ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.7
Committed: Wed Apr 27 20:03:25 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.6: +467 -32 lines
Log Message:
Initial untested variable-resolution BSDF

File Contents

# User Rev Content
1 greg 3.2 #ifndef lint
2 greg 3.7 static const char RCSid[] = "$Id: bsdf_t.c,v 3.6 2011/04/24 19:39:21 greg Exp $";
3 greg 3.2 #endif
4 greg 3.1 /*
5     * bsdf_t.c
6     *
7     * Definitions for variable-resolution BSDF trees
8     *
9     * Created by Greg Ward on 2/2/11.
10     *
11     */
12    
13 greg 3.3 #include "rtio.h"
14 greg 3.1 #include <stdlib.h>
15 greg 3.3 #include <math.h>
16     #include <ctype.h>
17 greg 3.1 #include "ezxml.h"
18     #include "bsdf.h"
19     #include "bsdf_t.h"
20 greg 3.6 #include "hilbert.h"
21    
22     /* Callback function type for SDtraverseTre() */
23     typedef int SDtreCallback(float val, const double *cmin,
24     double csiz, void *cptr);
25    
26     /* reference width maximum (1.0) */
27 greg 3.7 static const unsigned iwbits = sizeof(unsigned)*4;
28 greg 3.6 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
29 greg 3.7 /* maximum cumulative value */
30     static const unsigned cumlmax = ~0;
31 greg 3.6
32     /* Struct used for our distribution-building callback */
33     typedef struct {
34     int nic; /* number of input coordinates */
35 greg 3.7 unsigned alen; /* current array length */
36     unsigned nall; /* number of allocated entries */
37     unsigned wmin; /* minimum square size so far */
38     unsigned wmax; /* maximum square size */
39 greg 3.6 struct outdir_s {
40     unsigned hent; /* entering Hilbert index */
41     int wid; /* this square size */
42     float bsdf; /* BSDF for this square */
43     } *darr; /* output direction array */
44     } SDdistScaffold;
45 greg 3.1
46     /* Allocate a new scattering distribution node */
47     static SDNode *
48     SDnewNode(int nd, int lg)
49     {
50     SDNode *st;
51    
52     if (nd <= 0) {
53     strcpy(SDerrorDetail, "Zero dimension BSDF node request");
54     return NULL;
55     }
56     if (nd > SD_MAXDIM) {
57     sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
58     nd, SD_MAXDIM);
59     return NULL;
60     }
61     if (lg < 0) {
62     st = (SDNode *)malloc(sizeof(SDNode) +
63 greg 3.7 sizeof(st->u.t[0])*((1<<nd) - 1));
64 greg 3.1 if (st != NULL)
65 greg 3.5 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
66 greg 3.1 } else
67     st = (SDNode *)malloc(sizeof(SDNode) +
68 greg 3.7 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
69 greg 3.1
70     if (st == NULL) {
71     if (lg < 0)
72     sprintf(SDerrorDetail,
73 greg 3.6 "Cannot allocate %d branch BSDF tree", 1<<nd);
74 greg 3.1 else
75     sprintf(SDerrorDetail,
76     "Cannot allocate %d BSDF leaves", 1 << nd*lg);
77     return NULL;
78     }
79     st->ndim = nd;
80     st->log2GR = lg;
81     return st;
82     }
83    
84     /* Free an SD tree */
85     static void
86 greg 3.6 SDfreeTre(SDNode *st)
87 greg 3.1 {
88     int i;
89    
90     if (st == NULL)
91     return;
92     for (i = (st->log2GR < 0) << st->ndim; i--; )
93 greg 3.5 SDfreeTre(st->u.t[i]);
94 greg 3.1 free((void *)st);
95     }
96    
97 greg 3.6 /* Free a variable-resolution BSDF */
98     static void
99     SDFreeBTre(void *p)
100     {
101     SDTre *sdt = (SDTre *)p;
102    
103     if (sdt == NULL)
104     return;
105     SDfreeTre(sdt->st);
106     free(sdt);
107     }
108 greg 3.5
109 greg 3.7 /* Fill branch's worth of grid values from subtree */
110     static void
111     fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
112     {
113     unsigned n = 1 << (shft-1);
114    
115     if (!--nd) { /* end on the line */
116     memcpy(dptr, sptr, sizeof(*dptr)*n);
117     return;
118     }
119     while (n--) /* recurse on each slice */
120     fill_grid_branch(dptr + (n << shft*nd),
121     sptr + (n << (shft-1)*nd), nd, shft);
122     }
123    
124     /* Get pointer at appropriate offset for the given branch */
125     static float *
126     grid_branch_start(SDNode *st, int n)
127     {
128     unsigned skipsiz = 1 << st->log2GR;
129     float *vptr = st->u.v;
130     int i;
131    
132     for (i = st->ndim; i--; skipsiz <<= st->log2GR)
133     if (1<<i & n)
134     vptr += skipsiz >> 1;
135     return vptr;
136     }
137    
138     /* Simplify (consolidate) a tree by flattening uniform depth regions */
139     static SDNode *
140     SDsimplifyTre(SDNode *st)
141     {
142     int match, n;
143    
144     if (st == NULL) /* check for invalid tree */
145     return NULL;
146     if (st->log2GR >= 0) /* grid just returns unaltered */
147     return st;
148     match = 1; /* check if grids below match */
149     for (n = 0; n < 1<<st->ndim; n++) {
150     if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
151     return NULL; /* propogate error up call stack */
152     match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
153     }
154     if (match && st->u.t[0]->log2GR >= 0) {
155     SDNode *stn = SDnewNode(st->ndim, st->u.t[0]->log2GR + 1);
156     if (stn == NULL) /* out of memory? */
157     return st;
158     /* transfer values to new grid */
159     for (n = 1 << st->ndim; n--; )
160     fill_grid_branch(grid_branch_start(stn, n),
161     st->u.t[n]->u.v, st->ndim, st->log2GR);
162     SDfreeTre(st); /* free old tree */
163     st = stn; /* return new one */
164     }
165     return st;
166     }
167    
168     /* Find smallest leaf in tree */
169     static double
170     SDsmallestLeaf(const SDNode *st)
171     {
172     if (st->log2GR < 0) { /* tree branches */
173     double lmin = 1.;
174     int n;
175     for (n = 1<<st->ndim; n--; ) {
176     double lsiz = SDsmallestLeaf(st->u.t[n]);
177     if (lsiz < lmin)
178     lmin = lsiz;
179     }
180     return .5*lmin;
181     }
182     /* leaf grid width */
183     return 1. / (double)(1 << st->log2GR);
184     }
185    
186 greg 3.1 /* Add up N-dimensional hypercube array values over the given box */
187     static double
188 greg 3.7 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
189 greg 3.1 {
190 greg 3.7 const unsigned skipsiz = 1 << nd*shft;
191 greg 3.1 double sum = .0;
192     int i;
193    
194     if (skipsiz == 1)
195     for (i = *imin; i < *imax; i++)
196     sum += va[i];
197     else
198     for (i = *imin; i < *imax; i++)
199     sum += SDiterSum(va + i*skipsiz,
200 greg 3.7 nd-1, shft, imin+1, imax+1);
201 greg 3.1 return sum;
202     }
203    
204     /* Average BSDF leaves over an orthotope defined by the unit hypercube */
205     static double
206 greg 3.6 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
207 greg 3.1 {
208     int imin[SD_MAXDIM], imax[SD_MAXDIM];
209     unsigned n;
210     int i;
211    
212     if (!st)
213     return .0;
214     /* check box limits */
215     for (i = st->ndim; i--; ) {
216     if (bmin[i] >= 1.)
217     return .0;
218     if (bmax[i] <= .0)
219     return .0;
220     if (bmin[i] >= bmax[i])
221     return .0;
222     }
223     if (st->log2GR < 0) { /* iterate on subtree */
224     double sum = .0, wsum = 1e-20;
225     double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
226    
227     for (n = 1 << st->ndim; n--; ) {
228     w = 1.;
229     for (i = st->ndim; i--; ) {
230     sbmin[i] = 2.*bmin[i];
231     sbmax[i] = 2.*bmax[i];
232     if (n & 1<<i) {
233     sbmin[i] -= 1.;
234     sbmax[i] -= 1.;
235     }
236     if (sbmin[i] < .0) sbmin[i] = .0;
237     if (sbmax[i] > 1.) sbmax[i] = 1.;
238     w *= sbmax[i] - sbmin[i];
239     }
240     if (w > 1e-10) {
241 greg 3.6 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
242 greg 3.1 wsum += w;
243     }
244     }
245     return sum / wsum;
246     }
247     n = 1; /* iterate over leaves */
248     for (i = st->ndim; i--; ) {
249 greg 3.7 imin[i] = (bmin[i] <= 0) ? 0
250 greg 3.1 : (int)((1 << st->log2GR)*bmin[i]);
251     imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR)
252     : (int)((1 << st->log2GR)*bmax[i] + .999999);
253     n *= imax[i] - imin[i];
254     }
255     if (!n)
256     return .0;
257    
258 greg 3.7 return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n;
259 greg 3.1 }
260    
261 greg 3.6 /* Recursive call for SDtraverseTre() */
262     static int
263     SDdotravTre(const SDNode *st, const double *pos, int cmask,
264     SDtreCallback *cf, void *cptr,
265     const double *cmin, double csiz)
266     {
267     int rv, rval = 0;
268     double bmin[SD_MAXDIM];
269     int i, n;
270     /* in branches? */
271     if (st->log2GR < 0) {
272     unsigned skipmask = 0;
273    
274     csiz *= .5;
275     for (i = st->ndim; i--; )
276     if (1<<i & cmask)
277     if (pos[i] < cmin[i] + csiz)
278     for (n = 1 << st->ndim; n--; )
279     if (n & 1<<i)
280     skipmask |= 1<<n;
281     else
282     for (n = 1 << st->ndim; n--; )
283     if (!(n & 1<<i))
284     skipmask |= 1<<n;
285     for (n = 1 << st->ndim; n--; ) {
286     if (1<<n & skipmask)
287     continue;
288     for (i = st->ndim; i--; )
289     if (1<<i & n)
290     bmin[i] = cmin[i] + csiz;
291     else
292     bmin[i] = cmin[i];
293    
294     rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
295     cf, cptr, bmin, csiz);
296     if (rv < 0)
297     return rv;
298     }
299     } else { /* else traverse leaves */
300     int clim[SD_MAXDIM][2];
301     int cpos[SD_MAXDIM];
302    
303     if (st->log2GR == 0) /* short cut */
304     return (*cf)(st->u.v[0], cmin, csiz, cptr);
305    
306     csiz /= (double)(1 << st->log2GR);
307     /* assign coord. ranges */
308     for (i = st->ndim; i--; )
309     if (1<<i & cmask) {
310     clim[i][0] = (pos[i] - cmin[i])/csiz;
311     /* check overflow from f.p. error */
312     clim[i][0] -= clim[i][0] >> st->log2GR;
313     clim[i][1] = clim[i][0] + 1;
314     } else {
315     clim[i][0] = 0;
316     clim[i][1] = 1 << st->log2GR;
317     }
318     /* fill in unused dimensions */
319     for (i = SD_MAXDIM; i-- > st->ndim; ) {
320     clim[i][0] = 0; clim[i][1] = 1;
321     }
322     #if (SD_MAXDIM == 4)
323     bmin[0] = cmin[0] + csiz*clim[0][0];
324     for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
325     bmin[1] = cmin[1] + csiz*clim[1][0];
326     for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
327     bmin[2] = cmin[2] + csiz*clim[2][0];
328     for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
329     bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
330     n = cpos[0];
331     for (i = 1; i < st->ndim; i++)
332     n = (n << st->log2GR) + cpos[i];
333     for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
334     rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
335     if (rv < 0)
336     return rv;
337     bmin[3] += csiz;
338     }
339     bmin[2] += csiz;
340     }
341     bmin[1] += csiz;
342     }
343     bmin[0] += csiz;
344     }
345     #else
346     _!_ "broken code segment!"
347     #endif
348     }
349     return rval;
350     }
351    
352     /* Traverse a tree, visiting nodes in a slice that fits partial position */
353     static int
354     SDtraverseTre(const SDNode *st, const double *pos, int cmask,
355     SDtreCallback *cf, void *cptr)
356     {
357     static double czero[SD_MAXDIM];
358     int i;
359     /* check arguments */
360     if ((st == NULL) | (cf == NULL))
361     return -1;
362     for (i = st->ndim; i--; )
363     if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
364     return -1;
365    
366     return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
367     }
368 greg 3.5
369     /* Look up tree value at the given grid position */
370     static float
371 greg 3.6 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
372 greg 3.5 {
373     double spos[SD_MAXDIM];
374     int i, n, t;
375 greg 3.6 /* initialize voxel return */
376     if (hcube) {
377     hcube[i = st->ndim] = 1.;
378     while (i--)
379     hcube[i] = .0;
380     }
381 greg 3.5 /* climb the tree */
382     while (st->log2GR < 0) {
383     n = 0; /* move to appropriate branch */
384 greg 3.6 if (hcube) hcube[st->ndim] *= .5;
385 greg 3.5 for (i = st->ndim; i--; ) {
386     spos[i] = 2.*pos[i];
387     t = (spos[i] >= 1.);
388     n |= t<<i;
389     spos[i] -= (double)t;
390 greg 3.6 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
391 greg 3.5 }
392     st = st->u.t[n]; /* avoids tail recursion */
393     pos = spos;
394     }
395 greg 3.6 if (st->log2GR == 0) /* short cut */
396     return st->u.v[0];
397 greg 3.5 n = t = 0; /* find grid array index */
398     for (i = st->ndim; i--; ) {
399     n += (int)((1<<st->log2GR)*pos[i]) << t;
400     t += st->log2GR;
401     }
402 greg 3.6 if (hcube) { /* compute final hypercube */
403     hcube[st->ndim] /= (double)(1<<st->log2GR);
404     for (i = st->ndim; i--; )
405     hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
406     }
407     return st->u.v[n]; /* no interpolation */
408     }
409    
410     /* Query BSDF value and sample hypercube for the given vectors */
411     static float
412     SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
413     {
414     static const FVECT zvec = {.0, .0, 1.};
415     FVECT rOutVec;
416     double gridPos[4];
417 greg 3.7
418     switch (sdt->sidef) { /* whose side are you on? */
419     case SD_UFRONT:
420     if ((outVec[2] < 0) | (inVec[2] < 0))
421     return -1.;
422     break;
423     case SD_UBACK:
424     if ((outVec[2] > 0) | (inVec[2] > 0))
425     return -1.;
426     break;
427     case SD_XMIT:
428     if ((outVec[2] > 0) == (inVec[2] > 0))
429     return -1.;
430     break;
431     default:
432 greg 3.6 return -1.;
433 greg 3.7 }
434 greg 3.6 /* convert vector coordinates */
435     if (sdt->st->ndim == 3) {
436     spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0]));
437     gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
438     SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
439     } else if (sdt->st->ndim == 4) {
440     SDdisk2square(gridPos, -inVec[0], -inVec[1]);
441     SDdisk2square(gridPos+2, outVec[0], outVec[1]);
442     } else
443     return -1.; /* should be internal error */
444    
445     return SDlookupTre(sdt->st, gridPos, hc);
446 greg 3.5 }
447    
448     /* Compute non-diffuse component for variable-resolution BSDF */
449     static int
450     SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
451 greg 3.6 const FVECT inVec, SDComponent *sdc)
452 greg 3.5 {
453 greg 3.6 /* check arguments */
454     if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
455     || sdc->dist == NULL)
456     return 0;
457 greg 3.5 /* get nearest BSDF value */
458 greg 3.6 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
459     return (coef[0] >= 0); /* monochromatic for now */
460     }
461    
462     /* Callback to build cumulative distribution using SDtraverseTre() */
463     static int
464     build_scaffold(float val, const double *cmin, double csiz, void *cptr)
465     {
466     SDdistScaffold *sp = (SDdistScaffold *)cptr;
467     int wid = csiz*(double)iwmax + .5;
468     bitmask_t bmin[2], bmax[2];
469    
470     cmin += sp->nic; /* skip to output coords */
471     if (wid < sp->wmin) /* new minimum width? */
472     sp->wmin = wid;
473     if (wid > sp->wmax) /* new maximum? */
474     sp->wmax = wid;
475     if (sp->alen >= sp->nall) { /* need more space? */
476     struct outdir_s *ndarr;
477     sp->nall += 8192;
478     ndarr = (struct outdir_s *)realloc(sp->darr,
479     sizeof(struct outdir_s)*sp->nall);
480     if (ndarr == NULL)
481     return -1; /* abort build */
482     sp->darr = ndarr;
483     }
484     /* find Hilbert entry index */
485     bmin[0] = cmin[0]*(double)iwmax + .5;
486     bmin[1] = cmin[1]*(double)iwmax + .5;
487     bmax[0] = bmin[0] + wid;
488     bmax[1] = bmin[1] + wid;
489 greg 3.7 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
490     sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
491 greg 3.6 sp->darr[sp->alen].wid = wid;
492     sp->darr[sp->alen].bsdf = val;
493     sp->alen++; /* on to the next entry */
494     return 0;
495     }
496    
497     /* Scaffold comparison function for qsort -- ascending Hilbert index */
498     static int
499     sscmp(const void *p1, const void *p2)
500     {
501     return (int)((*(const struct outdir_s *)p1).hent -
502     (*(const struct outdir_s *)p2).hent);
503     }
504    
505     /* Create a new cumulative distribution for the given input direction */
506     static SDTreCDst *
507     make_cdist(const SDTre *sdt, const double *pos)
508     {
509     SDdistScaffold myScaffold;
510     SDTreCDst *cd;
511     struct outdir_s *sp;
512     double scale, cursum;
513     int i;
514     /* initialize scaffold */
515     myScaffold.wmin = iwmax;
516     myScaffold.wmax = 0;
517     myScaffold.nic = sdt->st->ndim - 2;
518     myScaffold.alen = 0;
519     myScaffold.nall = 8192;
520     myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
521     myScaffold.nall);
522     if (myScaffold.darr == NULL)
523     return NULL;
524     /* grow the distribution */
525     if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
526     &build_scaffold, &myScaffold) < 0) {
527     free(myScaffold.darr);
528     return NULL;
529     }
530     /* allocate result holder */
531     cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
532     sizeof(cd->carr[0])*myScaffold.alen);
533     if (cd == NULL) {
534     free(myScaffold.darr);
535     return NULL;
536     }
537     /* sort the distribution */
538     qsort(myScaffold.darr, cd->calen = myScaffold.alen,
539     sizeof(struct outdir_s), &sscmp);
540    
541     /* record input range */
542 greg 3.7 scale = myScaffold.wmin / (double)iwmax;
543 greg 3.6 for (i = myScaffold.nic; i--; ) {
544 greg 3.7 cd->clim[i][0] = floor(pos[i]/scale) * scale;
545 greg 3.6 cd->clim[i][1] = cd->clim[i][0] + scale;
546     }
547     cd->max_psa = myScaffold.wmax / (double)iwmax;
548     cd->max_psa *= cd->max_psa * M_PI;
549 greg 3.7 cd->sidef = sdt->sidef;
550 greg 3.6 cd->cTotal = 1e-20; /* compute directional total */
551     sp = myScaffold.darr;
552     for (i = myScaffold.alen; i--; sp++)
553     cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
554     cursum = .0; /* go back and get cumulative values */
555     scale = (double)cumlmax / cd->cTotal;
556     sp = myScaffold.darr;
557     for (i = 0; i < cd->calen; i++, sp++) {
558 greg 3.7 cd->carr[i].hndx = sp->hent;
559 greg 3.6 cd->carr[i].cuml = scale*cursum + .5;
560     cursum += sp->bsdf * (double)sp->wid * sp->wid;
561     }
562     cd->carr[i].hndx = ~0; /* make final entry */
563     cd->carr[i].cuml = cumlmax;
564     cd->cTotal *= M_PI/(double)iwmax/iwmax;
565     /* all done, clean up and return */
566     free(myScaffold.darr);
567     return cd;
568     }
569    
570     /* Find or allocate a cumulative distribution for the given incoming vector */
571     const SDCDst *
572     SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
573     {
574     const SDTre *sdt;
575     double inCoord[2];
576     int vflags;
577     int i;
578     SDTreCDst *cd, *cdlast;
579     /* check arguments */
580     if ((inVec == NULL) | (sdc == NULL) ||
581     (sdt = (SDTre *)sdc->dist) == NULL)
582     return NULL;
583     if (sdt->st->ndim == 3) /* isotropic BSDF? */
584     inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
585     else if (sdt->st->ndim == 4)
586     SDdisk2square(inCoord, -inVec[0], -inVec[1]);
587     else
588     return NULL; /* should be internal error */
589     cdlast = NULL; /* check for direction in cache list */
590     for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
591     cdlast = cd, cd = (SDTreCDst *)cd->next) {
592     for (i = sdt->st->ndim - 2; i--; )
593     if ((cd->clim[i][0] > inCoord[i]) |
594     (inCoord[i] >= cd->clim[i][1]))
595     break;
596     if (i < 0)
597     break; /* means we have a match */
598     }
599     if (cd == NULL) /* need to create new entry? */
600     cdlast = cd = make_cdist(sdt, inCoord);
601     if (cdlast != NULL) { /* move entry to head of cache list */
602     cdlast->next = cd->next;
603     cd->next = sdc->cdList;
604     sdc->cdList = (SDCDst *)cd;
605     }
606     return (SDCDst *)cd; /* ready to go */
607     }
608    
609     /* Query solid angle for vector(s) */
610     static SDError
611     SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
612     int qflags, SDComponent *sdc)
613     {
614     double myPSA[2];
615     /* check arguments */
616     if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
617     sdc->dist == NULL)
618     return SDEargument;
619     /* get projected solid angle(s) */
620     if (v2 != NULL) {
621     const SDTre *sdt = (SDTre *)sdc->dist;
622     double hcube[SD_MAXDIM];
623     if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
624 greg 3.7 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
625     return SDEinternal;
626 greg 3.6 }
627     myPSA[0] = hcube[sdt->st->ndim];
628     myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
629     } else {
630     const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
631     if (cd == NULL)
632     return SDEmemory;
633     myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
634     (cd->clim[1][1] - cd->clim[1][0]);
635     myPSA[1] = cd->max_psa;
636     }
637     switch (qflags) { /* record based on flag settings */
638     case SDqueryVal:
639     *psa = myPSA[0];
640     break;
641     case SDqueryMax:
642     if (myPSA[1] > *psa)
643     *psa = myPSA[1];
644     break;
645     case SDqueryMin+SDqueryMax:
646     if (myPSA[1] > psa[1])
647     psa[1] = myPSA[1];
648     /* fall through */
649     case SDqueryMin:
650     if (myPSA[0] < psa[0])
651     psa[0] = myPSA[0];
652     break;
653     }
654     return SDEnone;
655     }
656    
657     /* Sample cumulative distribution */
658     static SDError
659     SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
660     {
661     const unsigned nBitsC = 4*sizeof(bitmask_t);
662     const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
663     const SDTreCDst *cd = (const SDTreCDst *)cdp;
664 greg 3.7 const unsigned target = randX*cumlmax;
665 greg 3.6 bitmask_t hndx, hcoord[2];
666     double gpos[3];
667     int i, iupper, ilower;
668     /* check arguments */
669     if ((ioVec == NULL) | (cd == NULL))
670     return SDEargument;
671 greg 3.7 if (ioVec[2] > 0) {
672     if (!(cd->sidef & SD_UFRONT))
673     return SDEargument;
674     } else if (!(cd->sidef & SD_UBACK))
675     return SDEargument;
676 greg 3.6 /* binary search to find position */
677     ilower = 0; iupper = cd->calen;
678     while ((i = (iupper + ilower) >> 1) != ilower)
679     if ((long)target >= (long)cd->carr[i].cuml)
680     ilower = i;
681     else
682     iupper = i;
683     /* localize random position */
684 greg 3.7 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
685 greg 3.6 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
686     /* index in longer Hilbert curve */
687     hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
688     * (double)((bitmask_t)1 << nExtraBits);
689     /* convert Hilbert index to vector */
690     hilbert_i2c(2, nBitsC, hndx, hcoord);
691     for (i = 2; i--; )
692     gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
693     (double)((bitmask_t)1 << nBitsC);
694     SDsquare2disk(gpos, gpos[0], gpos[1]);
695 greg 3.7 /* compute Z-coordinate */
696 greg 3.6 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
697     if (gpos[2] > 0) /* paranoia, I hope */
698     gpos[2] = sqrt(gpos[2]);
699 greg 3.7 /* emit from back? */
700     if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
701 greg 3.6 gpos[2] = -gpos[2];
702     VCOPY(ioVec, gpos);
703     return SDEnone;
704 greg 3.5 }
705    
706 greg 3.7 /* Advance pointer to the next non-white character in the string (or nul) */
707     static int
708     next_token(char **spp)
709     {
710     while (isspace(**spp))
711     ++*spp;
712     return **spp;
713     }
714    
715     /* Count words from this point in string to '}' */
716     static int
717     count_values(char *cp)
718     {
719     int n = 0;
720    
721     while (next_token(&cp) != '}') {
722     if (*cp == '{')
723     return -1;
724     while (*cp && !isspace(*cp))
725     ++cp;
726     ++n;
727     cp += (next_token(&cp) == ',');
728     }
729     return n;
730     }
731    
732     /* Load an array of real numbers, returning total */
733     static int
734     load_values(char **spp, float *va, int n)
735     {
736     float *v = va;
737     char *svnext;
738    
739     while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
740     *v++ = atof(*spp);
741     *spp = svnext;
742     *spp += (next_token(spp) == ',');
743     }
744     return v - va;
745     }
746    
747     /* Load BSDF tree data */
748     static SDNode *
749     load_tree_data(char **spp, int nd)
750     {
751     SDNode *st;
752     int n;
753    
754     if (next_token(spp) != '{') {
755     strcpy(SDerrorDetail, "Missing '{' in tensor tree");
756     return NULL;
757     }
758     ++*spp; /* in tree, now */
759     if (next_token(spp) == '{') { /* tree branches */
760     st = SDnewNode(nd, -1);
761     if (st == NULL)
762     return NULL;
763     for (n = 0; n < 1<<nd; n++)
764     if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
765     SDfreeTre(st);
766     return NULL;
767     }
768     } else { /* else load value grid */
769     int bsiz;
770     n = count_values(*spp); /* see how big the grid is */
771     if (n <= 0) {
772     strcpy(SDerrorDetail, "Bad tensor tree data");
773     return NULL;
774     }
775     for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd)
776     if (1<<bsiz == n)
777     break;
778     if (bsiz >= 8*sizeof(size_t)) {
779     strcpy(SDerrorDetail, "Illegal value count in tensor tree");
780     return NULL;
781     }
782     st = SDnewNode(nd, bsiz/nd);
783     if (st == NULL)
784     return NULL;
785     if (load_values(spp, st->u.v, n) != n) {
786     strcpy(SDerrorDetail, "Real format error in tensor tree");
787     SDfreeTre(st);
788     return NULL;
789     }
790     }
791     if (next_token(spp) != '}') {
792     strcpy(SDerrorDetail, "Missing '}' in tensor tree");
793     SDfreeTre(st);
794     return NULL;
795     }
796     ++*spp; /* walk past close and return */
797     *spp += (next_token(spp) == ',');
798     return st;
799     }
800    
801     /* Compute min. proj. solid angle and max. direct hemispherical scattering */
802     static SDError
803     get_extrema(SDSpectralDF *df)
804     {
805     SDNode *st = (*(SDTre *)df->comp[0].dist).st;
806     double stepWidth, dhemi, bmin[4], bmax[4];
807    
808     stepWidth = SDsmallestLeaf(st);
809     df->minProjSA = M_PI*stepWidth*stepWidth;
810     if (stepWidth < .03125)
811     stepWidth = .03125; /* 1/32 resolution good enough */
812     df->maxHemi = .0;
813     if (st->ndim == 3) { /* isotropic BSDF */
814     bmin[1] = bmin[2] = .0;
815     bmax[1] = bmax[2] = 1.;
816     for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
817     bmax[0] = bmin[0] + stepWidth;
818     dhemi = SDavgTreBox(st, bmin, bmax);
819     if (dhemi > df->maxHemi)
820     df->maxHemi = dhemi;
821     }
822     } else if (st->ndim == 4) { /* anisotropic BSDF */
823     bmin[2] = bmin[3] = .0;
824     bmax[2] = bmax[3] = 1.;
825     for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
826     bmax[0] = bmin[0] + stepWidth;
827     for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
828     bmax[1] = bmin[1] + stepWidth;
829     dhemi = SDavgTreBox(st, bmin, bmax);
830     if (dhemi > df->maxHemi)
831     df->maxHemi = dhemi;
832     }
833     }
834     } else
835     return SDEinternal;
836     /* correct hemispherical value */
837     df->maxHemi *= M_PI;
838     return SDEnone;
839     }
840    
841     /* Load BSDF distribution for this wavelength */
842     static SDError
843     load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
844     {
845     SDSpectralDF *df;
846     SDTre *sdt;
847     char *sdata;
848     int i;
849     /* allocate BSDF component */
850     sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
851     if (!sdata)
852     return SDEnone;
853     /*
854     * Remember that front and back are reversed from WINDOW 6 orientations
855     */
856     if (!strcasecmp(sdata, "Transmission")) {
857     if (sd->tf != NULL)
858     SDfreeSpectralDF(sd->tf);
859     if ((sd->tf = SDnewSpectralDF(1)) == NULL)
860     return SDEmemory;
861     df = sd->tf;
862     } else if (!strcasecmp(sdata, "Reflection Front")) {
863     if (sd->rb != NULL) /* note back-front reversal */
864     SDfreeSpectralDF(sd->rb);
865     if ((sd->rb = SDnewSpectralDF(1)) == NULL)
866     return SDEmemory;
867     df = sd->rb;
868     } else if (!strcasecmp(sdata, "Reflection Back")) {
869     if (sd->rf != NULL) /* note front-back reversal */
870     SDfreeSpectralDF(sd->rf);
871     if ((sd->rf = SDnewSpectralDF(1)) == NULL)
872     return SDEmemory;
873     df = sd->rf;
874     } else
875     return SDEnone;
876     /* XXX should also check "ScatteringDataType" for consistency? */
877     /* get angle bases */
878     sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
879     if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
880     sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
881     !sdata ? "Missing" : "Unsupported", sd->name);
882     return !sdata ? SDEformat : SDEsupport;
883     }
884     /* allocate BSDF tree */
885     sdt = (SDTre *)malloc(sizeof(SDTre));
886     if (sdt == NULL)
887     return SDEmemory;
888     if (df == sd->rf)
889     sdt->sidef = SD_UFRONT;
890     else if (df == sd->rb)
891     sdt->sidef = SD_UBACK;
892     else
893     sdt->sidef = SD_XMIT;
894     sdt->st = NULL;
895     df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
896     df->comp[0].dist = sdt;
897     df->comp[0].func = &SDhandleTre;
898     /* read BSDF data */
899     sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
900     if (!sdata || !next_token(&sdata)) {
901     sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
902     sd->name);
903     return SDEformat;
904     }
905     sdt->st = load_tree_data(&sdata, ndim);
906     if (sdt->st == NULL)
907     return SDEformat;
908     if (next_token(&sdata)) { /* check for unconsumed characters */
909     sprintf(SDerrorDetail,
910     "Extra characters at end of ScatteringData in '%s'",
911     sd->name);
912     return SDEformat;
913     }
914     /* flatten branches where possible */
915     sdt->st = SDsimplifyTre(sdt->st);
916     if (sdt->st == NULL)
917     return SDEinternal;
918     return get_extrema(df); /* compute global quantities */
919     }
920    
921     /* Find minimum value in tree */
922     static float
923     SDgetTreMin(const SDNode *st)
924     {
925     float vmin = 1./M_PI;
926     int n;
927    
928     if (st->log2GR < 0) {
929     for (n = 1<<st->ndim; n--; ) {
930     float v = SDgetTreMin(st->u.t[n]);
931     if (v < vmin)
932     vmin = v;
933     }
934     } else {
935     for (n = 1<<(st->ndim*st->log2GR); n--; )
936     if (st->u.v[n] < vmin)
937     vmin = st->u.v[n];
938     }
939     return vmin;
940     }
941    
942     /* Subtract the given value from all tree nodes */
943     static void
944     SDsubtractTreVal(SDNode *st, float val)
945     {
946     int n;
947    
948     if (st->log2GR < 0) {
949     for (n = 1<<st->ndim; n--; )
950     SDsubtractTreVal(st->u.t[n], val);
951     } else {
952     for (n = 1<<(st->ndim*st->log2GR); n--; )
953     st->u.v[n] -= val;
954     }
955     }
956    
957     /* Subtract minimum value from BSDF */
958     static double
959     subtract_min(SDNode *st)
960     {
961     float vmin;
962     /* be sure to skip unused portion */
963     if ((st->ndim == 3) & (st->log2GR < 0)) {
964     float v;
965     int i;
966     vmin = 1./M_PI;
967     for (i = 0; i < 4; i++) {
968     v = SDgetTreMin(st->u.t[i]);
969     if (v < vmin)
970     vmin = v;
971     }
972     } else /* anisotropic covers entire tree */
973     vmin = SDgetTreMin(st);
974    
975     if (vmin <= FTINY)
976     return .0;
977    
978     SDsubtractTreMin(st, vmin);
979    
980     return M_PI * vmin; /* return hemispherical value */
981     }
982    
983     /* Extract and separate diffuse portion of BSDF */
984     static void
985     extract_diffuse(SDValue *dv, SDSpectralDF *df)
986     {
987     int n;
988    
989     if (df == NULL || df->ncomp <= 0) {
990     dv->spec = c_dfcolor;
991     dv->cieY = .0;
992     return;
993     }
994     dv->spec = df->comp[0].cspec[0];
995     dv->cieY = subtract_min((*(SDTre *)df->comp[n].dist).st);
996     /* in case of multiple components */
997     for (n = df->ncomp; --n; ) {
998     double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
999     c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1000     dv->cieY += ymin;
1001     }
1002     df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1003     /* make sure everything is set */
1004     c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1005     }
1006    
1007 greg 3.1 /* Load a variable-resolution BSDF tree from an open XML file */
1008     SDError
1009 greg 3.4 SDloadTre(SDData *sd, ezxml_t wtl)
1010 greg 3.1 {
1011 greg 3.7 SDError ec;
1012     ezxml_t wld, wdb;
1013     int rank;
1014     char *txt;
1015     /* basic checks and tensor rank */
1016     txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1017     "DataDefinition"), "IncidentDataStructure"));
1018     if (txt == NULL || !*txt) {
1019     sprintf(SDerrorDetail,
1020     "BSDF \"%s\": missing IncidentDataStructure",
1021     sd->name);
1022     return SDEformat;
1023     }
1024     if (!strcasecmp(txt, "TensorTree3"))
1025     rank = 3;
1026     else if (!strcasecmp(txt, "TensorTree4"))
1027     rank = 4;
1028     else {
1029     sprintf(SDerrorDetail,
1030     "BSDF \"%s\": unsupported IncidentDataStructure",
1031     sd->name);
1032     return SDEsupport;
1033     }
1034     /* load BSDF components */
1035     for (wld = ezxml_child(wtl, "WavelengthData");
1036     wld != NULL; wld = wld->next) {
1037     if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1038     "Visible"))
1039     continue; /* just visible for now */
1040     for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1041     wdb != NULL; wdb = wdb->next)
1042     if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1043     return ec;
1044     }
1045     /* separate diffuse components */
1046     extract_diffuse(&sd->rLambFront, sd->rf);
1047     extract_diffuse(&sd->rLambBack, sd->rb);
1048     extract_diffuse(&sd->tLamb, sd->tf);
1049     /* return success */
1050     return SDEnone;
1051 greg 3.1 }
1052    
1053     /* Variable resolution BSDF methods */
1054 greg 3.5 SDFunc SDhandleTre = {
1055     &SDgetTreBSDF,
1056 greg 3.6 &SDqueryTreProjSA,
1057     &SDgetTreCDist,
1058     &SDsampTreCDist,
1059     &SDFreeBTre,
1060 greg 3.1 };