDNode * |
965 |
load_tree_data(char **spp, int nd) |
966 |
{ |
967 |
SDNode *st; |
968 |
int n; |
969 |
|
970 |
if (!eat_token(spp, '{')) { |
971 |
strcpy(SDerrorDetail, "Missing '{' in tensor tree"); |
972 |
return NULL; |
973 |
} |
974 |
if (next_token(spp) == '{') { /* tree branches */ |
975 |
st = SDnewNode(nd, -1); |
976 |
if (st == NULL) |
977 |
return NULL; |
978 |
for (n = 0; n < 1<<nd; n++) |
979 |
if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) { |
980 |
SDfreeTre(st); |
981 |
return NULL; |
982 |
} |
983 |
} else { /* else load value grid */ |
984 |
int bsiz; |
985 |
n = count_values(*spp); /* see how big the grid is */ |
986 |
for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd) |
987 |
if (1<<bsiz == n) |
988 |
break; |
989 |
if (bsiz >= 8*sizeof(size_t)) { |
990 |
strcpy(SDerrorDetail, "Illegal value count in tensor tree"); |
991 |
return NULL; |
992 |
} |
993 |
st = SDnewNode(nd, bsiz/nd); |
994 |
if (st == NULL) |
995 |
return NULL; |
996 |
if (load_values(spp, st->u.v, n) != n) { |
997 |
strcpy(SDerrorDetail, "Real format error in tensor tree"); |
998 |
SDfreeTre(st); |
999 |
return NULL; |
1000 |
} |
1001 |
} |
1002 |
if (!eat_token(spp, '}')) { |
1003 |
strcpy(SDerrorDetail, "Missing '}' in tensor tree"); |
1004 |
SDfreeTre(st); |
1005 |
return NULL; |
1006 |
} |
1007 |
eat_token(spp, ','); |
1008 |
return st; |
1009 |
} |
1010 |
|
1011 |
/* Compute min. proj. solid angle and max. direct hemispherical scattering */ |
1012 |
static SDError |
1013 |
get_extrema(SDSpectralDF *df) |
1014 |
{ |
1015 |
SDNode *st = (*(SDTre *)df->comp[0].dist).stc[tt_Y]; |
1016 |
double stepWidth, dhemi, bmin[4], bmax[4]; |
1017 |
|
1018 |
stepWidth = SDsmallestLeaf(st); |
1019 |
if (quantum > stepWidth) /* adjust quantization factor */ |
1020 |
quantum = stepWidth; |
1021 |
df->minProjSA = M_PI*stepWidth*stepWidth; |
1022 |
if (stepWidth < .03125) |
1023 |
stepWidth = .03125; /* 1/32 resolution good enough */ |
1024 |
df->maxHemi = .0; |
1025 |
if (st->ndim == 3) { /* isotropic BSDF */ |
1026 |
bmin[1] = bmin[2] = .0; |
1027 |
bmax[1] = bmax[2] = 1.; |
1028 |
for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) { |
1029 |
bmax[0] = bmin[0] + stepWidth; |
1030 |
dhemi = SDavgTreBox(st, bmin, bmax); |
1031 |
if (dhemi > df->maxHemi) |
1032 |
df->maxHemi = dhemi; |
1033 |
} |
1034 |
} else if (st->ndim == 4) { /* anisotropic BSDF */ |
1035 |
bmin[2] = bmin[3] = .0; |
1036 |
bmax[2] = bmax[3] = 1.; |
1037 |
for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) { |
1038 |
bmax[0] = bmin[0] + stepWidth; |
1039 |
for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) { |
1040 |
bmax[1] = bmin[1] + stepWidth; |
1041 |
dhemi = SDavgTreBox(st, bmin, bmax); |
1042 |
if (dhemi > df->maxHemi) |
1043 |
df->maxHemi = dhemi; |
1044 |
} |
1045 |
} |
1046 |
} else |
1047 |
return SDEinternal; |
1048 |
/* correct hemispherical value */ |
1049 |
df->maxHemi *= M_PI; |
1050 |
return SDEnone; |
1051 |
} |
1052 |
|
1053 |
/* Load BSDF distribution for this wavelength */ |
1054 |
static SDError |
1055 |
load_bsdf_data(SDData *sd, ezxml_t wdb, int ct, int ndim) |
1056 |
{ |
1057 |
SDSpectralDF *df; |
1058 |
SDTre *sdt; |
1059 |
char *sdata; |
1060 |
/* allocate BSDF component */ |
1061 |
sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection")); |
1062 |
if (!sdata) |
1063 |
return SDEnone; |
1064 |
/* |
1065 |
* Remember that front and back are reversed from WINDOW 6 orientations |
1066 |
*/ |
1067 |
if (!strcasecmp(sdata, "Transmission Front")) { |
1068 |
if (sd->tb == NULL && (sd->tb = SDnewSpectralDF(1)) == NULL) |
1069 |
return SDEmemory; |
1070 |
df = sd->tb; |
1071 |
} else if (!strcasecmp(sdata, "Transmission Back")) { |
1072 |
if (sd->tf == NULL && (sd->tf = SDnewSpectralDF(1)) == NULL) |
1073 |
return SDEmemory; |
1074 |
df = sd->tf; |
1075 |
} else if (!strcasecmp(sdata, "Reflection Front")) { |
1076 |
if (sd->rb == NULL && (sd->rb = SDnewSpectralDF(1)) == NULL) |
1077 |
return SDEmemory; |
1078 |
df = sd->rb; |
1079 |
} else if (!strcasecmp(sdata, "Reflection Back")) { |
1080 |
if (sd->rf == NULL && (sd->rf = SDnewSpectralDF(1)) == NULL) |
1081 |
return SDEmemory; |
1082 |
df = sd->rf; |
1083 |
} else |
1084 |
return SDEnone; |
1085 |
/* get angle bases */ |
1086 |
sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis")); |
1087 |
if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) { |
1088 |
sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'", |
1089 |
!sdata ? "Missing" : "Unsupported", sd->name); |
1090 |
return !sdata ? SDEformat : SDEsupport; |
1091 |
} |
1092 |
if (df->comp[0].dist == NULL) { /* need to allocate BSDF tree? */ |
1093 |
sdt = (SDTre *)malloc(sizeof(SDTre)); |
1094 |
if (sdt == NULL) |
1095 |
return SDEmemory; |
1096 |
if (df == sd->rf) |
1097 |
sdt->sidef = SD_FREFL; |
1098 |
else if (df == sd->rb) |
1099 |
sdt->sidef = SD_BREFL; |
1100 |
else if (df == sd->tf) |
1101 |
sdt->sidef = SD_FXMIT; |
1102 |
else /* df == sd->tb */ |
1103 |
sdt->sidef = SD_BXMIT; |
1104 |
sdt->stc[tt_Y] = sdt->stc[tt_u] = sdt->stc[tt_v] = NULL; |
1105 |
df->comp[0].dist = sdt; |
1106 |
df->comp[0].func = &SDhandleTre; |
1107 |
} else { |
1108 |
sdt = (SDTre *)df->comp[0].dist; |
1109 |
if (sdt->stc[ct] != NULL) { |
1110 |
SDfreeTre(sdt->stc[ct]); |
1111 |
sdt->stc[ct] = NULL; |
1112 |
} |
1113 |
} |
1114 |
/* read BSDF data */ |
1115 |
sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData")); |
1116 |
if (!sdata || !next_token(&sdata)) { |
1117 |
sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'", |
1118 |
sd->name); |
1119 |
return SDEformat; |
1120 |
} |
1121 |
sdt->stc[ct] = load_tree_data(&sdata, ndim); |
1122 |
if (sdt->stc[ct] == NULL) |
1123 |
return SDEformat; |
1124 |
if (next_token(&sdata)) { /* check for unconsumed characters */ |
1125 |
sprintf(SDerrorDetail, |
1126 |
"Extra characters at end of ScatteringData in '%s'", |
1127 |
sd->name); |
1128 |
return SDEformat; |
1129 |
} |
1130 |
/* flatten branches where possible */ |
1131 |
sdt->stc[ct] = SDsimplifyTre(sdt->stc[ct]); |
1132 |
if (sdt->stc[ct] == NULL) |
1133 |
return SDEinternal; |
1134 |
/* compute global quantities for Y */ |
1135 |
return (ct == tt_Y) ? get_extrema(df) : SDEnone; |
1136 |
} |
1137 |
|
1138 |
/* Find minimum value in tree */ |
1139 |
static float |
1140 |
SDgetTreMin(const SDNode *st) |
1141 |
{ |
1142 |
float vmin = FHUGE; |
1143 |
int n; |
1144 |
|
1145 |
if (st->log2GR < 0) { |
1146 |
for (n = 1<<st->ndim; n--; ) { |
1147 |
float v = SDgetTreMin(st->u.t[n]); |
1148 |
if (v < vmin) |
1149 |
vmin = v; |
1150 |
} |
1151 |
} else { |
1152 |
for (n = 1<<(st->ndim*st->log2GR); n--; ) |
1153 |
if (st->u.v[n] < vmin) |
1154 |
vmin = st->u.v[n]; |
1155 |
} |
1156 |
return vmin; |
1157 |
} |
1158 |
|
1159 |
/* Subtract the given value from all tree nodes */ |
1160 |
static void |
1161 |
SDsubtractTreVal(SDNode *st, float val) |
1162 |
{ |
1163 |
int n; |
1164 |
|
1165 |
if (st->log2GR < 0) { |
1166 |
for (n = 1<<st->ndim; n--; ) |
1167 |
SDsubtractTreVal(st->u.t[n], val); |
1168 |
} else { |
1169 |
for (n = 1<<(st->ndim*st->log2GR); n--; ) |
1170 |
if ((st->u.v[n] -= val) < 0) |
1171 |
st->u.v[n] = .0f; |
1172 |
} |
1173 |
} |
1174 |
|
1175 |
/* Subtract minimum Y value from BSDF */ |
1176 |
static double |
1177 |
subtract_min_Y(SDNode *st) |
1178 |
{ |
1179 |
const float vmaxmin = 1.5/M_PI; |
1180 |
float vmin; |
1181 |
/* be sure to skip unused portion */ |
1182 |
if (st->ndim == 3) { |
1183 |
int n; |
1184 |
vmin = vmaxmin; |
1185 |
if (st->log2GR < 0) { |
1186 |
for (n = 0; n < 8; n += 2) { |
1187 |
float v = SDgetTreMin(st->u.t[n]); |
1188 |
if (v < vmin) |
1189 |
vmin = v; |
1190 |
} |
1191 |
} else if (st->log2GR) { |
1192 |
for (n = 1 << (3*st->log2GR - 1); n--; ) |
1193 |
if (st->u.v[n] < vmin) |
1194 |
vmin = st->u.v[n]; |
1195 |
} else |
1196 |
vmin = st->u.v[0]; |
1197 |
} else /* anisotropic covers entire tree */ |
1198 |
vmin = SDgetTreMin(st); |
1199 |
|
1200 |
if ((vmin >= vmaxmin) | (vmin <= .01/M_PI)) |
1201 |
return .0; /* not worth bothering about */ |
1202 |
|
1203 |
SDsubtractTreVal(st, vmin); |
1204 |
|
1205 |
return M_PI * vmin; /* return hemispherical value */ |
1206 |
} |
1207 |
|
1208 |
/* Struct used in callback to find RGB extrema */ |
1209 |
typedef struct { |
1210 |
SDNode **stc; /* original Y, u' & v' trees */ |
1211 |
float rgb[3]; /* RGB value */ |
1212 |
SDNode *new_stu, *new_stv; /* replacement u' & v' trees */ |
1213 |
} SDextRGBs; |
1214 |
|
1215 |
/* Callback to find minimum RGB from Y value plus CIE (u',v') trees */ |
1216 |
static int |
1217 |
get_min_RGB(float yval, const double *cmin, double csiz, void *cptr) |
1218 |
{ |
1219 |
SDextRGBs *mp = (SDextRGBs *)cptr; |
1220 |
double cmax[SD_MAXDIM]; |
1221 |
float rgb[3]; |
1222 |
|
1223 |
if (mp->stc[tt_Y]->ndim == 3) { |
1224 |
if (cmin[0] + .5*csiz >= .5) |
1225 |
return 0; /* ignore dead half of isotropic */ |
1226 |
} else |
1227 |
cmax[3] = cmin[3] + csiz; |
1228 |
cmax[0] = cmin[0] + csiz; |
1229 |
cmax[1] = cmin[1] + csiz; |
1230 |
cmax[2] = cmin[2] + csiz; |
1231 |
/* average RGB color over voxel */ |
1232 |
SDyuv2rgb(yval, SDavgTreBox(mp->stc[tt_u], cmin, cmax), |
1233 |
SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb); |
1234 |
/* track smallest components */ |
1235 |
if (rgb[0] < mp->rgb[0]) mp->rgb[0] = rgb[0]; |
1236 |
if (rgb[1] < mp->rgb[1]) mp->rgb[1] = rgb[1]; |
1237 |
if (rgb[2] < mp->rgb[2]) mp->rgb[2] = rgb[2]; |
1238 |
return 0; |
1239 |
} |
1240 |
|
1241 |
/* Callback to build adjusted u' tree */ |
1242 |
static int |
1243 |
adjust_utree(float uprime, const double *cmin, double csiz, void *cptr) |
1244 |
{ |
1245 |
SDextRGBs *mp = (SDextRGBs *)cptr; |
1246 |
double cmax[SD_MAXDIM]; |
1247 |
double yval; |
1248 |
float rgb[3]; |
1249 |
C_COLOR clr; |
1250 |
|
1251 |
if (mp->stc[tt_Y]->ndim == 3) { |
1252 |
if (cmin[0] + .5*csiz >= .5) |
1253 |
return 0; /* ignore dead half of isotropic */ |
1254 |
} else |
1255 |
cmax[3] = cmin[3] + csiz; |
1256 |
cmax[0] = cmin[0] + csiz; |
1257 |
cmax[1] = cmin[1] + csiz; |
1258 |
cmax[2] = cmin[2] + csiz; |
1259 |
/* average RGB color over voxel */ |
1260 |
SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax), uprime, |
1261 |
SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb); |
1262 |
/* subtract minimum (& clamp) */ |
1263 |
if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval; |
1264 |
if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval; |
1265 |
if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval; |
1266 |
c_fromSharpRGB(rgb, &clr); /* compute new u' for adj. RGB */ |
1267 |
uprime = 4.*clr.cx/(-2.*clr.cx + 12.*clr.cy + 3.); |
1268 |
/* assign in new u' tree */ |
1269 |
mp->new_stu = SDsetVoxel(mp->new_stu, mp->stc[tt_Y]->ndim, |
1270 |
cmin, csiz, uprime); |
1271 |
return -(mp->new_stu == NULL); |
1272 |
} |
1273 |
|
1274 |
/* Callback to build adjusted v' tree */ |
1275 |
static int |
1276 |
adjust_vtree(float vprime, const double *cmin, double csiz, void *cptr) |
1277 |
{ |
1278 |
SDextRGBs *mp = (SDextRGBs *)cptr; |
1279 |
double cmax[SD_MAXDIM]; |
1280 |
double yval; |
1281 |
float rgb[3]; |
1282 |
C_COLOR clr; |
1283 |
|
1284 |
if (mp->stc[tt_Y]->ndim == 3) { |
1285 |
if (cmin[0] + .5*csiz >= .5) |
1286 |
return 0; /* ignore dead half of isotropic */ |
1287 |
} else |
1288 |
cmax[3] = cmin[3] + csiz; |
1289 |
cmax[0] = cmin[0] + csiz; |
1290 |
cmax[1] = cmin[1] + csiz; |
1291 |
cmax[2] = cmin[2] + csiz; |
1292 |
/* average RGB color over voxel */ |
1293 |
SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax), |
1294 |
SDavgTreBox(mp->stc[tt_u], cmin, cmax), |
1295 |
vprime, rgb); |
1296 |
/* subtract minimum (& clamp) */ |
1297 |
if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval; |
1298 |
if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval; |
1299 |
if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval; |
1300 |
c_fromSharpRGB(rgb, &clr); /* compute new v' for adj. RGB */ |
1301 |
vprime = 9.*clr.cy/(-2.*clr.cx + 12.*clr.cy + 3.); |
1302 |
/* assign in new v' tree */ |
1303 |
mp->new_stv = SDsetVoxel(mp->new_stv, mp->stc[tt_Y]->ndim, |
1304 |
cmin, csiz, vprime); |
1305 |
return -(mp->new_stv == NULL); |
1306 |
} |
1307 |
|
1308 |
/* Subtract minimum (diffuse) color and return luminance & CIE (x,y) */ |
1309 |
static double |
1310 |
subtract_min_RGB(C_COLOR *cs, SDNode *stc[]) |
1311 |
{ |
1312 |
SDextRGBs my_min; |
1313 |
double ymin; |
1314 |
|
1315 |
my_min.stc = stc; |
1316 |
my_min.rgb[0] = my_min.rgb[1] = my_min.rgb[2] = FHUGE; |
1317 |
my_min.new_stu = my_min.new_stv = NULL; |
1318 |
/* get minimum RGB value */ |
1319 |
SDtraverseTre(stc[tt_Y], NULL, 0, get_min_RGB, &my_min); |
1320 |
/* convert to C_COLOR */ |
1321 |
ymin = c_fromSharpRGB(my_min.rgb, cs); |
1322 |
if ((ymin >= .5*FHUGE) | (ymin <= .01/M_PI)) |
1323 |
return .0; /* close to zero or no tree */ |
1324 |
/* adjust u' & v' trees */ |
1325 |
SDtraverseTre(stc[tt_u], NULL, 0, adjust_utree, &my_min); |
1326 |
SDtraverseTre(stc[tt_v], NULL, 0, adjust_vtree, &my_min); |
1327 |
SDfreeTre(stc[tt_u]); SDfreeTre(stc[tt_v]); |
1328 |
stc[tt_u] = SDsimplifyTre(my_min.new_stu); |
1329 |
stc[tt_v] = SDsimplifyTre(my_min.new_stv); |
1330 |
/* subtract Y & return hemispherical */ |
1331 |
SDsubtractTreVal(stc[tt_Y], ymin); |
1332 |
|
1333 |
return M_PI * ymin; |
1334 |
} |
1335 |
|
1336 |
/* Extract and separate diffuse portion of BSDF */ |
1337 |
static void |
1338 |
extract_diffuse(SDValue *dv, SDSpectralDF *df) |
1339 |
{ |
1340 |
int n; |
1341 |
SDTre *sdt; |
1342 |
|
1343 |
if (df == NULL || df->ncomp <= 0) { |
1344 |
dv->spec = c_dfcolor; |
1345 |
dv->cieY = .0; |
1346 |
return; |
1347 |
} |
1348 |
sdt = (SDTre *)df->comp[0].dist; |
1349 |
/* subtract minimum color/grayscale */ |
1350 |
if (sdt->stc[tt_u] != NULL && sdt->stc[tt_v] != NULL) { |
1351 |
int i = 3*(tt_RGB_coef[1] < .001); |
1352 |
while (i--) { /* initialize on first call */ |
1353 |
float rgb[3]; |
1354 |
rgb[0] = rgb[1] = rgb[2] = .0f; rgb[i] = 1.f; |
1355 |
tt_RGB_coef[i] = c_fromSharpRGB(rgb, &tt_RGB_prim[i]); |
1356 |
} |
1357 |
memcpy(df->comp[0].cspec, tt_RGB_prim, sizeof(tt_RGB_prim)); |
1358 |
dv->cieY = subtract_min_RGB(&dv->spec, sdt->stc); |
1359 |
} else { |
1360 |
df->comp[0].cspec[0] = dv->spec = c_dfcolor; |
1361 |
dv->cieY = subtract_min_Y(sdt->stc[tt_Y]); |
1362 |
} |
1363 |
df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */ |
1364 |
/* make sure everything is set */ |
1365 |
c_ccvt(&dv->spec, C_CSXY+C_CSSPEC); |
1366 |
} |
1367 |
|
1368 |
/* Load a variable-resolution BSDF tree from an open XML file */ |
1369 |
SDError |
1370 |
SDloadTre(SDData *sd, ezxml_t wtl) |
1371 |
{ |
1372 |
SDError ec; |
1373 |
ezxml_t wld, wdb; |
1374 |
int rank; |
1375 |
char *txt; |
1376 |
/* basic checks and tensor rank */ |
1377 |
txt = ezxml_txt(ezxml_child(ezxml_child(wtl, |
1378 |
"DataDefinition"), "IncidentDataStructure")); |
1379 |
if (txt == NULL || !*txt) { |
1380 |
sprintf(SDerrorDetail, |
1381 |
"BSDF \"%s\": missing IncidentDataStructure", |
1382 |
sd->name); |
1383 |
return SDEformat; |
1384 |
} |
1385 |
if (!strcasecmp(txt, "TensorTree3")) |
1386 |
rank = 3; |
1387 |
else if (!strcasecmp(txt, "TensorTree4")) |
1388 |
rank = 4; |
1389 |
else { |
1390 |
sprintf(SDerrorDetail, |
1391 |
"BSDF \"%s\": unsupported IncidentDataStructure", |
1392 |
sd->name); |
1393 |
return SDEsupport; |
1394 |
} |
1395 |
/* load BSDF components */ |
1396 |
for (wld = ezxml_child(wtl, "WavelengthData"); |
1397 |
wld != NULL; wld = wld->next) { |
1398 |
const char *cnm = ezxml_txt(ezxml_child(wld,"Wavelength")); |
1399 |
int ct = -1; |
1400 |
if (!strcasecmp(cnm, "Visible")) |
1401 |
ct = tt_Y; |
1402 |
else if (!strcasecmp(cnm, "CIE-u")) |
1403 |
ct = tt_u; |
1404 |
else if (!strcasecmp(cnm, "CIE-v")) |
1405 |
ct = tt_v; |
1406 |
else |
1407 |
continue; |
1408 |
for (wdb = ezxml_child(wld, "WavelengthDataBlock"); |
1409 |
wdb != NULL; wdb = wdb->next) |
1410 |
if ((ec = load_bsdf_data(sd, wdb, ct, rank)) != SDEnone) |
1411 |
return ec; |
1412 |
} |
1413 |
/* separate diffuse components */ |
1414 |
extract_diffuse(&sd->rLambFront, sd->rf); |
1415 |
extract_diffuse(&sd->rLambBack, sd->rb); |
1416 |
if (sd->tf != NULL) |
1417 |
extract_diffuse(&sd->tLamb, sd->tf); |
1418 |
if (sd->tb != NULL) |
1419 |
extract_diffuse(&sd->tLamb, sd->tb); |
1420 |
/* return success */ |
1421 |
return SDEnone; |
1422 |
} |
1423 |
|
1424 |
/* Variable resolution BSDF methods */ |
1425 |
const SDFunc SDhandleTre = { |
1426 |
&SDgetTreBSDF, |
1427 |
&SDqueryTreProjSA, |
1428 |
&SDgetTreCDist, |
1429 |
&SDsampTreCDist, |
1430 |
&SDFreeBTre, |
1431 |
}; |