ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.49
Committed: Sat Mar 27 15:53:01 2021 UTC (3 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.48: +3 -3 lines
Log Message:
fix: corrected priority for calculating diffuse transmittance

File Contents

# User Rev Content
1 greg 3.2 #ifndef lint
2 greg 3.49 static const char RCSid[] = "$Id: bsdf_t.c,v 3.48 2020/05/14 19:20:13 greg Exp $";
3 greg 3.2 #endif
4 greg 3.1 /*
5     * bsdf_t.c
6     *
7     * Definitions for variable-resolution BSDF trees
8     *
9     * Created by Greg Ward on 2/2/11.
10     *
11     */
12    
13 greg 3.17 #define _USE_MATH_DEFINES
14 greg 3.3 #include "rtio.h"
15 greg 3.1 #include <stdlib.h>
16 greg 3.3 #include <math.h>
17     #include <ctype.h>
18 greg 3.1 #include "ezxml.h"
19     #include "bsdf.h"
20     #include "bsdf_t.h"
21 greg 3.6 #include "hilbert.h"
22    
23     /* Callback function type for SDtraverseTre() */
24 greg 3.37 typedef int SDtreCallback(float val, const double *cmin, double csiz,
25     void *cptr);
26 greg 3.6 /* reference width maximum (1.0) */
27 greg 3.7 static const unsigned iwbits = sizeof(unsigned)*4;
28 greg 3.23 static const unsigned iwmax = 1<<(sizeof(unsigned)*4);
29 greg 3.7 /* maximum cumulative value */
30     static const unsigned cumlmax = ~0;
31 greg 3.15 /* constant z-vector */
32     static const FVECT zvec = {.0, .0, 1.};
33 greg 3.22 /* quantization value */
34     static double quantum = 1./256.;
35 greg 3.37 /* our RGB primaries */
36     static C_COLOR tt_RGB_prim[3];
37     static float tt_RGB_coef[3];
38    
39     static const double czero[SD_MAXDIM];
40    
41     enum {tt_Y, tt_u, tt_v}; /* tree components (tt_Y==0) */
42 greg 3.6
43     /* Struct used for our distribution-building callback */
44     typedef struct {
45 greg 3.24 short nic; /* number of input coordinates */
46     short rev; /* reversing query */
47 greg 3.7 unsigned alen; /* current array length */
48     unsigned nall; /* number of allocated entries */
49     unsigned wmin; /* minimum square size so far */
50     unsigned wmax; /* maximum square size */
51 greg 3.6 struct outdir_s {
52     unsigned hent; /* entering Hilbert index */
53     int wid; /* this square size */
54     float bsdf; /* BSDF for this square */
55     } *darr; /* output direction array */
56     } SDdistScaffold;
57 greg 3.1
58     /* Allocate a new scattering distribution node */
59     static SDNode *
60     SDnewNode(int nd, int lg)
61     {
62     SDNode *st;
63    
64     if (nd <= 0) {
65     strcpy(SDerrorDetail, "Zero dimension BSDF node request");
66     return NULL;
67     }
68     if (nd > SD_MAXDIM) {
69     sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
70     nd, SD_MAXDIM);
71     return NULL;
72     }
73     if (lg < 0) {
74     st = (SDNode *)malloc(sizeof(SDNode) +
75 greg 3.7 sizeof(st->u.t[0])*((1<<nd) - 1));
76 greg 3.12 if (st == NULL) {
77 greg 3.1 sprintf(SDerrorDetail,
78 greg 3.6 "Cannot allocate %d branch BSDF tree", 1<<nd);
79 greg 3.12 return NULL;
80     }
81     memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
82     } else {
83     st = (SDNode *)malloc(sizeof(SDNode) +
84     sizeof(st->u.v[0])*((1 << nd*lg) - 1));
85     if (st == NULL) {
86 greg 3.1 sprintf(SDerrorDetail,
87     "Cannot allocate %d BSDF leaves", 1 << nd*lg);
88 greg 3.12 return NULL;
89     }
90 greg 3.1 }
91     st->ndim = nd;
92     st->log2GR = lg;
93     return st;
94     }
95    
96     /* Free an SD tree */
97     static void
98 greg 3.6 SDfreeTre(SDNode *st)
99 greg 3.1 {
100 greg 3.12 int n;
101 greg 3.1
102     if (st == NULL)
103     return;
104 greg 3.12 for (n = (st->log2GR < 0) << st->ndim; n--; )
105     SDfreeTre(st->u.t[n]);
106 greg 3.14 free(st);
107 greg 3.1 }
108    
109 greg 3.6 /* Free a variable-resolution BSDF */
110     static void
111     SDFreeBTre(void *p)
112     {
113     SDTre *sdt = (SDTre *)p;
114    
115     if (sdt == NULL)
116     return;
117 greg 3.37 SDfreeTre(sdt->stc[tt_Y]);
118     SDfreeTre(sdt->stc[tt_u]);
119     SDfreeTre(sdt->stc[tt_v]);
120 greg 3.6 free(sdt);
121     }
122 greg 3.5
123 greg 3.7 /* Fill branch's worth of grid values from subtree */
124     static void
125     fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
126     {
127     unsigned n = 1 << (shft-1);
128    
129     if (!--nd) { /* end on the line */
130     memcpy(dptr, sptr, sizeof(*dptr)*n);
131     return;
132     }
133     while (n--) /* recurse on each slice */
134     fill_grid_branch(dptr + (n << shft*nd),
135     sptr + (n << (shft-1)*nd), nd, shft);
136     }
137    
138     /* Get pointer at appropriate offset for the given branch */
139     static float *
140     grid_branch_start(SDNode *st, int n)
141     {
142 greg 3.14 unsigned skipsiz = 1 << (st->log2GR - 1);
143 greg 3.7 float *vptr = st->u.v;
144     int i;
145    
146 greg 3.14 for (i = st->ndim; i--; skipsiz <<= st->log2GR)
147     if (1<<i & n)
148     vptr += skipsiz;
149 greg 3.7 return vptr;
150     }
151    
152     /* Simplify (consolidate) a tree by flattening uniform depth regions */
153     static SDNode *
154     SDsimplifyTre(SDNode *st)
155     {
156     int match, n;
157    
158     if (st == NULL) /* check for invalid tree */
159     return NULL;
160     if (st->log2GR >= 0) /* grid just returns unaltered */
161     return st;
162     match = 1; /* check if grids below match */
163     for (n = 0; n < 1<<st->ndim; n++) {
164     if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
165     return NULL; /* propogate error up call stack */
166     match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
167     }
168 greg 3.9 if (match && (match = st->u.t[0]->log2GR) >= 0) {
169     SDNode *stn = SDnewNode(st->ndim, match + 1);
170 greg 3.7 if (stn == NULL) /* out of memory? */
171     return st;
172     /* transfer values to new grid */
173     for (n = 1 << st->ndim; n--; )
174     fill_grid_branch(grid_branch_start(stn, n),
175 greg 3.9 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
176 greg 3.7 SDfreeTre(st); /* free old tree */
177     st = stn; /* return new one */
178     }
179     return st;
180     }
181    
182 greg 3.37 /* Assign the given voxel in tree (produces no grid nodes) */
183     static SDNode *
184     SDsetVoxel(SDNode *sroot, int nd, const double *tmin, const double tsiz, float val)
185     {
186     double ctrk[SD_MAXDIM];
187     double csiz = 1.;
188     SDNode *st;
189     int i, n;
190     /* check arguments */
191     for (i = nd; i-- > 0; )
192     if ((tmin[i] < .0) | (tmin[i] >= 1.-FTINY))
193     break;
194     if ((i >= 0) | (nd <= 0) | (tsiz <= FTINY) | (tsiz > 1.+FTINY) |
195     (sroot != NULL && sroot->ndim != nd)) {
196     SDfreeTre(sroot);
197     return NULL;
198     }
199     if (tsiz >= 1.-FTINY) { /* special case when tree is a leaf */
200     SDfreeTre(sroot);
201     if ((sroot = SDnewNode(nd, 0)) != NULL)
202     sroot->u.v[0] = val;
203     return sroot;
204     }
205     /* make sure we have branching root */
206     if (sroot != NULL && sroot->log2GR >= 0) {
207     SDfreeTre(sroot); sroot = NULL;
208     }
209     if (sroot == NULL && (sroot = SDnewNode(nd, -1)) == NULL)
210     return NULL;
211     st = sroot; /* climb/grow tree */
212     memset(ctrk, 0, sizeof(ctrk));
213     for ( ; ; ) {
214     csiz *= .5; /* find appropriate branch */
215     n = 0;
216     for (i = nd; i--; )
217     if (ctrk[i]+csiz <= tmin[i]+FTINY) {
218     ctrk[i] += csiz;
219     n |= 1 << i;
220     }
221     /* reached desired voxel? */
222     if (csiz <= tsiz+FTINY) {
223     SDfreeTre(st->u.t[n]);
224     st = st->u.t[n] = SDnewNode(nd, 0);
225     break;
226     }
227     /* else grow tree as needed */
228     if (st->u.t[n] != NULL && st->u.t[n]->log2GR >= 0) {
229     SDfreeTre(st->u.t[n]); st->u.t[n] = NULL;
230     }
231     if (st->u.t[n] == NULL)
232     st->u.t[n] = SDnewNode(nd, -1);
233     if ((st = st->u.t[n]) == NULL)
234     break;
235     }
236     if (st == NULL) {
237     SDfreeTre(sroot);
238     return NULL;
239     }
240     st->u.v[0] = val; /* assign leaf and return root */
241     return sroot;
242     }
243    
244 greg 3.7 /* Find smallest leaf in tree */
245     static double
246     SDsmallestLeaf(const SDNode *st)
247     {
248     if (st->log2GR < 0) { /* tree branches */
249     double lmin = 1.;
250     int n;
251     for (n = 1<<st->ndim; n--; ) {
252     double lsiz = SDsmallestLeaf(st->u.t[n]);
253     if (lsiz < lmin)
254     lmin = lsiz;
255     }
256     return .5*lmin;
257     }
258     /* leaf grid width */
259     return 1. / (double)(1 << st->log2GR);
260     }
261    
262 greg 3.1 /* Add up N-dimensional hypercube array values over the given box */
263     static double
264 greg 3.7 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
265 greg 3.1 {
266 greg 3.10 const unsigned skipsiz = 1 << --nd*shft;
267 greg 3.1 double sum = .0;
268     int i;
269 greg 3.15
270     va += *imin * skipsiz;
271    
272 greg 3.1 if (skipsiz == 1)
273     for (i = *imin; i < *imax; i++)
274 greg 3.15 sum += *va++;
275 greg 3.1 else
276 greg 3.15 for (i = *imin; i < *imax; i++, va += skipsiz)
277     sum += SDiterSum(va, nd, shft, imin+1, imax+1);
278 greg 3.1 return sum;
279     }
280    
281     /* Average BSDF leaves over an orthotope defined by the unit hypercube */
282     static double
283 greg 3.6 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
284 greg 3.1 {
285     unsigned n;
286     int i;
287    
288     if (!st)
289     return .0;
290     /* check box limits */
291     for (i = st->ndim; i--; ) {
292     if (bmin[i] >= 1.)
293     return .0;
294 greg 3.13 if (bmax[i] <= 0)
295 greg 3.1 return .0;
296     if (bmin[i] >= bmax[i])
297     return .0;
298     }
299     if (st->log2GR < 0) { /* iterate on subtree */
300     double sum = .0, wsum = 1e-20;
301     double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
302     for (n = 1 << st->ndim; n--; ) {
303     w = 1.;
304     for (i = st->ndim; i--; ) {
305     sbmin[i] = 2.*bmin[i];
306     sbmax[i] = 2.*bmax[i];
307     if (n & 1<<i) {
308     sbmin[i] -= 1.;
309     sbmax[i] -= 1.;
310     }
311     if (sbmin[i] < .0) sbmin[i] = .0;
312     if (sbmax[i] > 1.) sbmax[i] = 1.;
313 greg 3.13 if (sbmin[i] >= sbmax[i]) {
314     w = .0;
315     break;
316     }
317 greg 3.1 w *= sbmax[i] - sbmin[i];
318     }
319     if (w > 1e-10) {
320 greg 3.6 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
321 greg 3.1 wsum += w;
322     }
323     }
324     return sum / wsum;
325 greg 3.15 } else { /* iterate over leaves */
326     int imin[SD_MAXDIM], imax[SD_MAXDIM];
327    
328     n = 1;
329     for (i = st->ndim; i--; ) {
330     imin[i] = (bmin[i] <= 0) ? 0 :
331     (int)((1 << st->log2GR)*bmin[i]);
332     imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) :
333     (int)((1 << st->log2GR)*bmax[i] + .999999);
334     n *= imax[i] - imin[i];
335     }
336     if (n)
337     return SDiterSum(st->u.v, st->ndim,
338     st->log2GR, imin, imax) / (double)n;
339 greg 3.1 }
340 greg 3.15 return .0;
341 greg 3.1 }
342    
343 greg 3.6 /* Recursive call for SDtraverseTre() */
344     static int
345     SDdotravTre(const SDNode *st, const double *pos, int cmask,
346     SDtreCallback *cf, void *cptr,
347     const double *cmin, double csiz)
348     {
349     int rv, rval = 0;
350     double bmin[SD_MAXDIM];
351     int i, n;
352 greg 3.37 /* paranoia */
353     if (st == NULL)
354     return 0;
355 greg 3.6 /* in branches? */
356     if (st->log2GR < 0) {
357     unsigned skipmask = 0;
358     csiz *= .5;
359     for (i = st->ndim; i--; )
360 greg 3.32 if (1<<i & cmask) {
361 greg 3.6 if (pos[i] < cmin[i] + csiz)
362 greg 3.13 for (n = 1 << st->ndim; n--; ) {
363 greg 3.6 if (n & 1<<i)
364     skipmask |= 1<<n;
365 greg 3.13 }
366 greg 3.6 else
367 greg 3.13 for (n = 1 << st->ndim; n--; ) {
368 greg 3.6 if (!(n & 1<<i))
369     skipmask |= 1<<n;
370 greg 3.13 }
371 greg 3.32 }
372 greg 3.6 for (n = 1 << st->ndim; n--; ) {
373     if (1<<n & skipmask)
374     continue;
375     for (i = st->ndim; i--; )
376     if (1<<i & n)
377     bmin[i] = cmin[i] + csiz;
378     else
379     bmin[i] = cmin[i];
380    
381     rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
382     cf, cptr, bmin, csiz);
383     if (rv < 0)
384     return rv;
385     }
386     } else { /* else traverse leaves */
387     int clim[SD_MAXDIM][2];
388     int cpos[SD_MAXDIM];
389    
390     if (st->log2GR == 0) /* short cut */
391     return (*cf)(st->u.v[0], cmin, csiz, cptr);
392    
393     csiz /= (double)(1 << st->log2GR);
394     /* assign coord. ranges */
395     for (i = st->ndim; i--; )
396     if (1<<i & cmask) {
397     clim[i][0] = (pos[i] - cmin[i])/csiz;
398     /* check overflow from f.p. error */
399     clim[i][0] -= clim[i][0] >> st->log2GR;
400     clim[i][1] = clim[i][0] + 1;
401     } else {
402     clim[i][0] = 0;
403     clim[i][1] = 1 << st->log2GR;
404     }
405     #if (SD_MAXDIM == 4)
406     bmin[0] = cmin[0] + csiz*clim[0][0];
407     for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
408     bmin[1] = cmin[1] + csiz*clim[1][0];
409     for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
410     bmin[2] = cmin[2] + csiz*clim[2][0];
411 greg 3.16 if (st->ndim == 3) {
412     cpos[2] = clim[2][0];
413 greg 3.6 n = cpos[0];
414 greg 3.16 for (i = 1; i < 3; i++)
415 greg 3.6 n = (n << st->log2GR) + cpos[i];
416 greg 3.16 for ( ; cpos[2] < clim[2][1]; cpos[2]++) {
417 greg 3.6 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
418     if (rv < 0)
419     return rv;
420 greg 3.16 bmin[2] += csiz;
421     }
422     } else {
423     for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
424     bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
425     n = cpos[0];
426     for (i = 1; i < 4; i++)
427     n = (n << st->log2GR) + cpos[i];
428     for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
429     rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
430     if (rv < 0)
431     return rv;
432     bmin[3] += csiz;
433     }
434     bmin[2] += csiz;
435 greg 3.6 }
436     }
437     bmin[1] += csiz;
438     }
439     bmin[0] += csiz;
440     }
441     #else
442     _!_ "broken code segment!"
443     #endif
444     }
445     return rval;
446     }
447    
448     /* Traverse a tree, visiting nodes in a slice that fits partial position */
449     static int
450     SDtraverseTre(const SDNode *st, const double *pos, int cmask,
451     SDtreCallback *cf, void *cptr)
452     {
453     int i;
454     /* check arguments */
455     if ((st == NULL) | (cf == NULL))
456     return -1;
457     for (i = st->ndim; i--; )
458     if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
459     return -1;
460    
461     return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
462     }
463 greg 3.5
464     /* Look up tree value at the given grid position */
465     static float
466 greg 3.6 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
467 greg 3.5 {
468     double spos[SD_MAXDIM];
469     int i, n, t;
470 greg 3.6 /* initialize voxel return */
471     if (hcube) {
472     hcube[i = st->ndim] = 1.;
473     while (i--)
474     hcube[i] = .0;
475     }
476 greg 3.5 /* climb the tree */
477 greg 3.37 while (st != NULL && st->log2GR < 0) {
478 greg 3.5 n = 0; /* move to appropriate branch */
479 greg 3.6 if (hcube) hcube[st->ndim] *= .5;
480 greg 3.5 for (i = st->ndim; i--; ) {
481     spos[i] = 2.*pos[i];
482     t = (spos[i] >= 1.);
483     n |= t<<i;
484     spos[i] -= (double)t;
485 greg 3.6 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
486 greg 3.5 }
487     st = st->u.t[n]; /* avoids tail recursion */
488     pos = spos;
489     }
490 greg 3.37 if (st == NULL) /* should never happen? */
491     return .0;
492 greg 3.6 if (st->log2GR == 0) /* short cut */
493     return st->u.v[0];
494 greg 3.5 n = t = 0; /* find grid array index */
495     for (i = st->ndim; i--; ) {
496     n += (int)((1<<st->log2GR)*pos[i]) << t;
497     t += st->log2GR;
498     }
499 greg 3.6 if (hcube) { /* compute final hypercube */
500     hcube[st->ndim] /= (double)(1<<st->log2GR);
501     for (i = st->ndim; i--; )
502     hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
503     }
504     return st->u.v[n]; /* no interpolation */
505     }
506    
507 greg 3.37 /* Convert CIE (Y,u',v') color to our RGB */
508     static void
509     SDyuv2rgb(double yval, double uprime, double vprime, float rgb[3])
510     {
511     const double dfact = 1./(6.*uprime - 16.*vprime + 12.);
512     C_COLOR cxy;
513    
514     c_cset(&cxy, 9.*uprime*dfact, 4.*vprime*dfact);
515     c_toSharpRGB(&cxy, yval, rgb);
516     }
517    
518 greg 3.6 /* Query BSDF value and sample hypercube for the given vectors */
519 greg 3.37 static int
520     SDqueryTre(const SDTre *sdt, float *coef,
521     const FVECT outVec, const FVECT inVec, double *hc)
522 greg 3.6 {
523 greg 3.24 const RREAL *vtmp;
524 greg 3.37 float yval;
525 greg 3.24 FVECT rOutVec;
526     double gridPos[4];
527 greg 3.7
528 greg 3.37 if (sdt->stc[tt_Y] == NULL) /* paranoia, I hope */
529     return 0;
530    
531 greg 3.7 switch (sdt->sidef) { /* whose side are you on? */
532 greg 3.24 case SD_FREFL:
533 greg 3.7 if ((outVec[2] < 0) | (inVec[2] < 0))
534 greg 3.37 return 0;
535 greg 3.7 break;
536 greg 3.24 case SD_BREFL:
537 greg 3.7 if ((outVec[2] > 0) | (inVec[2] > 0))
538 greg 3.37 return 0;
539 greg 3.7 break;
540 greg 3.24 case SD_FXMIT:
541     if (outVec[2] > 0) {
542     if (inVec[2] > 0)
543 greg 3.37 return 0;
544 greg 3.24 vtmp = outVec; outVec = inVec; inVec = vtmp;
545     } else if (inVec[2] < 0)
546 greg 3.37 return 0;
547 greg 3.24 break;
548     case SD_BXMIT:
549     if (inVec[2] > 0) {
550     if (outVec[2] > 0)
551 greg 3.37 return 0;
552 greg 3.24 vtmp = outVec; outVec = inVec; inVec = vtmp;
553     } else if (outVec[2] < 0)
554 greg 3.37 return 0;
555 greg 3.7 break;
556     default:
557 greg 3.37 return 0;
558 greg 3.7 }
559 greg 3.6 /* convert vector coordinates */
560 greg 3.37 if (sdt->stc[tt_Y]->ndim == 3) {
561 greg 3.15 spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0]));
562 greg 3.31 gridPos[0] = (.5-FTINY) -
563     .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
564 greg 3.6 SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
565 greg 3.37 } else if (sdt->stc[tt_Y]->ndim == 4) {
566 greg 3.6 SDdisk2square(gridPos, -inVec[0], -inVec[1]);
567     SDdisk2square(gridPos+2, outVec[0], outVec[1]);
568     } else
569 greg 3.37 return 0; /* should be internal error */
570     /* get BSDF value */
571     yval = SDlookupTre(sdt->stc[tt_Y], gridPos, hc);
572 greg 3.41 if (coef == NULL) /* just getting hypercube? */
573     return 1;
574 greg 3.42 if (sdt->stc[tt_u] == NULL || sdt->stc[tt_v] == NULL) {
575 greg 3.41 *coef = yval;
576 greg 3.37 return 1; /* no color */
577     }
578     /* else decode color */
579     SDyuv2rgb(yval, SDlookupTre(sdt->stc[tt_u], gridPos, NULL),
580     SDlookupTre(sdt->stc[tt_v], gridPos, NULL), coef);
581     coef[0] *= tt_RGB_coef[0];
582     coef[1] *= tt_RGB_coef[1];
583     coef[2] *= tt_RGB_coef[2];
584     return 3;
585 greg 3.5 }
586    
587     /* Compute non-diffuse component for variable-resolution BSDF */
588     static int
589     SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
590 greg 3.6 const FVECT inVec, SDComponent *sdc)
591 greg 3.5 {
592 greg 3.6 /* check arguments */
593     if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
594     || sdc->dist == NULL)
595     return 0;
596 greg 3.5 /* get nearest BSDF value */
597 greg 3.37 return SDqueryTre((SDTre *)sdc->dist, coef, outVec, inVec, NULL);
598 greg 3.6 }
599    
600     /* Callback to build cumulative distribution using SDtraverseTre() */
601     static int
602     build_scaffold(float val, const double *cmin, double csiz, void *cptr)
603     {
604     SDdistScaffold *sp = (SDdistScaffold *)cptr;
605     int wid = csiz*(double)iwmax + .5;
606 greg 3.25 double revcmin[2];
607 greg 3.6 bitmask_t bmin[2], bmax[2];
608    
609 greg 3.25 if (sp->rev) { /* need to reverse sense? */
610     revcmin[0] = 1. - cmin[0] - csiz;
611     revcmin[1] = 1. - cmin[1] - csiz;
612     cmin = revcmin;
613     } else {
614     cmin += sp->nic; /* else skip to output coords */
615     }
616 greg 3.6 if (wid < sp->wmin) /* new minimum width? */
617     sp->wmin = wid;
618     if (wid > sp->wmax) /* new maximum? */
619     sp->wmax = wid;
620     if (sp->alen >= sp->nall) { /* need more space? */
621     struct outdir_s *ndarr;
622 greg 3.35 sp->nall = (int)(1.5*sp->nall) + 256;
623 greg 3.6 ndarr = (struct outdir_s *)realloc(sp->darr,
624     sizeof(struct outdir_s)*sp->nall);
625 greg 3.12 if (ndarr == NULL) {
626     sprintf(SDerrorDetail,
627     "Cannot grow scaffold to %u entries", sp->nall);
628 greg 3.6 return -1; /* abort build */
629 greg 3.12 }
630 greg 3.6 sp->darr = ndarr;
631     }
632     /* find Hilbert entry index */
633     bmin[0] = cmin[0]*(double)iwmax + .5;
634     bmin[1] = cmin[1]*(double)iwmax + .5;
635 greg 3.10 bmax[0] = bmin[0] + wid-1;
636     bmax[1] = bmin[1] + wid-1;
637 greg 3.7 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
638     sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
639 greg 3.6 sp->darr[sp->alen].wid = wid;
640     sp->darr[sp->alen].bsdf = val;
641     sp->alen++; /* on to the next entry */
642     return 0;
643     }
644    
645     /* Scaffold comparison function for qsort -- ascending Hilbert index */
646     static int
647     sscmp(const void *p1, const void *p2)
648     {
649 greg 3.10 unsigned h1 = (*(const struct outdir_s *)p1).hent;
650     unsigned h2 = (*(const struct outdir_s *)p2).hent;
651    
652     if (h1 > h2)
653     return 1;
654     if (h1 < h2)
655     return -1;
656     return 0;
657 greg 3.6 }
658    
659     /* Create a new cumulative distribution for the given input direction */
660     static SDTreCDst *
661 greg 3.24 make_cdist(const SDTre *sdt, const double *invec, int rev)
662 greg 3.6 {
663     SDdistScaffold myScaffold;
664 greg 3.24 double pos[4];
665     int cmask;
666 greg 3.6 SDTreCDst *cd;
667     struct outdir_s *sp;
668     double scale, cursum;
669     int i;
670     /* initialize scaffold */
671     myScaffold.wmin = iwmax;
672     myScaffold.wmax = 0;
673 greg 3.37 myScaffold.nic = sdt->stc[tt_Y]->ndim - 2;
674 greg 3.24 myScaffold.rev = rev;
675 greg 3.6 myScaffold.alen = 0;
676 greg 3.12 myScaffold.nall = 512;
677 greg 3.6 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
678     myScaffold.nall);
679     if (myScaffold.darr == NULL)
680     return NULL;
681 greg 3.24 /* set up traversal */
682     cmask = (1<<myScaffold.nic) - 1;
683     for (i = myScaffold.nic; i--; )
684     pos[i+2*rev] = invec[i];
685     cmask <<= 2*rev;
686 greg 3.6 /* grow the distribution */
687 greg 3.37 if (SDtraverseTre(sdt->stc[tt_Y], pos, cmask,
688     build_scaffold, &myScaffold) < 0) {
689 greg 3.6 free(myScaffold.darr);
690     return NULL;
691     }
692     /* allocate result holder */
693     cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
694     sizeof(cd->carr[0])*myScaffold.alen);
695     if (cd == NULL) {
696 greg 3.12 sprintf(SDerrorDetail,
697     "Cannot allocate %u entry cumulative distribution",
698     myScaffold.alen);
699 greg 3.6 free(myScaffold.darr);
700     return NULL;
701     }
702 greg 3.15 cd->isodist = (myScaffold.nic == 1);
703 greg 3.6 /* sort the distribution */
704     qsort(myScaffold.darr, cd->calen = myScaffold.alen,
705 greg 3.37 sizeof(struct outdir_s), sscmp);
706 greg 3.6
707     /* record input range */
708 greg 3.7 scale = myScaffold.wmin / (double)iwmax;
709 greg 3.6 for (i = myScaffold.nic; i--; ) {
710 greg 3.26 cd->clim[i][0] = floor(pos[i+2*rev]/scale) * scale;
711 greg 3.6 cd->clim[i][1] = cd->clim[i][0] + scale;
712     }
713 greg 3.15 if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */
714     cd->clim[1][0] = cd->clim[0][0];
715     cd->clim[1][1] = cd->clim[0][1];
716     }
717 greg 3.6 cd->max_psa = myScaffold.wmax / (double)iwmax;
718     cd->max_psa *= cd->max_psa * M_PI;
719 greg 3.24 if (rev)
720     cd->sidef = (sdt->sidef==SD_BXMIT) ? SD_FXMIT : SD_BXMIT;
721     else
722     cd->sidef = sdt->sidef;
723 greg 3.6 cd->cTotal = 1e-20; /* compute directional total */
724     sp = myScaffold.darr;
725     for (i = myScaffold.alen; i--; sp++)
726     cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
727     cursum = .0; /* go back and get cumulative values */
728     scale = (double)cumlmax / cd->cTotal;
729     sp = myScaffold.darr;
730     for (i = 0; i < cd->calen; i++, sp++) {
731 greg 3.7 cd->carr[i].hndx = sp->hent;
732 greg 3.6 cd->carr[i].cuml = scale*cursum + .5;
733     cursum += sp->bsdf * (double)sp->wid * sp->wid;
734     }
735     cd->carr[i].hndx = ~0; /* make final entry */
736     cd->carr[i].cuml = cumlmax;
737     cd->cTotal *= M_PI/(double)iwmax/iwmax;
738     /* all done, clean up and return */
739     free(myScaffold.darr);
740     return cd;
741     }
742    
743     /* Find or allocate a cumulative distribution for the given incoming vector */
744     const SDCDst *
745     SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
746     {
747 greg 3.48 unsigned long cacheLeft = SDmaxCache;
748 greg 3.6 const SDTre *sdt;
749 greg 3.22 double inCoord[2];
750 greg 3.6 int i;
751 greg 3.24 int mode;
752 greg 3.48 SDTreCDst *cd, *cdlast, *cdlimit;
753 greg 3.6 /* check arguments */
754     if ((inVec == NULL) | (sdc == NULL) ||
755     (sdt = (SDTre *)sdc->dist) == NULL)
756     return NULL;
757 greg 3.24 switch (mode = sdt->sidef) { /* check direction */
758     case SD_FREFL:
759     if (inVec[2] < 0)
760     return NULL;
761     break;
762     case SD_BREFL:
763     if (inVec[2] > 0)
764     return NULL;
765     break;
766     case SD_FXMIT:
767     if (inVec[2] < 0)
768     mode = SD_BXMIT;
769     break;
770     case SD_BXMIT:
771     if (inVec[2] > 0)
772     mode = SD_FXMIT;
773     break;
774     default:
775     return NULL;
776     }
777 greg 3.37 if (sdt->stc[tt_Y]->ndim == 3) { /* isotropic BSDF? */
778 greg 3.24 if (mode != sdt->sidef) /* XXX unhandled reciprocity */
779     return &SDemptyCD;
780 greg 3.31 inCoord[0] = (.5-FTINY) -
781     .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
782 greg 3.37 } else if (sdt->stc[tt_Y]->ndim == 4) {
783 greg 3.25 if (mode != sdt->sidef) /* use reciprocity? */
784     SDdisk2square(inCoord, inVec[0], inVec[1]);
785     else
786     SDdisk2square(inCoord, -inVec[0], -inVec[1]);
787 greg 3.21 } else
788 greg 3.6 return NULL; /* should be internal error */
789 greg 3.21 /* quantize to avoid f.p. errors */
790 greg 3.37 for (i = sdt->stc[tt_Y]->ndim - 2; i--; )
791 greg 3.21 inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum;
792 greg 3.48 cdlast = cdlimit = NULL; /* check for direction in cache list */
793 greg 3.44 /* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */
794 greg 3.6 for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
795 greg 3.20 cdlast = cd, cd = cd->next) {
796 greg 3.48 if (cacheLeft) { /* check cache size limit */
797     long csiz = sizeof(SDTreCDst) +
798     sizeof(cd->carr[0])*cd->calen;
799     if (cacheLeft > csiz)
800     cacheLeft -= csiz;
801     else {
802     cdlimit = cdlast;
803     cacheLeft = 0;
804     }
805     }
806 greg 3.24 if (cd->sidef != mode)
807     continue;
808 greg 3.37 for (i = sdt->stc[tt_Y]->ndim - 2; i--; )
809 greg 3.6 if ((cd->clim[i][0] > inCoord[i]) |
810     (inCoord[i] >= cd->clim[i][1]))
811     break;
812     if (i < 0)
813     break; /* means we have a match */
814     }
815 greg 3.48 if (cd == NULL) { /* need to create new entry? */
816     if (cdlimit != NULL) /* exceeded cache size limit? */
817     while ((cd = cdlimit->next) != NULL) {
818     cdlimit->next = cd->next;
819     free(cd);
820     }
821 greg 3.24 cdlast = cd = make_cdist(sdt, inCoord, mode != sdt->sidef);
822 greg 3.48 }
823 greg 3.6 if (cdlast != NULL) { /* move entry to head of cache list */
824     cdlast->next = cd->next;
825 greg 3.20 cd->next = (SDTreCDst *)sdc->cdList;
826 greg 3.6 sdc->cdList = (SDCDst *)cd;
827     }
828 greg 3.44 /* END MUTEX LOCK */
829 greg 3.6 return (SDCDst *)cd; /* ready to go */
830     }
831    
832     /* Query solid angle for vector(s) */
833     static SDError
834     SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
835     int qflags, SDComponent *sdc)
836     {
837     double myPSA[2];
838     /* check arguments */
839     if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
840     sdc->dist == NULL)
841     return SDEargument;
842     /* get projected solid angle(s) */
843     if (v2 != NULL) {
844     const SDTre *sdt = (SDTre *)sdc->dist;
845 greg 3.36 double hcube[SD_MAXDIM+1];
846 greg 3.37 if (!SDqueryTre(sdt, NULL, v1, v2, hcube)) {
847 greg 3.7 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
848     return SDEinternal;
849 greg 3.6 }
850 greg 3.37 myPSA[0] = hcube[sdt->stc[tt_Y]->ndim];
851 greg 3.6 myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
852     } else {
853     const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
854     if (cd == NULL)
855 greg 3.29 myPSA[0] = myPSA[1] = 0;
856     else {
857     myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
858     (cd->clim[1][1] - cd->clim[1][0]);
859     myPSA[1] = cd->max_psa;
860     }
861 greg 3.6 }
862     switch (qflags) { /* record based on flag settings */
863     case SDqueryVal:
864     *psa = myPSA[0];
865     break;
866     case SDqueryMax:
867     if (myPSA[1] > *psa)
868     *psa = myPSA[1];
869     break;
870     case SDqueryMin+SDqueryMax:
871     if (myPSA[1] > psa[1])
872     psa[1] = myPSA[1];
873     /* fall through */
874     case SDqueryMin:
875 greg 3.30 if ((myPSA[0] > 0) & (myPSA[0] < psa[0]))
876 greg 3.6 psa[0] = myPSA[0];
877     break;
878     }
879     return SDEnone;
880     }
881    
882     /* Sample cumulative distribution */
883     static SDError
884     SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
885     {
886     const unsigned nBitsC = 4*sizeof(bitmask_t);
887     const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
888     const SDTreCDst *cd = (const SDTreCDst *)cdp;
889 greg 3.7 const unsigned target = randX*cumlmax;
890 greg 3.6 bitmask_t hndx, hcoord[2];
891 greg 3.15 double gpos[3], rotangle;
892 greg 3.6 int i, iupper, ilower;
893     /* check arguments */
894     if ((ioVec == NULL) | (cd == NULL))
895     return SDEargument;
896 greg 3.24 if (!cd->sidef)
897     return SDEnone; /* XXX should never happen */
898 greg 3.7 if (ioVec[2] > 0) {
899 greg 3.24 if ((cd->sidef != SD_FREFL) & (cd->sidef != SD_FXMIT))
900 greg 3.7 return SDEargument;
901 greg 3.24 } else if ((cd->sidef != SD_BREFL) & (cd->sidef != SD_BXMIT))
902 greg 3.7 return SDEargument;
903 greg 3.6 /* binary search to find position */
904     ilower = 0; iupper = cd->calen;
905     while ((i = (iupper + ilower) >> 1) != ilower)
906 greg 3.19 if (target >= cd->carr[i].cuml)
907 greg 3.6 ilower = i;
908     else
909     iupper = i;
910     /* localize random position */
911 greg 3.7 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
912 greg 3.6 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
913     /* index in longer Hilbert curve */
914     hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
915     * (double)((bitmask_t)1 << nExtraBits);
916     /* convert Hilbert index to vector */
917     hilbert_i2c(2, nBitsC, hndx, hcoord);
918     for (i = 2; i--; )
919     gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
920     (double)((bitmask_t)1 << nBitsC);
921     SDsquare2disk(gpos, gpos[0], gpos[1]);
922 greg 3.7 /* compute Z-coordinate */
923 greg 3.6 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
924 greg 3.32 gpos[2] = sqrt(gpos[2]*(gpos[2]>0));
925 greg 3.7 /* emit from back? */
926 greg 3.24 if ((cd->sidef == SD_BREFL) | (cd->sidef == SD_FXMIT))
927 greg 3.6 gpos[2] = -gpos[2];
928 greg 3.34 if (cd->isodist) { /* rotate isotropic sample */
929 greg 3.15 rotangle = atan2(-ioVec[1],-ioVec[0]);
930 greg 3.34 spinvector(ioVec, gpos, zvec, rotangle);
931 greg 3.15 } else
932     VCOPY(ioVec, gpos);
933 greg 3.6 return SDEnone;
934 greg 3.5 }
935    
936 greg 3.7 /* Advance pointer to the next non-white character in the string (or nul) */
937     static int
938     next_token(char **spp)
939     {
940     while (isspace(**spp))
941     ++*spp;
942     return **spp;
943     }
944    
945 greg 3.12 /* Advance pointer past matching token (or any token if c==0) */
946 greg 3.43 #define eat_token(spp,c) ((next_token(spp)==(c)) ^ !(c) ? *(*(spp))++ : 0)
947 greg 3.9
948 greg 3.7 /* Count words from this point in string to '}' */
949     static int
950     count_values(char *cp)
951     {
952     int n = 0;
953    
954 greg 3.9 while (next_token(&cp) != '}' && *cp) {
955 greg 3.11 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
956     if (!*++cp)
957     break;
958 greg 3.7 ++n;
959 greg 3.9 eat_token(&cp, ',');
960 greg 3.7 }
961     return n;
962     }
963    
964     /* Load an array of real numbers, returning total */
965     static int
966     load_values(char **spp, float *va, int n)
967     {
968     float *v = va;
969     char *svnext;
970    
971     while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
972 greg 3.33 if ((*v++ = atof(*spp)) < 0)
973     v[-1] = 0;
974 greg 3.7 *spp = svnext;
975 greg 3.9 eat_token(spp, ',');
976 greg 3.7 }
977     return v - va;
978     }
979    
980     /* Load BSDF tree data */
981     static SDNode *
982     load_tree_data(char **spp, int nd)
983     {
984     SDNode *st;
985     int n;
986    
987 greg 3.9 if (!eat_token(spp, '{')) {
988 greg 3.7 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
989     return NULL;
990     }
991     if (next_token(spp) == '{') { /* tree branches */
992     st = SDnewNode(nd, -1);
993     if (st == NULL)
994     return NULL;
995     for (n = 0; n < 1<<nd; n++)
996     if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
997     SDfreeTre(st);
998     return NULL;
999     }
1000     } else { /* else load value grid */
1001     int bsiz;
1002     n = count_values(*spp); /* see how big the grid is */
1003 greg 3.15 for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd)
1004 greg 3.7 if (1<<bsiz == n)
1005     break;
1006     if (bsiz >= 8*sizeof(size_t)) {
1007     strcpy(SDerrorDetail, "Illegal value count in tensor tree");
1008     return NULL;
1009     }
1010     st = SDnewNode(nd, bsiz/nd);
1011     if (st == NULL)
1012     return NULL;
1013     if (load_values(spp, st->u.v, n) != n) {
1014     strcpy(SDerrorDetail, "Real format error in tensor tree");
1015     SDfreeTre(st);
1016     return NULL;
1017     }
1018     }
1019 greg 3.9 if (!eat_token(spp, '}')) {
1020 greg 3.7 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
1021     SDfreeTre(st);
1022     return NULL;
1023     }
1024 greg 3.9 eat_token(spp, ',');
1025 greg 3.7 return st;
1026     }
1027    
1028     /* Compute min. proj. solid angle and max. direct hemispherical scattering */
1029     static SDError
1030     get_extrema(SDSpectralDF *df)
1031     {
1032 greg 3.37 SDNode *st = (*(SDTre *)df->comp[0].dist).stc[tt_Y];
1033 greg 3.7 double stepWidth, dhemi, bmin[4], bmax[4];
1034    
1035     stepWidth = SDsmallestLeaf(st);
1036 greg 3.22 if (quantum > stepWidth) /* adjust quantization factor */
1037     quantum = stepWidth;
1038 greg 3.7 df->minProjSA = M_PI*stepWidth*stepWidth;
1039     if (stepWidth < .03125)
1040     stepWidth = .03125; /* 1/32 resolution good enough */
1041     df->maxHemi = .0;
1042     if (st->ndim == 3) { /* isotropic BSDF */
1043     bmin[1] = bmin[2] = .0;
1044     bmax[1] = bmax[2] = 1.;
1045     for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
1046     bmax[0] = bmin[0] + stepWidth;
1047     dhemi = SDavgTreBox(st, bmin, bmax);
1048     if (dhemi > df->maxHemi)
1049     df->maxHemi = dhemi;
1050     }
1051     } else if (st->ndim == 4) { /* anisotropic BSDF */
1052     bmin[2] = bmin[3] = .0;
1053     bmax[2] = bmax[3] = 1.;
1054     for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
1055     bmax[0] = bmin[0] + stepWidth;
1056     for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
1057     bmax[1] = bmin[1] + stepWidth;
1058     dhemi = SDavgTreBox(st, bmin, bmax);
1059     if (dhemi > df->maxHemi)
1060     df->maxHemi = dhemi;
1061     }
1062     }
1063     } else
1064     return SDEinternal;
1065     /* correct hemispherical value */
1066     df->maxHemi *= M_PI;
1067     return SDEnone;
1068     }
1069    
1070     /* Load BSDF distribution for this wavelength */
1071     static SDError
1072 greg 3.37 load_bsdf_data(SDData *sd, ezxml_t wdb, int ct, int ndim)
1073 greg 3.7 {
1074     SDSpectralDF *df;
1075     SDTre *sdt;
1076     char *sdata;
1077     /* allocate BSDF component */
1078     sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
1079     if (!sdata)
1080     return SDEnone;
1081     /*
1082     * Remember that front and back are reversed from WINDOW 6 orientations
1083     */
1084 greg 3.24 if (!strcasecmp(sdata, "Transmission Front")) {
1085 greg 3.37 if (sd->tb == NULL && (sd->tb = SDnewSpectralDF(1)) == NULL)
1086 greg 3.25 return SDEmemory;
1087     df = sd->tb;
1088     } else if (!strcasecmp(sdata, "Transmission Back")) {
1089 greg 3.37 if (sd->tf == NULL && (sd->tf = SDnewSpectralDF(1)) == NULL)
1090 greg 3.7 return SDEmemory;
1091     df = sd->tf;
1092     } else if (!strcasecmp(sdata, "Reflection Front")) {
1093 greg 3.37 if (sd->rb == NULL && (sd->rb = SDnewSpectralDF(1)) == NULL)
1094 greg 3.7 return SDEmemory;
1095     df = sd->rb;
1096     } else if (!strcasecmp(sdata, "Reflection Back")) {
1097 greg 3.37 if (sd->rf == NULL && (sd->rf = SDnewSpectralDF(1)) == NULL)
1098 greg 3.7 return SDEmemory;
1099     df = sd->rf;
1100     } else
1101     return SDEnone;
1102     /* get angle bases */
1103     sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
1104     if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
1105     sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
1106     !sdata ? "Missing" : "Unsupported", sd->name);
1107     return !sdata ? SDEformat : SDEsupport;
1108     }
1109 greg 3.37 if (df->comp[0].dist == NULL) { /* need to allocate BSDF tree? */
1110     sdt = (SDTre *)malloc(sizeof(SDTre));
1111     if (sdt == NULL)
1112     return SDEmemory;
1113     if (df == sd->rf)
1114     sdt->sidef = SD_FREFL;
1115     else if (df == sd->rb)
1116     sdt->sidef = SD_BREFL;
1117     else if (df == sd->tf)
1118     sdt->sidef = SD_FXMIT;
1119     else /* df == sd->tb */
1120     sdt->sidef = SD_BXMIT;
1121     sdt->stc[tt_Y] = sdt->stc[tt_u] = sdt->stc[tt_v] = NULL;
1122     df->comp[0].dist = sdt;
1123     df->comp[0].func = &SDhandleTre;
1124     } else {
1125     sdt = (SDTre *)df->comp[0].dist;
1126     if (sdt->stc[ct] != NULL) {
1127     SDfreeTre(sdt->stc[ct]);
1128     sdt->stc[ct] = NULL;
1129     }
1130     }
1131 greg 3.7 /* read BSDF data */
1132     sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
1133     if (!sdata || !next_token(&sdata)) {
1134     sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
1135     sd->name);
1136     return SDEformat;
1137     }
1138 greg 3.37 sdt->stc[ct] = load_tree_data(&sdata, ndim);
1139     if (sdt->stc[ct] == NULL)
1140 greg 3.7 return SDEformat;
1141     if (next_token(&sdata)) { /* check for unconsumed characters */
1142     sprintf(SDerrorDetail,
1143     "Extra characters at end of ScatteringData in '%s'",
1144     sd->name);
1145     return SDEformat;
1146     }
1147     /* flatten branches where possible */
1148 greg 3.37 sdt->stc[ct] = SDsimplifyTre(sdt->stc[ct]);
1149     if (sdt->stc[ct] == NULL)
1150 greg 3.7 return SDEinternal;
1151 greg 3.37 /* compute global quantities for Y */
1152     return (ct == tt_Y) ? get_extrema(df) : SDEnone;
1153 greg 3.7 }
1154    
1155     /* Find minimum value in tree */
1156     static float
1157     SDgetTreMin(const SDNode *st)
1158     {
1159 greg 3.10 float vmin = FHUGE;
1160 greg 3.7 int n;
1161    
1162     if (st->log2GR < 0) {
1163     for (n = 1<<st->ndim; n--; ) {
1164     float v = SDgetTreMin(st->u.t[n]);
1165     if (v < vmin)
1166     vmin = v;
1167     }
1168     } else {
1169     for (n = 1<<(st->ndim*st->log2GR); n--; )
1170     if (st->u.v[n] < vmin)
1171     vmin = st->u.v[n];
1172     }
1173     return vmin;
1174     }
1175    
1176     /* Subtract the given value from all tree nodes */
1177     static void
1178     SDsubtractTreVal(SDNode *st, float val)
1179     {
1180     int n;
1181    
1182     if (st->log2GR < 0) {
1183     for (n = 1<<st->ndim; n--; )
1184     SDsubtractTreVal(st->u.t[n], val);
1185     } else {
1186     for (n = 1<<(st->ndim*st->log2GR); n--; )
1187 greg 3.15 if ((st->u.v[n] -= val) < 0)
1188     st->u.v[n] = .0f;
1189 greg 3.7 }
1190     }
1191    
1192 greg 3.37 /* Subtract minimum Y value from BSDF */
1193 greg 3.7 static double
1194 greg 3.37 subtract_min_Y(SDNode *st)
1195 greg 3.7 {
1196 greg 3.46 const float vmaxmin = 1.5/M_PI;
1197     float vmin;
1198 greg 3.7 /* be sure to skip unused portion */
1199 greg 3.10 if (st->ndim == 3) {
1200     int n;
1201 greg 3.46 vmin = vmaxmin;
1202 greg 3.10 if (st->log2GR < 0) {
1203 greg 3.15 for (n = 0; n < 8; n += 2) {
1204 greg 3.10 float v = SDgetTreMin(st->u.t[n]);
1205     if (v < vmin)
1206     vmin = v;
1207     }
1208     } else if (st->log2GR) {
1209     for (n = 1 << (3*st->log2GR - 1); n--; )
1210     if (st->u.v[n] < vmin)
1211     vmin = st->u.v[n];
1212     } else
1213     vmin = st->u.v[0];
1214 greg 3.7 } else /* anisotropic covers entire tree */
1215     vmin = SDgetTreMin(st);
1216    
1217 greg 3.46 if ((vmin >= vmaxmin) | (vmin <= .01/M_PI))
1218 greg 3.39 return .0; /* not worth bothering about */
1219 greg 3.7
1220 greg 3.8 SDsubtractTreVal(st, vmin);
1221 greg 3.7
1222     return M_PI * vmin; /* return hemispherical value */
1223     }
1224    
1225 greg 3.37 /* Struct used in callback to find RGB extrema */
1226     typedef struct {
1227     SDNode **stc; /* original Y, u' & v' trees */
1228     float rgb[3]; /* RGB value */
1229     SDNode *new_stu, *new_stv; /* replacement u' & v' trees */
1230     } SDextRGBs;
1231    
1232     /* Callback to find minimum RGB from Y value plus CIE (u',v') trees */
1233     static int
1234     get_min_RGB(float yval, const double *cmin, double csiz, void *cptr)
1235     {
1236     SDextRGBs *mp = (SDextRGBs *)cptr;
1237     double cmax[SD_MAXDIM];
1238     float rgb[3];
1239    
1240     if (mp->stc[tt_Y]->ndim == 3) {
1241     if (cmin[0] + .5*csiz >= .5)
1242     return 0; /* ignore dead half of isotropic */
1243     } else
1244     cmax[3] = cmin[3] + csiz;
1245     cmax[0] = cmin[0] + csiz;
1246     cmax[1] = cmin[1] + csiz;
1247     cmax[2] = cmin[2] + csiz;
1248     /* average RGB color over voxel */
1249     SDyuv2rgb(yval, SDavgTreBox(mp->stc[tt_u], cmin, cmax),
1250     SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb);
1251     /* track smallest components */
1252     if (rgb[0] < mp->rgb[0]) mp->rgb[0] = rgb[0];
1253     if (rgb[1] < mp->rgb[1]) mp->rgb[1] = rgb[1];
1254     if (rgb[2] < mp->rgb[2]) mp->rgb[2] = rgb[2];
1255     return 0;
1256     }
1257    
1258     /* Callback to build adjusted u' tree */
1259     static int
1260     adjust_utree(float uprime, const double *cmin, double csiz, void *cptr)
1261     {
1262     SDextRGBs *mp = (SDextRGBs *)cptr;
1263     double cmax[SD_MAXDIM];
1264 greg 3.38 double yval;
1265 greg 3.37 float rgb[3];
1266 greg 3.38 C_COLOR clr;
1267 greg 3.37
1268     if (mp->stc[tt_Y]->ndim == 3) {
1269     if (cmin[0] + .5*csiz >= .5)
1270     return 0; /* ignore dead half of isotropic */
1271     } else
1272     cmax[3] = cmin[3] + csiz;
1273     cmax[0] = cmin[0] + csiz;
1274     cmax[1] = cmin[1] + csiz;
1275     cmax[2] = cmin[2] + csiz;
1276     /* average RGB color over voxel */
1277 greg 3.38 SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax), uprime,
1278 greg 3.37 SDavgTreBox(mp->stc[tt_v], cmin, cmax), rgb);
1279 greg 3.38 /* subtract minimum (& clamp) */
1280     if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval;
1281     if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval;
1282     if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval;
1283     c_fromSharpRGB(rgb, &clr); /* compute new u' for adj. RGB */
1284     uprime = 4.*clr.cx/(-2.*clr.cx + 12.*clr.cy + 3.);
1285 greg 3.37 /* assign in new u' tree */
1286     mp->new_stu = SDsetVoxel(mp->new_stu, mp->stc[tt_Y]->ndim,
1287     cmin, csiz, uprime);
1288     return -(mp->new_stu == NULL);
1289     }
1290    
1291     /* Callback to build adjusted v' tree */
1292     static int
1293     adjust_vtree(float vprime, const double *cmin, double csiz, void *cptr)
1294     {
1295     SDextRGBs *mp = (SDextRGBs *)cptr;
1296     double cmax[SD_MAXDIM];
1297 greg 3.38 double yval;
1298 greg 3.37 float rgb[3];
1299 greg 3.38 C_COLOR clr;
1300 greg 3.37
1301     if (mp->stc[tt_Y]->ndim == 3) {
1302     if (cmin[0] + .5*csiz >= .5)
1303     return 0; /* ignore dead half of isotropic */
1304     } else
1305     cmax[3] = cmin[3] + csiz;
1306     cmax[0] = cmin[0] + csiz;
1307     cmax[1] = cmin[1] + csiz;
1308     cmax[2] = cmin[2] + csiz;
1309     /* average RGB color over voxel */
1310 greg 3.38 SDyuv2rgb(yval=SDavgTreBox(mp->stc[tt_Y], cmin, cmax),
1311 greg 3.37 SDavgTreBox(mp->stc[tt_u], cmin, cmax),
1312     vprime, rgb);
1313 greg 3.38 /* subtract minimum (& clamp) */
1314     if ((rgb[0] -= mp->rgb[0]) < 1e-5*yval) rgb[0] = 1e-5*yval;
1315     if ((rgb[1] -= mp->rgb[1]) < 1e-5*yval) rgb[1] = 1e-5*yval;
1316     if ((rgb[2] -= mp->rgb[2]) < 1e-5*yval) rgb[2] = 1e-5*yval;
1317     c_fromSharpRGB(rgb, &clr); /* compute new v' for adj. RGB */
1318     vprime = 9.*clr.cy/(-2.*clr.cx + 12.*clr.cy + 3.);
1319 greg 3.37 /* assign in new v' tree */
1320     mp->new_stv = SDsetVoxel(mp->new_stv, mp->stc[tt_Y]->ndim,
1321     cmin, csiz, vprime);
1322     return -(mp->new_stv == NULL);
1323     }
1324    
1325     /* Subtract minimum (diffuse) color and return luminance & CIE (x,y) */
1326     static double
1327     subtract_min_RGB(C_COLOR *cs, SDNode *stc[])
1328     {
1329     SDextRGBs my_min;
1330     double ymin;
1331    
1332     my_min.stc = stc;
1333     my_min.rgb[0] = my_min.rgb[1] = my_min.rgb[2] = FHUGE;
1334     my_min.new_stu = my_min.new_stv = NULL;
1335     /* get minimum RGB value */
1336     SDtraverseTre(stc[tt_Y], NULL, 0, get_min_RGB, &my_min);
1337 greg 3.40 /* convert to C_COLOR */
1338     ymin = c_fromSharpRGB(my_min.rgb, cs);
1339 greg 3.46 if ((ymin >= .5*FHUGE) | (ymin <= .01/M_PI))
1340     return .0; /* close to zero or no tree */
1341 greg 3.40 /* adjust u' & v' trees */
1342 greg 3.37 SDtraverseTre(stc[tt_u], NULL, 0, adjust_utree, &my_min);
1343     SDtraverseTre(stc[tt_v], NULL, 0, adjust_vtree, &my_min);
1344     SDfreeTre(stc[tt_u]); SDfreeTre(stc[tt_v]);
1345     stc[tt_u] = SDsimplifyTre(my_min.new_stu);
1346     stc[tt_v] = SDsimplifyTre(my_min.new_stv);
1347 greg 3.40 /* subtract Y & return hemispherical */
1348 greg 3.37 SDsubtractTreVal(stc[tt_Y], ymin);
1349 greg 3.40
1350     return M_PI * ymin;
1351 greg 3.37 }
1352    
1353 greg 3.7 /* Extract and separate diffuse portion of BSDF */
1354     static void
1355     extract_diffuse(SDValue *dv, SDSpectralDF *df)
1356     {
1357     int n;
1358 greg 3.37 SDTre *sdt;
1359 greg 3.7
1360     if (df == NULL || df->ncomp <= 0) {
1361     dv->spec = c_dfcolor;
1362     dv->cieY = .0;
1363     return;
1364     }
1365 greg 3.37 sdt = (SDTre *)df->comp[0].dist;
1366     /* subtract minimum color/grayscale */
1367     if (sdt->stc[tt_u] != NULL && sdt->stc[tt_v] != NULL) {
1368     int i = 3*(tt_RGB_coef[1] < .001);
1369     while (i--) { /* initialize on first call */
1370     float rgb[3];
1371     rgb[0] = rgb[1] = rgb[2] = .0f; rgb[i] = 1.f;
1372     tt_RGB_coef[i] = c_fromSharpRGB(rgb, &tt_RGB_prim[i]);
1373     }
1374     memcpy(df->comp[0].cspec, tt_RGB_prim, sizeof(tt_RGB_prim));
1375     dv->cieY = subtract_min_RGB(&dv->spec, sdt->stc);
1376     } else {
1377 greg 3.42 df->comp[0].cspec[0] = dv->spec = c_dfcolor;
1378 greg 3.37 dv->cieY = subtract_min_Y(sdt->stc[tt_Y]);
1379 greg 3.7 }
1380     df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1381 greg 3.47
1382     c_ccvt(&dv->spec, C_CSXY); /* make sure (x,y) is set */
1383 greg 3.7 }
1384    
1385 greg 3.1 /* Load a variable-resolution BSDF tree from an open XML file */
1386     SDError
1387 greg 3.4 SDloadTre(SDData *sd, ezxml_t wtl)
1388 greg 3.1 {
1389 greg 3.7 SDError ec;
1390     ezxml_t wld, wdb;
1391     int rank;
1392     char *txt;
1393     /* basic checks and tensor rank */
1394     txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1395     "DataDefinition"), "IncidentDataStructure"));
1396     if (txt == NULL || !*txt) {
1397     sprintf(SDerrorDetail,
1398     "BSDF \"%s\": missing IncidentDataStructure",
1399     sd->name);
1400     return SDEformat;
1401     }
1402     if (!strcasecmp(txt, "TensorTree3"))
1403     rank = 3;
1404     else if (!strcasecmp(txt, "TensorTree4"))
1405     rank = 4;
1406     else {
1407     sprintf(SDerrorDetail,
1408     "BSDF \"%s\": unsupported IncidentDataStructure",
1409     sd->name);
1410     return SDEsupport;
1411     }
1412     /* load BSDF components */
1413     for (wld = ezxml_child(wtl, "WavelengthData");
1414     wld != NULL; wld = wld->next) {
1415 greg 3.37 const char *cnm = ezxml_txt(ezxml_child(wld,"Wavelength"));
1416     int ct = -1;
1417     if (!strcasecmp(cnm, "Visible"))
1418     ct = tt_Y;
1419     else if (!strcasecmp(cnm, "CIE-u"))
1420     ct = tt_u;
1421     else if (!strcasecmp(cnm, "CIE-v"))
1422     ct = tt_v;
1423     else
1424     continue;
1425 greg 3.7 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1426     wdb != NULL; wdb = wdb->next)
1427 greg 3.37 if ((ec = load_bsdf_data(sd, wdb, ct, rank)) != SDEnone)
1428 greg 3.7 return ec;
1429     }
1430     /* separate diffuse components */
1431     extract_diffuse(&sd->rLambFront, sd->rf);
1432     extract_diffuse(&sd->rLambBack, sd->rb);
1433 greg 3.49 if (sd->tb != NULL)
1434     extract_diffuse(&sd->tLamb, sd->tb);
1435 greg 3.27 if (sd->tf != NULL)
1436     extract_diffuse(&sd->tLamb, sd->tf);
1437 greg 3.7 /* return success */
1438     return SDEnone;
1439 greg 3.1 }
1440    
1441     /* Variable resolution BSDF methods */
1442 greg 3.45 const SDFunc SDhandleTre = {
1443 greg 3.5 &SDgetTreBSDF,
1444 greg 3.6 &SDqueryTreProjSA,
1445     &SDgetTreCDist,
1446     &SDsampTreCDist,
1447     &SDFreeBTre,
1448 greg 3.1 };