| 10 |
|
* |
| 11 |
|
*/ |
| 12 |
|
|
| 13 |
+ |
#define _USE_MATH_DEFINES |
| 14 |
|
#include "rtio.h" |
| 15 |
|
#include <stdlib.h> |
| 16 |
|
#include <math.h> |
| 21 |
|
#include "hilbert.h" |
| 22 |
|
|
| 23 |
|
/* Callback function type for SDtraverseTre() */ |
| 24 |
< |
typedef int SDtreCallback(float val, const double *cmin, |
| 25 |
< |
double csiz, void *cptr); |
| 25 |
< |
|
| 24 |
> |
typedef int SDtreCallback(float val, const double *cmin, double csiz, |
| 25 |
> |
void *cptr); |
| 26 |
|
/* reference width maximum (1.0) */ |
| 27 |
|
static const unsigned iwbits = sizeof(unsigned)*4; |
| 28 |
< |
static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1; |
| 28 |
> |
static const unsigned iwmax = 1<<(sizeof(unsigned)*4); |
| 29 |
|
/* maximum cumulative value */ |
| 30 |
|
static const unsigned cumlmax = ~0; |
| 31 |
+ |
/* constant z-vector */ |
| 32 |
+ |
static const FVECT zvec = {.0, .0, 1.}; |
| 33 |
+ |
/* quantization value */ |
| 34 |
+ |
static double quantum = 1./256.; |
| 35 |
+ |
/* our RGB primaries */ |
| 36 |
+ |
static C_COLOR tt_RGB_prim[3]; |
| 37 |
+ |
static float tt_RGB_coef[3]; |
| 38 |
|
|
| 39 |
+ |
static const double czero[SD_MAXDIM]; |
| 40 |
+ |
|
| 41 |
+ |
enum {tt_Y, tt_u, tt_v}; /* tree components (tt_Y==0) */ |
| 42 |
+ |
|
| 43 |
|
/* Struct used for our distribution-building callback */ |
| 44 |
|
typedef struct { |
| 45 |
< |
int nic; /* number of input coordinates */ |
| 45 |
> |
short nic; /* number of input coordinates */ |
| 46 |
> |
short rev; /* reversing query */ |
| 47 |
|
unsigned alen; /* current array length */ |
| 48 |
|
unsigned nall; /* number of allocated entries */ |
| 49 |
|
unsigned wmin; /* minimum square size so far */ |
| 73 |
|
if (lg < 0) { |
| 74 |
|
st = (SDNode *)malloc(sizeof(SDNode) + |
| 75 |
|
sizeof(st->u.t[0])*((1<<nd) - 1)); |
| 76 |
< |
if (st != NULL) |
| 65 |
< |
memset(st->u.t, 0, sizeof(st->u.t[0])<<nd); |
| 66 |
< |
} else |
| 67 |
< |
st = (SDNode *)malloc(sizeof(SDNode) + |
| 68 |
< |
sizeof(st->u.v[0])*((1 << nd*lg) - 1)); |
| 69 |
< |
|
| 70 |
< |
if (st == NULL) { |
| 71 |
< |
if (lg < 0) |
| 76 |
> |
if (st == NULL) { |
| 77 |
|
sprintf(SDerrorDetail, |
| 78 |
|
"Cannot allocate %d branch BSDF tree", 1<<nd); |
| 79 |
< |
else |
| 79 |
> |
return NULL; |
| 80 |
> |
} |
| 81 |
> |
memset(st->u.t, 0, sizeof(st->u.t[0])<<nd); |
| 82 |
> |
} else { |
| 83 |
> |
st = (SDNode *)malloc(sizeof(SDNode) + |
| 84 |
> |
sizeof(st->u.v[0])*((1 << nd*lg) - 1)); |
| 85 |
> |
if (st == NULL) { |
| 86 |
|
sprintf(SDerrorDetail, |
| 87 |
|
"Cannot allocate %d BSDF leaves", 1 << nd*lg); |
| 88 |
< |
return NULL; |
| 88 |
> |
return NULL; |
| 89 |
> |
} |
| 90 |
|
} |
| 91 |
|
st->ndim = nd; |
| 92 |
|
st->log2GR = lg; |
| 97 |
|
static void |
| 98 |
|
SDfreeTre(SDNode *st) |
| 99 |
|
{ |
| 100 |
< |
int i; |
| 100 |
> |
int n; |
| 101 |
|
|
| 102 |
|
if (st == NULL) |
| 103 |
|
return; |
| 104 |
< |
for (i = (st->log2GR < 0) << st->ndim; i--; ) |
| 105 |
< |
SDfreeTre(st->u.t[i]); |
| 106 |
< |
free((void *)st); |
| 104 |
> |
for (n = (st->log2GR < 0) << st->ndim; n--; ) |
| 105 |
> |
SDfreeTre(st->u.t[n]); |
| 106 |
> |
free(st); |
| 107 |
|
} |
| 108 |
|
|
| 109 |
|
/* Free a variable-resolution BSDF */ |
| 114 |
|
|
| 115 |
|
if (sdt == NULL) |
| 116 |
|
return; |
| 117 |
< |
SDfreeTre(sdt->st); |
| 117 |
> |
SDfreeTre(sdt->stc[tt_Y]); |
| 118 |
> |
SDfreeTre(sdt->stc[tt_u]); |
| 119 |
> |
SDfreeTre(sdt->stc[tt_v]); |
| 120 |
|
free(sdt); |
| 121 |
|
} |
| 122 |
|
|
| 139 |
|
static float * |
| 140 |
|
grid_branch_start(SDNode *st, int n) |
| 141 |
|
{ |
| 142 |
< |
unsigned skipsiz = 1 << st->log2GR; |
| 142 |
> |
unsigned skipsiz = 1 << (st->log2GR - 1); |
| 143 |
|
float *vptr = st->u.v; |
| 144 |
|
int i; |
| 145 |
|
|
| 146 |
|
for (i = st->ndim; i--; skipsiz <<= st->log2GR) |
| 147 |
|
if (1<<i & n) |
| 148 |
< |
vptr += skipsiz >> 1; |
| 148 |
> |
vptr += skipsiz; |
| 149 |
|
return vptr; |
| 150 |
|
} |
| 151 |
|
|
| 179 |
|
return st; |
| 180 |
|
} |
| 181 |
|
|
| 182 |
+ |
/* Assign the given voxel in tree (produces no grid nodes) */ |
| 183 |
+ |
static SDNode * |
| 184 |
+ |
SDsetVoxel(SDNode *sroot, int nd, const double *tmin, const double tsiz, float val) |
| 185 |
+ |
{ |
| 186 |
+ |
double ctrk[SD_MAXDIM]; |
| 187 |
+ |
double csiz = 1.; |
| 188 |
+ |
SDNode *st; |
| 189 |
+ |
int i, n; |
| 190 |
+ |
/* check arguments */ |
| 191 |
+ |
for (i = nd; i-- > 0; ) |
| 192 |
+ |
if ((tmin[i] < .0) | (tmin[i] >= 1.-FTINY)) |
| 193 |
+ |
break; |
| 194 |
+ |
if ((i >= 0) | (nd <= 0) | (tsiz <= FTINY) | (tsiz > 1.+FTINY) | |
| 195 |
+ |
(sroot != NULL && sroot->ndim != nd)) { |
| 196 |
+ |
SDfreeTre(sroot); |
| 197 |
+ |
return NULL; |
| 198 |
+ |
} |
| 199 |
+ |
if (tsiz >= 1.-FTINY) { /* special case when tree is a leaf */ |
| 200 |
+ |
SDfreeTre(sroot); |
| 201 |
+ |
if ((sroot = SDnewNode(nd, 0)) != NULL) |
| 202 |
+ |
sroot->u.v[0] = val; |
| 203 |
+ |
return sroot; |
| 204 |
+ |
} |
| 205 |
+ |
/* make sure we have branching root */ |
| 206 |
+ |
if (sroot != NULL && sroot->log2GR >= 0) { |
| 207 |
+ |
SDfreeTre(sroot); sroot = NULL; |
| 208 |
+ |
} |
| 209 |
+ |
if (sroot == NULL && (sroot = SDnewNode(nd, -1)) == NULL) |
| 210 |
+ |
return NULL; |
| 211 |
+ |
st = sroot; /* climb/grow tree */ |
| 212 |
+ |
memset(ctrk, 0, sizeof(ctrk)); |
| 213 |
+ |
for ( ; ; ) { |
| 214 |
+ |
csiz *= .5; /* find appropriate branch */ |
| 215 |
+ |
n = 0; |
| 216 |
+ |
for (i = nd; i--; ) |
| 217 |
+ |
if (ctrk[i]+csiz <= tmin[i]+FTINY) { |
| 218 |
+ |
ctrk[i] += csiz; |
| 219 |
+ |
n |= 1 << i; |
| 220 |
+ |
} |
| 221 |
+ |
/* reached desired voxel? */ |
| 222 |
+ |
if (csiz <= tsiz+FTINY) { |
| 223 |
+ |
SDfreeTre(st->u.t[n]); |
| 224 |
+ |
st = st->u.t[n] = SDnewNode(nd, 0); |
| 225 |
+ |
break; |
| 226 |
+ |
} |
| 227 |
+ |
/* else grow tree as needed */ |
| 228 |
+ |
if (st->u.t[n] != NULL && st->u.t[n]->log2GR >= 0) { |
| 229 |
+ |
SDfreeTre(st->u.t[n]); st->u.t[n] = NULL; |
| 230 |
+ |
} |
| 231 |
+ |
if (st->u.t[n] == NULL) |
| 232 |
+ |
st->u.t[n] = SDnewNode(nd, -1); |
| 233 |
+ |
if ((st = st->u.t[n]) == NULL) |
| 234 |
+ |
break; |
| 235 |
+ |
} |
| 236 |
+ |
if (st == NULL) { |
| 237 |
+ |
SDfreeTre(sroot); |
| 238 |
+ |
return NULL; |
| 239 |
+ |
} |
| 240 |
+ |
st->u.v[0] = val; /* assign leaf and return root */ |
| 241 |
+ |
return sroot; |
| 242 |
+ |
} |
| 243 |
+ |
|
| 244 |
|
/* Find smallest leaf in tree */ |
| 245 |
|
static double |
| 246 |
|
SDsmallestLeaf(const SDNode *st) |
| 263 |
|
static double |
| 264 |
|
SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax) |
| 265 |
|
{ |
| 266 |
< |
const unsigned skipsiz = 1 << nd*shft; |
| 266 |
> |
const unsigned skipsiz = 1 << --nd*shft; |
| 267 |
|
double sum = .0; |
| 268 |
|
int i; |
| 269 |
< |
|
| 269 |
> |
|
| 270 |
> |
va += *imin * skipsiz; |
| 271 |
> |
|
| 272 |
|
if (skipsiz == 1) |
| 273 |
|
for (i = *imin; i < *imax; i++) |
| 274 |
< |
sum += va[i]; |
| 274 |
> |
sum += *va++; |
| 275 |
|
else |
| 276 |
< |
for (i = *imin; i < *imax; i++) |
| 277 |
< |
sum += SDiterSum(va + i*skipsiz, |
| 200 |
< |
nd-1, shft, imin+1, imax+1); |
| 276 |
> |
for (i = *imin; i < *imax; i++, va += skipsiz) |
| 277 |
> |
sum += SDiterSum(va, nd, shft, imin+1, imax+1); |
| 278 |
|
return sum; |
| 279 |
|
} |
| 280 |
|
|
| 282 |
|
static double |
| 283 |
|
SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax) |
| 284 |
|
{ |
| 208 |
– |
int imin[SD_MAXDIM], imax[SD_MAXDIM]; |
| 285 |
|
unsigned n; |
| 286 |
|
int i; |
| 287 |
|
|
| 291 |
|
for (i = st->ndim; i--; ) { |
| 292 |
|
if (bmin[i] >= 1.) |
| 293 |
|
return .0; |
| 294 |
< |
if (bmax[i] <= .0) |
| 294 |
> |
if (bmax[i] <= 0) |
| 295 |
|
return .0; |
| 296 |
|
if (bmin[i] >= bmax[i]) |
| 297 |
|
return .0; |
| 299 |
|
if (st->log2GR < 0) { /* iterate on subtree */ |
| 300 |
|
double sum = .0, wsum = 1e-20; |
| 301 |
|
double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w; |
| 226 |
– |
|
| 302 |
|
for (n = 1 << st->ndim; n--; ) { |
| 303 |
|
w = 1.; |
| 304 |
|
for (i = st->ndim; i--; ) { |
| 310 |
|
} |
| 311 |
|
if (sbmin[i] < .0) sbmin[i] = .0; |
| 312 |
|
if (sbmax[i] > 1.) sbmax[i] = 1.; |
| 313 |
+ |
if (sbmin[i] >= sbmax[i]) { |
| 314 |
+ |
w = .0; |
| 315 |
+ |
break; |
| 316 |
+ |
} |
| 317 |
|
w *= sbmax[i] - sbmin[i]; |
| 318 |
|
} |
| 319 |
|
if (w > 1e-10) { |
| 322 |
|
} |
| 323 |
|
} |
| 324 |
|
return sum / wsum; |
| 325 |
+ |
} else { /* iterate over leaves */ |
| 326 |
+ |
int imin[SD_MAXDIM], imax[SD_MAXDIM]; |
| 327 |
+ |
|
| 328 |
+ |
n = 1; |
| 329 |
+ |
for (i = st->ndim; i--; ) { |
| 330 |
+ |
imin[i] = (bmin[i] <= 0) ? 0 : |
| 331 |
+ |
(int)((1 << st->log2GR)*bmin[i]); |
| 332 |
+ |
imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) : |
| 333 |
+ |
(int)((1 << st->log2GR)*bmax[i] + .999999); |
| 334 |
+ |
n *= imax[i] - imin[i]; |
| 335 |
+ |
} |
| 336 |
+ |
if (n) |
| 337 |
+ |
return SDiterSum(st->u.v, st->ndim, |
| 338 |
+ |
st->log2GR, imin, imax) / (double)n; |
| 339 |
|
} |
| 340 |
< |
n = 1; /* iterate over leaves */ |
| 248 |
< |
for (i = st->ndim; i--; ) { |
| 249 |
< |
imin[i] = (bmin[i] <= 0) ? 0 |
| 250 |
< |
: (int)((1 << st->log2GR)*bmin[i]); |
| 251 |
< |
imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) |
| 252 |
< |
: (int)((1 << st->log2GR)*bmax[i] + .999999); |
| 253 |
< |
n *= imax[i] - imin[i]; |
| 254 |
< |
} |
| 255 |
< |
if (!n) |
| 256 |
< |
return .0; |
| 257 |
< |
|
| 258 |
< |
return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n; |
| 340 |
> |
return .0; |
| 341 |
|
} |
| 342 |
|
|
| 343 |
|
/* Recursive call for SDtraverseTre() */ |
| 349 |
|
int rv, rval = 0; |
| 350 |
|
double bmin[SD_MAXDIM]; |
| 351 |
|
int i, n; |
| 352 |
+ |
/* paranoia */ |
| 353 |
+ |
if (st == NULL) |
| 354 |
+ |
return 0; |
| 355 |
|
/* in branches? */ |
| 356 |
|
if (st->log2GR < 0) { |
| 357 |
|
unsigned skipmask = 0; |
| 273 |
– |
|
| 358 |
|
csiz *= .5; |
| 359 |
|
for (i = st->ndim; i--; ) |
| 360 |
< |
if (1<<i & cmask) |
| 360 |
> |
if (1<<i & cmask) { |
| 361 |
|
if (pos[i] < cmin[i] + csiz) |
| 362 |
< |
for (n = 1 << st->ndim; n--; ) |
| 362 |
> |
for (n = 1 << st->ndim; n--; ) { |
| 363 |
|
if (n & 1<<i) |
| 364 |
|
skipmask |= 1<<n; |
| 365 |
+ |
} |
| 366 |
|
else |
| 367 |
< |
for (n = 1 << st->ndim; n--; ) |
| 367 |
> |
for (n = 1 << st->ndim; n--; ) { |
| 368 |
|
if (!(n & 1<<i)) |
| 369 |
|
skipmask |= 1<<n; |
| 370 |
+ |
} |
| 371 |
+ |
} |
| 372 |
|
for (n = 1 << st->ndim; n--; ) { |
| 373 |
|
if (1<<n & skipmask) |
| 374 |
|
continue; |
| 402 |
|
clim[i][0] = 0; |
| 403 |
|
clim[i][1] = 1 << st->log2GR; |
| 404 |
|
} |
| 318 |
– |
/* fill in unused dimensions */ |
| 319 |
– |
for (i = SD_MAXDIM; i-- > st->ndim; ) { |
| 320 |
– |
clim[i][0] = 0; clim[i][1] = 1; |
| 321 |
– |
} |
| 405 |
|
#if (SD_MAXDIM == 4) |
| 406 |
|
bmin[0] = cmin[0] + csiz*clim[0][0]; |
| 407 |
|
for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) { |
| 408 |
|
bmin[1] = cmin[1] + csiz*clim[1][0]; |
| 409 |
|
for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) { |
| 410 |
|
bmin[2] = cmin[2] + csiz*clim[2][0]; |
| 411 |
< |
for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) { |
| 412 |
< |
bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]); |
| 411 |
> |
if (st->ndim == 3) { |
| 412 |
> |
cpos[2] = clim[2][0]; |
| 413 |
|
n = cpos[0]; |
| 414 |
< |
for (i = 1; i < st->ndim; i++) |
| 414 |
> |
for (i = 1; i < 3; i++) |
| 415 |
|
n = (n << st->log2GR) + cpos[i]; |
| 416 |
< |
for ( ; cpos[3] < clim[3][1]; cpos[3]++) { |
| 416 |
> |
for ( ; cpos[2] < clim[2][1]; cpos[2]++) { |
| 417 |
|
rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); |
| 418 |
|
if (rv < 0) |
| 419 |
|
return rv; |
| 420 |
< |
bmin[3] += csiz; |
| 420 |
> |
bmin[2] += csiz; |
| 421 |
|
} |
| 422 |
< |
bmin[2] += csiz; |
| 422 |
> |
} else { |
| 423 |
> |
for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) { |
| 424 |
> |
bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]); |
| 425 |
> |
n = cpos[0]; |
| 426 |
> |
for (i = 1; i < 4; i++) |
| 427 |
> |
n = (n << st->log2GR) + cpos[i]; |
| 428 |
> |
for ( ; cpos[3] < clim[3][1]; cpos[3]++) { |
| 429 |
> |
rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr); |
| 430 |
> |
if (rv < 0) |
| 431 |
> |
return rv; |
| 432 |
> |
bmin[3] += csiz; |
| 433 |
> |
} |
| 434 |
> |
bmin[2] += csiz; |
| 435 |
> |
} |
| 436 |
|
} |
| 437 |
|
bmin[1] += csiz; |
| 438 |
|
} |
| 450 |
|
SDtraverseTre(const SDNode *st, const double *pos, int cmask, |
| 451 |
|
SDtreCallback *cf, void *cptr) |
| 452 |
|
{ |
| 357 |
– |
static double czero[SD_MAXDIM]; |
| 453 |
|
int i; |
| 454 |
|
/* check arguments */ |
| 455 |
|
if ((st == NULL) | (cf == NULL)) |
| 474 |
|
hcube[i] = .0; |
| 475 |
|
} |
| 476 |
|
/* climb the tree */ |
| 477 |
< |
while (st->log2GR < 0) { |
| 477 |
> |
while (st != NULL && st->log2GR < 0) { |
| 478 |
|
n = 0; /* move to appropriate branch */ |
| 479 |
|
if (hcube) hcube[st->ndim] *= .5; |
| 480 |
|
for (i = st->ndim; i--; ) { |
| 487 |
|
st = st->u.t[n]; /* avoids tail recursion */ |
| 488 |
|
pos = spos; |
| 489 |
|
} |
| 490 |
+ |
if (st == NULL) /* should never happen? */ |
| 491 |
+ |
return .0; |
| 492 |
|
if (st->log2GR == 0) /* short cut */ |
| 493 |
|
return st->u.v[0]; |
| 494 |
|
n = t = 0; /* find grid array index */ |
| 504 |
|
return st->u.v[n]; /* no interpolation */ |
| 505 |
|
} |
| 506 |
|
|
| 507 |
+ |
/* Convert CIE (Y,u',v') color to our RGB */ |
| 508 |
+ |
static void |
| 509 |
+ |
SDyuv2rgb(double yval, double uprime, double vprime, float rgb[3]) |
| 510 |
+ |
{ |
| 511 |
+ |
const double dfact = 1./(6.*uprime - 16.*vprime + 12.); |
| 512 |
+ |
C_COLOR cxy; |
| 513 |
+ |
|
| 514 |
+ |
c_cset(&cxy, 9.*uprime*dfact, 4.*vprime*dfact); |
| 515 |
+ |
c_toSharpRGB(&cxy, yval, rgb); |
| 516 |
+ |
} |
| 517 |
+ |
|
| 518 |
|
/* Query BSDF value and sample hypercube for the given vectors */ |
| 519 |
< |
static float |
| 520 |
< |
SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc) |
| 519 |
> |
static int |
| 520 |
> |
SDqueryTre(const SDTre *sdt, float *coef, |
| 521 |
> |
const FVECT outVec, const FVECT inVec, double *hc) |
| 522 |
|
{ |
| 523 |
< |
static const FVECT zvec = {.0, .0, 1.}; |
| 524 |
< |
FVECT rOutVec; |
| 525 |
< |
double gridPos[4]; |
| 523 |
> |
const RREAL *vtmp; |
| 524 |
> |
float yval; |
| 525 |
> |
FVECT rOutVec; |
| 526 |
> |
double gridPos[4]; |
| 527 |
|
|
| 528 |
+ |
if (sdt->stc[tt_Y] == NULL) /* paranoia, I hope */ |
| 529 |
+ |
return 0; |
| 530 |
+ |
|
| 531 |
|
switch (sdt->sidef) { /* whose side are you on? */ |
| 532 |
< |
case SD_UFRONT: |
| 532 |
> |
case SD_FREFL: |
| 533 |
|
if ((outVec[2] < 0) | (inVec[2] < 0)) |
| 534 |
< |
return -1.; |
| 534 |
> |
return 0; |
| 535 |
|
break; |
| 536 |
< |
case SD_UBACK: |
| 536 |
> |
case SD_BREFL: |
| 537 |
|
if ((outVec[2] > 0) | (inVec[2] > 0)) |
| 538 |
< |
return -1.; |
| 538 |
> |
return 0; |
| 539 |
|
break; |
| 540 |
< |
case SD_XMIT: |
| 541 |
< |
if ((outVec[2] > 0) == (inVec[2] > 0)) |
| 542 |
< |
return -1.; |
| 540 |
> |
case SD_FXMIT: |
| 541 |
> |
if (outVec[2] > 0) { |
| 542 |
> |
if (inVec[2] > 0) |
| 543 |
> |
return 0; |
| 544 |
> |
vtmp = outVec; outVec = inVec; inVec = vtmp; |
| 545 |
> |
} else if (inVec[2] < 0) |
| 546 |
> |
return 0; |
| 547 |
|
break; |
| 548 |
+ |
case SD_BXMIT: |
| 549 |
+ |
if (inVec[2] > 0) { |
| 550 |
+ |
if (outVec[2] > 0) |
| 551 |
+ |
return 0; |
| 552 |
+ |
vtmp = outVec; outVec = inVec; inVec = vtmp; |
| 553 |
+ |
} else if (outVec[2] < 0) |
| 554 |
+ |
return 0; |
| 555 |
+ |
break; |
| 556 |
|
default: |
| 557 |
< |
return -1.; |
| 557 |
> |
return 0; |
| 558 |
|
} |
| 559 |
|
/* convert vector coordinates */ |
| 560 |
< |
if (sdt->st->ndim == 3) { |
| 561 |
< |
spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0])); |
| 562 |
< |
gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
| 560 |
> |
if (sdt->stc[tt_Y]->ndim == 3) { |
| 561 |
> |
spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0])); |
| 562 |
> |
gridPos[0] = (.5-FTINY) - |
| 563 |
> |
.5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
| 564 |
|
SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]); |
| 565 |
< |
} else if (sdt->st->ndim == 4) { |
| 565 |
> |
} else if (sdt->stc[tt_Y]->ndim == 4) { |
| 566 |
|
SDdisk2square(gridPos, -inVec[0], -inVec[1]); |
| 567 |
|
SDdisk2square(gridPos+2, outVec[0], outVec[1]); |
| 568 |
|
} else |
| 569 |
< |
return -1.; /* should be internal error */ |
| 570 |
< |
|
| 571 |
< |
return SDlookupTre(sdt->st, gridPos, hc); |
| 569 |
> |
return 0; /* should be internal error */ |
| 570 |
> |
/* get BSDF value */ |
| 571 |
> |
yval = SDlookupTre(sdt->stc[tt_Y], gridPos, hc); |
| 572 |
> |
if (coef == NULL) /* just getting hypercube? */ |
| 573 |
> |
return 1; |
| 574 |
> |
if (sdt->stc[tt_u] == NULL || sdt->stc[tt_v] == NULL) { |
| 575 |
> |
*coef = yval; |
| 576 |
> |
return 1; /* no color */ |
| 577 |
> |
} |
| 578 |
> |
/* else decode color */ |
| 579 |
> |
SDyuv2rgb(yval, SDlookupTre(sdt->stc[tt_u], gridPos, NULL), |
| 580 |
> |
SDlookupTre(sdt->stc[tt_v], gridPos, NULL), coef); |
| 581 |
> |
coef[0] *= tt_RGB_coef[0]; |
| 582 |
> |
coef[1] *= tt_RGB_coef[1]; |
| 583 |
> |
coef[2] *= tt_RGB_coef[2]; |
| 584 |
> |
return 3; |
| 585 |
|
} |
| 586 |
|
|
| 587 |
|
/* Compute non-diffuse component for variable-resolution BSDF */ |
| 594 |
|
|| sdc->dist == NULL) |
| 595 |
|
return 0; |
| 596 |
|
/* get nearest BSDF value */ |
| 597 |
< |
coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL); |
| 459 |
< |
return (coef[0] >= 0); /* monochromatic for now */ |
| 597 |
> |
return SDqueryTre((SDTre *)sdc->dist, coef, outVec, inVec, NULL); |
| 598 |
|
} |
| 599 |
|
|
| 600 |
|
/* Callback to build cumulative distribution using SDtraverseTre() */ |
| 603 |
|
{ |
| 604 |
|
SDdistScaffold *sp = (SDdistScaffold *)cptr; |
| 605 |
|
int wid = csiz*(double)iwmax + .5; |
| 606 |
+ |
double revcmin[2]; |
| 607 |
|
bitmask_t bmin[2], bmax[2]; |
| 608 |
|
|
| 609 |
< |
cmin += sp->nic; /* skip to output coords */ |
| 609 |
> |
if (sp->rev) { /* need to reverse sense? */ |
| 610 |
> |
revcmin[0] = 1. - cmin[0] - csiz; |
| 611 |
> |
revcmin[1] = 1. - cmin[1] - csiz; |
| 612 |
> |
cmin = revcmin; |
| 613 |
> |
} else { |
| 614 |
> |
cmin += sp->nic; /* else skip to output coords */ |
| 615 |
> |
} |
| 616 |
|
if (wid < sp->wmin) /* new minimum width? */ |
| 617 |
|
sp->wmin = wid; |
| 618 |
|
if (wid > sp->wmax) /* new maximum? */ |
| 619 |
|
sp->wmax = wid; |
| 620 |
|
if (sp->alen >= sp->nall) { /* need more space? */ |
| 621 |
|
struct outdir_s *ndarr; |
| 622 |
< |
sp->nall += 8192; |
| 622 |
> |
sp->nall = (int)(1.5*sp->nall) + 256; |
| 623 |
|
ndarr = (struct outdir_s *)realloc(sp->darr, |
| 624 |
|
sizeof(struct outdir_s)*sp->nall); |
| 625 |
< |
if (ndarr == NULL) |
| 625 |
> |
if (ndarr == NULL) { |
| 626 |
> |
sprintf(SDerrorDetail, |
| 627 |
> |
"Cannot grow scaffold to %u entries", sp->nall); |
| 628 |
|
return -1; /* abort build */ |
| 629 |
+ |
} |
| 630 |
|
sp->darr = ndarr; |
| 631 |
|
} |
| 632 |
|
/* find Hilbert entry index */ |
| 633 |
|
bmin[0] = cmin[0]*(double)iwmax + .5; |
| 634 |
|
bmin[1] = cmin[1]*(double)iwmax + .5; |
| 635 |
< |
bmax[0] = bmin[0] + wid; |
| 636 |
< |
bmax[1] = bmin[1] + wid; |
| 635 |
> |
bmax[0] = bmin[0] + wid-1; |
| 636 |
> |
bmax[1] = bmin[1] + wid-1; |
| 637 |
|
hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax); |
| 638 |
|
sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin); |
| 639 |
|
sp->darr[sp->alen].wid = wid; |
| 646 |
|
static int |
| 647 |
|
sscmp(const void *p1, const void *p2) |
| 648 |
|
{ |
| 649 |
< |
return (int)((*(const struct outdir_s *)p1).hent - |
| 650 |
< |
(*(const struct outdir_s *)p2).hent); |
| 649 |
> |
unsigned h1 = (*(const struct outdir_s *)p1).hent; |
| 650 |
> |
unsigned h2 = (*(const struct outdir_s *)p2).hent; |
| 651 |
> |
|
| 652 |
> |
if (h1 > h2) |
| 653 |
> |
return 1; |
| 654 |
> |
if (h1 < h2) |
| 655 |
> |
return -1; |
| 656 |
> |
return 0; |
| 657 |
|
} |
| 658 |
|
|
| 659 |
|
/* Create a new cumulative distribution for the given input direction */ |
| 660 |
|
static SDTreCDst * |
| 661 |
< |
make_cdist(const SDTre *sdt, const double *pos) |
| 661 |
> |
make_cdist(const SDTre *sdt, const double *invec, int rev) |
| 662 |
|
{ |
| 663 |
|
SDdistScaffold myScaffold; |
| 664 |
+ |
double pos[4]; |
| 665 |
+ |
int cmask; |
| 666 |
|
SDTreCDst *cd; |
| 667 |
|
struct outdir_s *sp; |
| 668 |
|
double scale, cursum; |
| 670 |
|
/* initialize scaffold */ |
| 671 |
|
myScaffold.wmin = iwmax; |
| 672 |
|
myScaffold.wmax = 0; |
| 673 |
< |
myScaffold.nic = sdt->st->ndim - 2; |
| 673 |
> |
myScaffold.nic = sdt->stc[tt_Y]->ndim - 2; |
| 674 |
> |
myScaffold.rev = rev; |
| 675 |
|
myScaffold.alen = 0; |
| 676 |
< |
myScaffold.nall = 8192; |
| 676 |
> |
myScaffold.nall = 512; |
| 677 |
|
myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) * |
| 678 |
|
myScaffold.nall); |
| 679 |
|
if (myScaffold.darr == NULL) |
| 680 |
|
return NULL; |
| 681 |
+ |
/* set up traversal */ |
| 682 |
+ |
cmask = (1<<myScaffold.nic) - 1; |
| 683 |
+ |
for (i = myScaffold.nic; i--; ) |
| 684 |
+ |
pos[i+2*rev] = invec[i]; |
| 685 |
+ |
cmask <<= 2*rev; |
| 686 |
|
/* grow the distribution */ |
| 687 |
< |
if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1, |
| 688 |
< |
&build_scaffold, &myScaffold) < 0) { |
| 687 |
> |
if (SDtraverseTre(sdt->stc[tt_Y], pos, cmask, |
| 688 |
> |
build_scaffold, &myScaffold) < 0) { |
| 689 |
|
free(myScaffold.darr); |
| 690 |
|
return NULL; |
| 691 |
|
} |
| 693 |
|
cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) + |
| 694 |
|
sizeof(cd->carr[0])*myScaffold.alen); |
| 695 |
|
if (cd == NULL) { |
| 696 |
+ |
sprintf(SDerrorDetail, |
| 697 |
+ |
"Cannot allocate %u entry cumulative distribution", |
| 698 |
+ |
myScaffold.alen); |
| 699 |
|
free(myScaffold.darr); |
| 700 |
|
return NULL; |
| 701 |
|
} |
| 702 |
+ |
cd->isodist = (myScaffold.nic == 1); |
| 703 |
|
/* sort the distribution */ |
| 704 |
|
qsort(myScaffold.darr, cd->calen = myScaffold.alen, |
| 705 |
< |
sizeof(struct outdir_s), &sscmp); |
| 705 |
> |
sizeof(struct outdir_s), sscmp); |
| 706 |
|
|
| 707 |
|
/* record input range */ |
| 708 |
|
scale = myScaffold.wmin / (double)iwmax; |
| 709 |
|
for (i = myScaffold.nic; i--; ) { |
| 710 |
< |
cd->clim[i][0] = floor(pos[i]/scale) * scale; |
| 710 |
> |
cd->clim[i][0] = floor(pos[i+2*rev]/scale) * scale; |
| 711 |
|
cd->clim[i][1] = cd->clim[i][0] + scale; |
| 712 |
|
} |
| 713 |
+ |
if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */ |
| 714 |
+ |
cd->clim[1][0] = cd->clim[0][0]; |
| 715 |
+ |
cd->clim[1][1] = cd->clim[0][1]; |
| 716 |
+ |
} |
| 717 |
|
cd->max_psa = myScaffold.wmax / (double)iwmax; |
| 718 |
|
cd->max_psa *= cd->max_psa * M_PI; |
| 719 |
< |
cd->sidef = sdt->sidef; |
| 719 |
> |
if (rev) |
| 720 |
> |
cd->sidef = (sdt->sidef==SD_BXMIT) ? SD_FXMIT : SD_BXMIT; |
| 721 |
> |
else |
| 722 |
> |
cd->sidef = sdt->sidef; |
| 723 |
|
cd->cTotal = 1e-20; /* compute directional total */ |
| 724 |
|
sp = myScaffold.darr; |
| 725 |
|
for (i = myScaffold.alen; i--; sp++) |
| 746 |
|
{ |
| 747 |
|
const SDTre *sdt; |
| 748 |
|
double inCoord[2]; |
| 576 |
– |
int vflags; |
| 749 |
|
int i; |
| 750 |
+ |
int mode; |
| 751 |
|
SDTreCDst *cd, *cdlast; |
| 752 |
|
/* check arguments */ |
| 753 |
|
if ((inVec == NULL) | (sdc == NULL) || |
| 754 |
|
(sdt = (SDTre *)sdc->dist) == NULL) |
| 755 |
|
return NULL; |
| 756 |
< |
if (sdt->st->ndim == 3) /* isotropic BSDF? */ |
| 757 |
< |
inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
| 758 |
< |
else if (sdt->st->ndim == 4) |
| 759 |
< |
SDdisk2square(inCoord, -inVec[0], -inVec[1]); |
| 760 |
< |
else |
| 756 |
> |
switch (mode = sdt->sidef) { /* check direction */ |
| 757 |
> |
case SD_FREFL: |
| 758 |
> |
if (inVec[2] < 0) |
| 759 |
> |
return NULL; |
| 760 |
> |
break; |
| 761 |
> |
case SD_BREFL: |
| 762 |
> |
if (inVec[2] > 0) |
| 763 |
> |
return NULL; |
| 764 |
> |
break; |
| 765 |
> |
case SD_FXMIT: |
| 766 |
> |
if (inVec[2] < 0) |
| 767 |
> |
mode = SD_BXMIT; |
| 768 |
> |
break; |
| 769 |
> |
case SD_BXMIT: |
| 770 |
> |
if (inVec[2] > 0) |
| 771 |
> |
mode = SD_FXMIT; |
| 772 |
> |
break; |
| 773 |
> |
default: |
| 774 |
> |
return NULL; |
| 775 |
> |
} |
| 776 |
> |
if (sdt->stc[tt_Y]->ndim == 3) { /* isotropic BSDF? */ |
| 777 |
> |
if (mode != sdt->sidef) /* XXX unhandled reciprocity */ |
| 778 |
> |
return &SDemptyCD; |
| 779 |
> |
inCoord[0] = (.5-FTINY) - |
| 780 |
> |
.5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]); |
| 781 |
> |
} else if (sdt->stc[tt_Y]->ndim == 4) { |
| 782 |
> |
if (mode != sdt->sidef) /* use reciprocity? */ |
| 783 |
> |
SDdisk2square(inCoord, inVec[0], inVec[1]); |
| 784 |
> |
else |
| 785 |
> |
SDdisk2square(inCoord, -inVec[0], -inVec[1]); |
| 786 |
> |
} else |
| 787 |
|
return NULL; /* should be internal error */ |
| 788 |
+ |
/* quantize to avoid f.p. errors */ |
| 789 |
+ |
for (i = sdt->stc[tt_Y]->ndim - 2; i--; ) |
| 790 |
+ |
inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum; |
| 791 |
|
cdlast = NULL; /* check for direction in cache list */ |
| 792 |
+ |
/* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */ |
| 793 |
|
for (cd = (SDTreCDst *)sdc->cdList; cd != NULL; |
| 794 |
< |
cdlast = cd, cd = (SDTreCDst *)cd->next) { |
| 795 |
< |
for (i = sdt->st->ndim - 2; i--; ) |
| 794 |
> |
cdlast = cd, cd = cd->next) { |
| 795 |
> |
if (cd->sidef != mode) |
| 796 |
> |
continue; |
| 797 |
> |
for (i = sdt->stc[tt_Y]->ndim - 2; i--; ) |
| 798 |
|
if ((cd->clim[i][0] > inCoord[i]) | |
| 799 |
|
(inCoord[i] >= cd->clim[i][1])) |
| 800 |
|
break; |
| 802 |
|
break; /* means we have a match */ |
| 803 |
|
} |
| 804 |
|
if (cd == NULL) /* need to create new entry? */ |
| 805 |
< |
cdlast = cd = make_cdist(sdt, inCoord); |
| 805 |
> |
cdlast = cd = make_cdist(sdt, inCoord, mode != sdt->sidef); |
| 806 |
|
if (cdlast != NULL) { /* move entry to head of cache list */ |
| 807 |
|
cdlast->next = cd->next; |
| 808 |
< |
cd->next = sdc->cdList; |
| 808 |
> |
cd->next = (SDTreCDst *)sdc->cdList; |
| 809 |
|
sdc->cdList = (SDCDst *)cd; |
| 810 |
|
} |
| 811 |
+ |
/* END MUTEX LOCK */ |
| 812 |
|
return (SDCDst *)cd; /* ready to go */ |
| 813 |
|
} |
| 814 |
|
|
| 825 |
|
/* get projected solid angle(s) */ |
| 826 |
|
if (v2 != NULL) { |
| 827 |
|
const SDTre *sdt = (SDTre *)sdc->dist; |
| 828 |
< |
double hcube[SD_MAXDIM]; |
| 829 |
< |
if (SDqueryTre(sdt, v1, v2, hcube) < 0) { |
| 828 |
> |
double hcube[SD_MAXDIM+1]; |
| 829 |
> |
if (!SDqueryTre(sdt, NULL, v1, v2, hcube)) { |
| 830 |
|
strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA"); |
| 831 |
|
return SDEinternal; |
| 832 |
|
} |
| 833 |
< |
myPSA[0] = hcube[sdt->st->ndim]; |
| 833 |
> |
myPSA[0] = hcube[sdt->stc[tt_Y]->ndim]; |
| 834 |
|
myPSA[1] = myPSA[0] *= myPSA[0] * M_PI; |
| 835 |
|
} else { |
| 836 |
|
const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc); |
| 837 |
|
if (cd == NULL) |
| 838 |
< |
return SDEmemory; |
| 839 |
< |
myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) * |
| 840 |
< |
(cd->clim[1][1] - cd->clim[1][0]); |
| 841 |
< |
myPSA[1] = cd->max_psa; |
| 838 |
> |
myPSA[0] = myPSA[1] = 0; |
| 839 |
> |
else { |
| 840 |
> |
myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) * |
| 841 |
> |
(cd->clim[1][1] - cd->clim[1][0]); |
| 842 |
> |
myPSA[1] = cd->max_psa; |
| 843 |
> |
} |
| 844 |
|
} |
| 845 |
|
switch (qflags) { /* record based on flag settings */ |
| 846 |
|
case SDqueryVal: |
| 855 |
|
psa[1] = myPSA[1]; |
| 856 |
|
/* fall through */ |
| 857 |
|
case SDqueryMin: |
| 858 |
< |
if (myPSA[0] < psa[0]) |
| 858 |
> |
if ((myPSA[0] > 0) & (myPSA[0] < psa[0])) |
| 859 |
|
psa[0] = myPSA[0]; |
| 860 |
|
break; |
| 861 |
|
} |
| 871 |
|
const SDTreCDst *cd = (const SDTreCDst *)cdp; |
| 872 |
|
const unsigned target = randX*cumlmax; |
| 873 |
|
bitmask_t hndx, hcoord[2]; |
| 874 |
< |
double gpos[3]; |
| 874 |
> |
double gpos[3], rotangle; |
| 875 |
|
int i, iupper, ilower; |
| 876 |
|
/* check arguments */ |
| 877 |
|
if ((ioVec == NULL) | (cd == NULL)) |
| 878 |
|
return SDEargument; |
| 879 |
+ |
if (!cd->sidef) |
| 880 |
+ |
return SDEnone; /* XXX should never happen */ |
| 881 |
|
if (ioVec[2] > 0) { |
| 882 |
< |
if (!(cd->sidef & SD_UFRONT)) |
| 882 |
> |
if ((cd->sidef != SD_FREFL) & (cd->sidef != SD_FXMIT)) |
| 883 |
|
return SDEargument; |
| 884 |
< |
} else if (!(cd->sidef & SD_UBACK)) |
| 884 |
> |
} else if ((cd->sidef != SD_BREFL) & (cd->sidef != SD_BXMIT)) |
| 885 |
|
return SDEargument; |
| 886 |
|
/* binary search to find position */ |
| 887 |
|
ilower = 0; iupper = cd->calen; |
| 888 |
|
while ((i = (iupper + ilower) >> 1) != ilower) |
| 889 |
< |
if ((long)target >= (long)cd->carr[i].cuml) |
| 889 |
> |
if (target >= cd->carr[i].cuml) |
| 890 |
|
ilower = i; |
| 891 |
|
else |
| 892 |
|
iupper = i; |
| 904 |
|
SDsquare2disk(gpos, gpos[0], gpos[1]); |
| 905 |
|
/* compute Z-coordinate */ |
| 906 |
|
gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1]; |
| 907 |
< |
if (gpos[2] > 0) /* paranoia, I hope */ |
| 698 |
< |
gpos[2] = sqrt(gpos[2]); |
| 907 |
> |
gpos[2] = sqrt(gpos[2]*(gpos[2]>0)); |
| 908 |
|
/* emit from back? */ |
| 909 |
< |
if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT) |
| 909 |
> |
if ((cd->sidef == SD_BREFL) | (cd->sidef == SD_FXMIT)) |
| 910 |
|
gpos[2] = -gpos[2]; |
| 911 |
< |
VCOPY(ioVec, gpos); |
| 911 |
> |
if (cd->isodist) { /* rotate isotropic sample */ |
| 912 |
> |
rotangle = atan2(-ioVec[1],-ioVec[0]); |
| 913 |
> |
spinvector(ioVec, gpos, zvec, rotangle); |
| 914 |
> |
} else |
| 915 |
> |
VCOPY(ioVec, gpos); |
| 916 |
|
return SDEnone; |
| 917 |
|
} |
| 918 |
|
|
| 925 |
|
return **spp; |
| 926 |
|
} |
| 927 |
|
|
| 928 |
< |
#define eat_token(spp,c) (next_token(spp)==(c) ? *(*(spp))++ : 0) |
| 928 |
> |
/* Advance pointer past matching token (or any token if c==0) */ |
| 929 |
> |
#define eat_token(spp,c) ((next_token(spp)==(c)) ^ !(c) ? *(*(spp))++ : 0) |
| 930 |
|
|
| 931 |
|
/* Count words from this point in string to '}' */ |
| 932 |
|
static int |
| 935 |
|
int n = 0; |
| 936 |
|
|
| 937 |
|
while (next_token(&cp) != '}' && *cp) { |
| 938 |
< |
if (*cp == '{') |
| 939 |
< |
return -1; |
| 940 |
< |
while (*cp && (*cp != ',') & (*cp != '}') & !isspace(*cp)) |
| 727 |
< |
++cp; |
| 938 |
> |
while (!isspace(*cp) & (*cp != ',') & (*cp != '}')) |
| 939 |
> |
if (!*++cp) |
| 940 |
> |
break; |
| 941 |
|
++n; |
| 942 |
|
eat_token(&cp, ','); |
| 943 |
|
} |
| 952 |
|
char *svnext; |
| 953 |
|
|
| 954 |
|
while (n-- > 0 && (svnext = fskip(*spp)) != NULL) { |
| 955 |
< |
*v++ = atof(*spp); |
| 955 |
> |
if ((*v++ = atof(*spp)) < 0) |
| 956 |
> |
v[-1] = 0; |
| 957 |
|
*spp = svnext; |
| 958 |
|
eat_token(spp, ','); |
| 959 |
|
} |
| 983 |
|
} else { /* else load value grid */ |
| 984 |
|
int bsiz; |
| 985 |
|
n = count_values(*spp); /* see how big the grid is */ |
| 986 |
< |
if (n <= 0) { |
| 773 |
< |
strcpy(SDerrorDetail, "Bad tensor tree data"); |
| 774 |
< |
return NULL; |
| 775 |
< |
} |
| 776 |
< |
for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd) |
| 986 |
> |
for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd) |
| 987 |
|
if (1<<bsiz == n) |
| 988 |
|
break; |
| 989 |
|
if (bsiz >= 8*sizeof(size_t)) { |
| 1012 |
|
static SDError |
| 1013 |
|
get_extrema(SDSpectralDF *df) |
| 1014 |
|
{ |
| 1015 |
< |
SDNode *st = (*(SDTre *)df->comp[0].dist).st; |
| 1015 |
> |
SDNode *st = (*(SDTre *)df->comp[0].dist).stc[tt_Y]; |
| 1016 |
|
double stepWidth, dhemi, bmin[4], bmax[4]; |
| 1017 |
|
|
| 1018 |
|
stepWidth = SDsmallestLeaf(st); |
| 1019 |
+ |
if (quantum > stepWidth) /* adjust quantization factor */ |
| 1020 |
+ |
quantum = stepWidth; |
| 1021 |
|
df->minProjSA = M_PI*stepWidth*stepWidth; |
| 1022 |
|
if (stepWidth < .03125) |
| 1023 |
|
stepWidth = .03125; /* 1/32 resolution good enough */ |
| 1052 |
|
|
| 1053 |
|
/* Load BSDF distribution for this wavelength */ |
| 1054 |
|
static SDError |
| 1055 |
< |
load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim) |
| 1055 |
> |
load_bsdf_data(SDData *sd, ezxml_t wdb, int ct, int ndim) |
| 1056 |
|
{ |
| 1057 |
|
SDSpectralDF *df; |
| 1058 |
|
SDTre *sdt; |
| 1059 |
|
char *sdata; |
| 848 |
– |
int i; |
| 1060 |
|
/* allocate BSDF component */ |
| 1061 |
|
sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection")); |
| 1062 |
|
if (!sdata) |
| 1064 |
|
/* |
| 1065 |
|
* Remember that front and back are reversed from WINDOW 6 orientations |
| 1066 |
|
*/ |
| 1067 |
< |
if (!strcasecmp(sdata, "Transmission")) { |
| 1068 |
< |
if (sd->tf != NULL) |
| 858 |
< |
SDfreeSpectralDF(sd->tf); |
| 859 |
< |
if ((sd->tf = SDnewSpectralDF(1)) == NULL) |
| 1067 |
> |
if (!strcasecmp(sdata, "Transmission Front")) { |
| 1068 |
> |
if (sd->tb == NULL && (sd->tb = SDnewSpectralDF(1)) == NULL) |
| 1069 |
|
return SDEmemory; |
| 1070 |
+ |
df = sd->tb; |
| 1071 |
+ |
} else if (!strcasecmp(sdata, "Transmission Back")) { |
| 1072 |
+ |
if (sd->tf == NULL && (sd->tf = SDnewSpectralDF(1)) == NULL) |
| 1073 |
+ |
return SDEmemory; |
| 1074 |
|
df = sd->tf; |
| 1075 |
|
} else if (!strcasecmp(sdata, "Reflection Front")) { |
| 1076 |
< |
if (sd->rb != NULL) /* note back-front reversal */ |
| 864 |
< |
SDfreeSpectralDF(sd->rb); |
| 865 |
< |
if ((sd->rb = SDnewSpectralDF(1)) == NULL) |
| 1076 |
> |
if (sd->rb == NULL && (sd->rb = SDnewSpectralDF(1)) == NULL) |
| 1077 |
|
return SDEmemory; |
| 1078 |
|
df = sd->rb; |
| 1079 |
|
} else if (!strcasecmp(sdata, "Reflection Back")) { |
| 1080 |
< |
if (sd->rf != NULL) /* note front-back reversal */ |
| 870 |
< |
SDfreeSpectralDF(sd->rf); |
| 871 |
< |
if ((sd->rf = SDnewSpectralDF(1)) == NULL) |
| 1080 |
> |
if (sd->rf == NULL && (sd->rf = SDnewSpectralDF(1)) == NULL) |
| 1081 |
|
return SDEmemory; |
| 1082 |
|
df = sd->rf; |
| 1083 |
|
} else |
| 1084 |
|
return SDEnone; |
| 876 |
– |
/* XXX should also check "ScatteringDataType" for consistency? */ |
| 1085 |
|
/* get angle bases */ |
| 1086 |
|
sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis")); |
| 1087 |
|
if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) { |
| 1089 |
|
!sdata ? "Missing" : "Unsupported", sd->name); |
| 1090 |
|
return !sdata ? SDEformat : SDEsupport; |
| 1091 |
|
} |
| 1092 |
< |
/* allocate BSDF tree */ |
| 1093 |
< |
sdt = (SDTre *)malloc(sizeof(SDTre)); |
| 1094 |
< |
if (sdt == NULL) |
| 1095 |
< |
return SDEmemory; |
| 1096 |
< |
if (df == sd->rf) |
| 1097 |
< |
sdt->sidef = SD_UFRONT; |
| 1098 |
< |
else if (df == sd->rb) |
| 1099 |
< |
sdt->sidef = SD_UBACK; |
| 1100 |
< |
else |
| 1101 |
< |
sdt->sidef = SD_XMIT; |
| 1102 |
< |
sdt->st = NULL; |
| 1103 |
< |
df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */ |
| 1104 |
< |
df->comp[0].dist = sdt; |
| 1105 |
< |
df->comp[0].func = &SDhandleTre; |
| 1092 |
> |
if (df->comp[0].dist == NULL) { /* need to allocate BSDF tree? */ |
| 1093 |
> |
sdt = (SDTre *)malloc(sizeof(SDTre)); |
| 1094 |
> |
if (sdt == NULL) |
| 1095 |
> |
return SDEmemory; |
| 1096 |
> |
if (df == sd->rf) |
| 1097 |
> |
sdt->sidef = SD_FREFL; |
| 1098 |
> |
else if (df == sd->rb) |
| 1099 |
> |
sdt->sidef = SD_BREFL; |
| 1100 |
> |
else if (df == sd->tf) |
| 1101 |
> |
sdt->sidef = SD_FXMIT; |
| 1102 |
> |
else /* df == sd->tb */ |
| 1103 |
> |
sdt->sidef = SD_BXMIT; |
| 1104 |
> |
sdt->stc[tt_Y] = sdt->stc[tt_u] = sdt->stc[tt_v] = NULL; |
| 1105 |
> |
df->comp[0].dist = sdt; |
| 1106 |
> |
df->comp[0].func = &SDhandleTre; |
| 1107 |
> |
} else { |
| 1108 |
> |
sdt = (SDTre *)df->comp[0].dist; |
| 1109 |
> |
if (sdt->stc[ct] != NULL) { |
| 1110 |
> |
SDfreeTre(sdt->stc[ct]); |
| 1111 |
> |
sdt->stc[ct] = NULL; |
| 1112 |
> |
} |
| 1113 |
> |
} |
| 1114 |
|
/* read BSDF data */ |
| 1115 |
|
sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData")); |
| 1116 |
|
if (!sdata || !next_token(&sdata)) { |
| 1118 |
|
sd->name); |
| 1119 |
|
return SDEformat; |
| 1120 |
|
} |
| 1121 |
< |
sdt->st = load_tree_data(&sdata, ndim); |
| 1122 |
< |
if (sdt->st == NULL) |
| 1121 |
> |
sdt->stc[ct] = load_tree_data(&sdata, ndim); |
| 1122 |
> |
if (sdt->stc[ct] == NULL) |
| 1123 |
|
return SDEformat; |
| 1124 |
|
if (next_token(&sdata)) { /* check for unconsumed characters */ |
| 1125 |
|
sprintf(SDerrorDetail, |
| 1128 |
|
return SDEformat; |
| 1129 |
|
} |
| 1130 |
|
/* flatten branches where possible */ |
| 1131 |
< |
sdt->st = SDsimplifyTre(sdt->st); |
| 1132 |
< |
if (sdt->st == NULL) |
| 1131 |
> |
sdt->stc[ct] = SDsimplifyTre(sdt->stc[ct]); |
| 1132 |
> |
if (sdt->stc[ct] == NULL) |
| 1133 |
|
return SDEinternal; |
| 1134 |
< |
return get_extrema(df); /* compute global quantities */ |
| 1134 |
> |
/* compute global quantities for Y */ |
| 1135 |
> |
return (ct == tt_Y) ? get_extrema(df) : SDEnone; |
| 1136 |
|
} |
| 1137 |
|
|
| 1138 |
|
/* Find minimum value in tree */ |
| 1139 |
|
static float |
| 1140 |
|
SDgetTreMin(const SDNode *st) |
| 1141 |
|
{ |
| 1142 |
< |
float vmin = 1./M_PI; |
| 1142 |
> |
float vmin = FHUGE; |
| 1143 |
|
int n; |
| 1144 |
|
|
| 1145 |
|
if (st->log2GR < 0) { |
| 1167 |
|
SDsubtractTreVal(st->u.t[n], val); |
| 1168 |
|
} else { |
| 1169 |
|
for (n = 1<<(st->ndim*st->log2GR); n--; ) |
| 1170 |
< |
st->u.v[n] -= val; |
| 1170 |
> |
if ((st->u.v[n] -= val) < 0) |
| 1171 |
> |
st->u.v[n] = .0f; |
| 1172 |
|
} |
| 1173 |
|
} |
| 1174 |
|
|
| 1175 |
< |
/* Subtract minimum value from BSDF */ |
| 1175 |
> |
/* Subtract minimum Y value from BSDF */ |
| 1176 |
|
static double |
| 1177 |
< |
subtract_min(SDNode *st) |
| 1177 |
> |
subtract_min_Y(SDNode *st) |
| 1178 |
|
{ |
| 1179 |
< |
float vmin; |
| 1179 |
> |
const float vmaxmin = 1.5/M_PI; |
| 1180 |
> |
float vmin; |
| 1181 |
|
/* be sure to skip unused portion */ |
| 1182 |
< |
if ((st->ndim == 3) & (st->log2GR < 0)) { |
| 1183 |
< |
float v; |
| 1184 |
< |
int i; |
| 1185 |
< |
vmin = 1./M_PI; |
| 1186 |
< |
for (i = 0; i < 4; i++) { |
| 1187 |
< |
v = SDgetTreMin(st->u.t[i]); |
| 1188 |
< |
if (v < vmin) |
| 1189 |
< |
vmin = v; |
| 1190 |
< |
} |
| 1182 |
> |
if (st->ndim == 3) { |
| 1183 |
> |
int n; |
| 1184 |
> |
vmin = vmaxmin; |
| 1185 |
> |
if (st->log2GR < 0) { |
| 1186 |
> |
for (n = 0; n < 8; n += 2) { |
| 1187 |
> |
float v = SDgetTreMin(st->u.t[n]); |
| 1188 |
> |
if (v < vmin) |
| 1189 |
> |
vmin = v; |
| 1190 |
> |
} |
| 1191 |
> |
} else if (st->log2GR) { |
| 1192 |
> |
for (n = 1 << (3*st->log2GR - 1); n--; ) |
| 1193 |
> |
if (st->u.v[n] < vmin) |
| 1194 |
> |
vmin = st->u.v[n]; |
| 1195 |
> |
} else |
| 1196 |
> |
vmin = st->u.v[0]; |
| 1197 |
|
} else /* anisotropic covers entire tree */ |
| 1198 |
|
vmin = SDgetTreMin(st); |
| 1199 |
|
|
| 1200 |
< |
if (vmin <= FTINY) |
| 1201 |
< |
return .0; |
| 1200 |
> |
if ((vmin >= vmaxmin) | (vmin <= .01/M_PI)) |
| 1201 |
> |
return .0; /* not worth bothering about */ |
| 1202 |
|
|
| 1203 |
|
SDsubtractTreVal(st, vmin); |
| 1204 |
|
|
| 1205 |
|
return M_PI * vmin; /* return hemispherical value */ |
| 1206 |
|
} |
| 1207 |
|
|
| 1208 |
+ |
/* Struct used in callback to find RGB extrema */ |
| 1209 |
+ |
typedef struct { |
| 1210 |
+ |
SDNode **stc; /* original Y, u' & v' trees */ |
| 1211 |
+ |
float rgb[3]; /* RGB value */ |
| 1212 |
+ |
SDNode *new_stu, *new_stv; /* replacement u' & v' trees */ |
| 1213 |
+ |
} SDextRGBs; |
| 1214 |
+ |
|
| 1215 |
+ |
/* Callback to find minimum RGB from Y value plus CIE (u',v') trees */ |
| 1216 |
+ |
static int |
| 1217 |
+ |
get_min_RGB(float yval, const double *cmin, double csiz, void *cptr) |
| 1218 |
+ |
{ |
| 1219 |
+ |
SDextRGBs *mp = (SDextRGBs *)cptr; |
| 1220 |
+ |
double cmax[SD_MAXDIM]; |
| 1221 |
+ |
float rgb[3]; |
| 1222 |
+ |
|
| 1223 |
+ |
if (mp->stc[tt_Y]->ndim == 3) { |
| 1224 |
+ |
if (cmin[0] + .5*csiz >= .5) |
| 1225 |
+ |
return 0; /* ignore dead half of isotropic */ |
| 1226 |
+ |
} else |
| 1227 |
+ |
cmax[3] = cmin[3] + csiz; |
| 1228 |
+ |
cmax[0] = cmin[0] + csiz; |
| 1229 |
+ |
cmax[1] = cmin[1] + csiz; |
| 1230 |
+ |
cmax[2] = cmin[2] + csiz; |
| 1231 |
+ |
/* average RGB color over voxel */ |
| 1232 |
+ |
SDyuv2rgb(yval, SDavgTreBox(mp->stc[tt_u], cmin, cmax), |
| 1233 |
+ |
SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb); |
| 1234 |
+ |
/* track smallest components */ |
| 1235 |
+ |
if (rgb[0] < mp->rgb[0]) mp->rgb[0] = rgb[0]; |
| 1236 |
+ |
if (rgb[1] < mp->rgb[1]) mp->rgb[1] = rgb[1]; |
| 1237 |
+ |
if (rgb[2] < mp->rgb[2]) mp->rgb[2] = rgb[2]; |
| 1238 |
+ |
return 0; |
| 1239 |
+ |
} |
| 1240 |
+ |
|
| 1241 |
+ |
/* Callback to build adjusted u' tree */ |
| 1242 |
+ |
static int |
| 1243 |
+ |
adjust_utree(float uprime, const double *cmin, double csiz, void *cptr) |
| 1244 |
+ |
{ |
| 1245 |
+ |
SDextRGBs *mp = (SDextRGBs *)cptr; |
| 1246 |
+ |
double cmax[SD_MAXDIM]; |
| 1247 |
+ |
double yval; |
| 1248 |
+ |
float rgb[3]; |
| 1249 |
+ |
C_COLOR clr; |
| 1250 |
+ |
|
| 1251 |
+ |
if (mp->stc[tt_Y]->ndim == 3) { |
| 1252 |
+ |
if (cmin[0] + .5*csiz >= .5) |
| 1253 |
+ |
return 0; /* ignore dead half of isotropic */ |
| 1254 |
+ |
} else |
| 1255 |
+ |
cmax[3] = cmin[3] + csiz; |
| 1256 |
+ |
cmax[0] = cmin[0] + csiz; |
| 1257 |
+ |
cmax[1] = cmin[1] + csiz; |
| 1258 |
+ |
cmax[2] = cmin[2] + csiz; |
| 1259 |
+ |
/* average RGB color over voxel */ |
| 1260 |
+ |
SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax), uprime, |
| 1261 |
+ |
SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb); |
| 1262 |
+ |
/* subtract minimum (& clamp) */ |
| 1263 |
+ |
if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval; |
| 1264 |
+ |
if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval; |
| 1265 |
+ |
if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval; |
| 1266 |
+ |
c_fromSharpRGB(rgb, &clr); /* compute new u' for adj. RGB */ |
| 1267 |
+ |
uprime = 4.*clr.cx/(-2.*clr.cx + 12.*clr.cy + 3.); |
| 1268 |
+ |
/* assign in new u' tree */ |
| 1269 |
+ |
mp->new_stu = SDsetVoxel(mp->new_stu, mp->stc[tt_Y]->ndim, |
| 1270 |
+ |
cmin, csiz, uprime); |
| 1271 |
+ |
return -(mp->new_stu == NULL); |
| 1272 |
+ |
} |
| 1273 |
+ |
|
| 1274 |
+ |
/* Callback to build adjusted v' tree */ |
| 1275 |
+ |
static int |
| 1276 |
+ |
adjust_vtree(float vprime, const double *cmin, double csiz, void *cptr) |
| 1277 |
+ |
{ |
| 1278 |
+ |
SDextRGBs *mp = (SDextRGBs *)cptr; |
| 1279 |
+ |
double cmax[SD_MAXDIM]; |
| 1280 |
+ |
double yval; |
| 1281 |
+ |
float rgb[3]; |
| 1282 |
+ |
C_COLOR clr; |
| 1283 |
+ |
|
| 1284 |
+ |
if (mp->stc[tt_Y]->ndim == 3) { |
| 1285 |
+ |
if (cmin[0] + .5*csiz >= .5) |
| 1286 |
+ |
return 0; /* ignore dead half of isotropic */ |
| 1287 |
+ |
} else |
| 1288 |
+ |
cmax[3] = cmin[3] + csiz; |
| 1289 |
+ |
cmax[0] = cmin[0] + csiz; |
| 1290 |
+ |
cmax[1] = cmin[1] + csiz; |
| 1291 |
+ |
cmax[2] = cmin[2] + csiz; |
| 1292 |
+ |
/* average RGB color over voxel */ |
| 1293 |
+ |
SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax), |
| 1294 |
+ |
SDavgTreBox(mp->stc[tt_u], cmin, cmax), |
| 1295 |
+ |
vprime, rgb); |
| 1296 |
+ |
/* subtract minimum (& clamp) */ |
| 1297 |
+ |
if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval; |
| 1298 |
+ |
if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval; |
| 1299 |
+ |
if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval; |
| 1300 |
+ |
c_fromSharpRGB(rgb, &clr); /* compute new v' for adj. RGB */ |
| 1301 |
+ |
vprime = 9.*clr.cy/(-2.*clr.cx + 12.*clr.cy + 3.); |
| 1302 |
+ |
/* assign in new v' tree */ |
| 1303 |
+ |
mp->new_stv = SDsetVoxel(mp->new_stv, mp->stc[tt_Y]->ndim, |
| 1304 |
+ |
cmin, csiz, vprime); |
| 1305 |
+ |
return -(mp->new_stv == NULL); |
| 1306 |
+ |
} |
| 1307 |
+ |
|
| 1308 |
+ |
/* Subtract minimum (diffuse) color and return luminance & CIE (x,y) */ |
| 1309 |
+ |
static double |
| 1310 |
+ |
subtract_min_RGB(C_COLOR *cs, SDNode *stc[]) |
| 1311 |
+ |
{ |
| 1312 |
+ |
SDextRGBs my_min; |
| 1313 |
+ |
double ymin; |
| 1314 |
+ |
|
| 1315 |
+ |
my_min.stc = stc; |
| 1316 |
+ |
my_min.rgb[0] = my_min.rgb[1] = my_min.rgb[2] = FHUGE; |
| 1317 |
+ |
my_min.new_stu = my_min.new_stv = NULL; |
| 1318 |
+ |
/* get minimum RGB value */ |
| 1319 |
+ |
SDtraverseTre(stc[tt_Y], NULL, 0, get_min_RGB, &my_min); |
| 1320 |
+ |
/* convert to C_COLOR */ |
| 1321 |
+ |
ymin = c_fromSharpRGB(my_min.rgb, cs); |
| 1322 |
+ |
if ((ymin >= .5*FHUGE) | (ymin <= .01/M_PI)) |
| 1323 |
+ |
return .0; /* close to zero or no tree */ |
| 1324 |
+ |
/* adjust u' & v' trees */ |
| 1325 |
+ |
SDtraverseTre(stc[tt_u], NULL, 0, adjust_utree, &my_min); |
| 1326 |
+ |
SDtraverseTre(stc[tt_v], NULL, 0, adjust_vtree, &my_min); |
| 1327 |
+ |
SDfreeTre(stc[tt_u]); SDfreeTre(stc[tt_v]); |
| 1328 |
+ |
stc[tt_u] = SDsimplifyTre(my_min.new_stu); |
| 1329 |
+ |
stc[tt_v] = SDsimplifyTre(my_min.new_stv); |
| 1330 |
+ |
/* subtract Y & return hemispherical */ |
| 1331 |
+ |
SDsubtractTreVal(stc[tt_Y], ymin); |
| 1332 |
+ |
|
| 1333 |
+ |
return M_PI * ymin; |
| 1334 |
+ |
} |
| 1335 |
+ |
|
| 1336 |
|
/* Extract and separate diffuse portion of BSDF */ |
| 1337 |
|
static void |
| 1338 |
|
extract_diffuse(SDValue *dv, SDSpectralDF *df) |
| 1339 |
|
{ |
| 1340 |
|
int n; |
| 1341 |
+ |
SDTre *sdt; |
| 1342 |
|
|
| 1343 |
|
if (df == NULL || df->ncomp <= 0) { |
| 1344 |
|
dv->spec = c_dfcolor; |
| 1345 |
|
dv->cieY = .0; |
| 1346 |
|
return; |
| 1347 |
|
} |
| 1348 |
< |
dv->spec = df->comp[0].cspec[0]; |
| 1349 |
< |
dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st); |
| 1350 |
< |
/* in case of multiple components */ |
| 1351 |
< |
for (n = df->ncomp; --n; ) { |
| 1352 |
< |
double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st); |
| 1353 |
< |
c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]); |
| 1354 |
< |
dv->cieY += ymin; |
| 1348 |
> |
sdt = (SDTre *)df->comp[0].dist; |
| 1349 |
> |
/* subtract minimum color/grayscale */ |
| 1350 |
> |
if (sdt->stc[tt_u] != NULL && sdt->stc[tt_v] != NULL) { |
| 1351 |
> |
int i = 3*(tt_RGB_coef[1] < .001); |
| 1352 |
> |
while (i--) { /* initialize on first call */ |
| 1353 |
> |
float rgb[3]; |
| 1354 |
> |
rgb[0] = rgb[1] = rgb[2] = .0f; rgb[i] = 1.f; |
| 1355 |
> |
tt_RGB_coef[i] = c_fromSharpRGB(rgb, &tt_RGB_prim[i]); |
| 1356 |
> |
} |
| 1357 |
> |
memcpy(df->comp[0].cspec, tt_RGB_prim, sizeof(tt_RGB_prim)); |
| 1358 |
> |
dv->cieY = subtract_min_RGB(&dv->spec, sdt->stc); |
| 1359 |
> |
} else { |
| 1360 |
> |
df->comp[0].cspec[0] = dv->spec = c_dfcolor; |
| 1361 |
> |
dv->cieY = subtract_min_Y(sdt->stc[tt_Y]); |
| 1362 |
|
} |
| 1363 |
|
df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */ |
| 1364 |
< |
/* make sure everything is set */ |
| 1365 |
< |
c_ccvt(&dv->spec, C_CSXY+C_CSSPEC); |
| 1364 |
> |
|
| 1365 |
> |
c_ccvt(&dv->spec, C_CSXY); /* make sure (x,y) is set */ |
| 1366 |
|
} |
| 1367 |
|
|
| 1368 |
|
/* Load a variable-resolution BSDF tree from an open XML file */ |
| 1395 |
|
/* load BSDF components */ |
| 1396 |
|
for (wld = ezxml_child(wtl, "WavelengthData"); |
| 1397 |
|
wld != NULL; wld = wld->next) { |
| 1398 |
< |
if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")), |
| 1399 |
< |
"Visible")) |
| 1400 |
< |
continue; /* just visible for now */ |
| 1398 |
> |
const char *cnm = ezxml_txt(ezxml_child(wld,"Wavelength")); |
| 1399 |
> |
int ct = -1; |
| 1400 |
> |
if (!strcasecmp(cnm, "Visible")) |
| 1401 |
> |
ct = tt_Y; |
| 1402 |
> |
else if (!strcasecmp(cnm, "CIE-u")) |
| 1403 |
> |
ct = tt_u; |
| 1404 |
> |
else if (!strcasecmp(cnm, "CIE-v")) |
| 1405 |
> |
ct = tt_v; |
| 1406 |
> |
else |
| 1407 |
> |
continue; |
| 1408 |
|
for (wdb = ezxml_child(wld, "WavelengthDataBlock"); |
| 1409 |
|
wdb != NULL; wdb = wdb->next) |
| 1410 |
< |
if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone) |
| 1410 |
> |
if ((ec = load_bsdf_data(sd, wdb, ct, rank)) != SDEnone) |
| 1411 |
|
return ec; |
| 1412 |
|
} |
| 1413 |
|
/* separate diffuse components */ |
| 1414 |
|
extract_diffuse(&sd->rLambFront, sd->rf); |
| 1415 |
|
extract_diffuse(&sd->rLambBack, sd->rb); |
| 1416 |
< |
extract_diffuse(&sd->tLamb, sd->tf); |
| 1416 |
> |
if (sd->tf != NULL) |
| 1417 |
> |
extract_diffuse(&sd->tLamb, sd->tf); |
| 1418 |
> |
if (sd->tb != NULL) |
| 1419 |
> |
extract_diffuse(&sd->tLamb, sd->tb); |
| 1420 |
|
/* return success */ |
| 1421 |
|
return SDEnone; |
| 1422 |
|
} |
| 1423 |
|
|
| 1424 |
|
/* Variable resolution BSDF methods */ |
| 1425 |
< |
SDFunc SDhandleTre = { |
| 1425 |
> |
const SDFunc SDhandleTre = { |
| 1426 |
|
&SDgetTreBSDF, |
| 1427 |
|
&SDqueryTreProjSA, |
| 1428 |
|
&SDgetTreCDist, |