ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.22
Committed: Mon Aug 22 14:19:49 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.21: +6 -3 lines
Log Message:
Fixed performance issue caused by last change

File Contents

# User Rev Content
1 greg 3.2 #ifndef lint
2 greg 3.22 static const char RCSid[] = "$Id: bsdf_t.c,v 3.21 2011/08/22 05:48:39 greg Exp $";
3 greg 3.2 #endif
4 greg 3.1 /*
5     * bsdf_t.c
6     *
7     * Definitions for variable-resolution BSDF trees
8     *
9     * Created by Greg Ward on 2/2/11.
10     *
11     */
12    
13 greg 3.17 #define _USE_MATH_DEFINES
14 greg 3.3 #include "rtio.h"
15 greg 3.1 #include <stdlib.h>
16 greg 3.3 #include <math.h>
17     #include <ctype.h>
18 greg 3.1 #include "ezxml.h"
19     #include "bsdf.h"
20     #include "bsdf_t.h"
21 greg 3.6 #include "hilbert.h"
22    
23     /* Callback function type for SDtraverseTre() */
24     typedef int SDtreCallback(float val, const double *cmin,
25     double csiz, void *cptr);
26    
27     /* reference width maximum (1.0) */
28 greg 3.7 static const unsigned iwbits = sizeof(unsigned)*4;
29 greg 3.6 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
30 greg 3.7 /* maximum cumulative value */
31     static const unsigned cumlmax = ~0;
32 greg 3.15 /* constant z-vector */
33     static const FVECT zvec = {.0, .0, 1.};
34 greg 3.22 /* quantization value */
35     static double quantum = 1./256.;
36 greg 3.6
37     /* Struct used for our distribution-building callback */
38     typedef struct {
39     int nic; /* number of input coordinates */
40 greg 3.7 unsigned alen; /* current array length */
41     unsigned nall; /* number of allocated entries */
42     unsigned wmin; /* minimum square size so far */
43     unsigned wmax; /* maximum square size */
44 greg 3.6 struct outdir_s {
45     unsigned hent; /* entering Hilbert index */
46     int wid; /* this square size */
47     float bsdf; /* BSDF for this square */
48     } *darr; /* output direction array */
49     } SDdistScaffold;
50 greg 3.1
51     /* Allocate a new scattering distribution node */
52     static SDNode *
53     SDnewNode(int nd, int lg)
54     {
55     SDNode *st;
56    
57     if (nd <= 0) {
58     strcpy(SDerrorDetail, "Zero dimension BSDF node request");
59     return NULL;
60     }
61     if (nd > SD_MAXDIM) {
62     sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
63     nd, SD_MAXDIM);
64     return NULL;
65     }
66     if (lg < 0) {
67     st = (SDNode *)malloc(sizeof(SDNode) +
68 greg 3.7 sizeof(st->u.t[0])*((1<<nd) - 1));
69 greg 3.12 if (st == NULL) {
70 greg 3.1 sprintf(SDerrorDetail,
71 greg 3.6 "Cannot allocate %d branch BSDF tree", 1<<nd);
72 greg 3.12 return NULL;
73     }
74     memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
75     } else {
76     st = (SDNode *)malloc(sizeof(SDNode) +
77     sizeof(st->u.v[0])*((1 << nd*lg) - 1));
78     if (st == NULL) {
79 greg 3.1 sprintf(SDerrorDetail,
80     "Cannot allocate %d BSDF leaves", 1 << nd*lg);
81 greg 3.12 return NULL;
82     }
83 greg 3.1 }
84     st->ndim = nd;
85     st->log2GR = lg;
86     return st;
87     }
88    
89     /* Free an SD tree */
90     static void
91 greg 3.6 SDfreeTre(SDNode *st)
92 greg 3.1 {
93 greg 3.12 int n;
94 greg 3.1
95     if (st == NULL)
96     return;
97 greg 3.12 for (n = (st->log2GR < 0) << st->ndim; n--; )
98     SDfreeTre(st->u.t[n]);
99 greg 3.14 free(st);
100 greg 3.1 }
101    
102 greg 3.6 /* Free a variable-resolution BSDF */
103     static void
104     SDFreeBTre(void *p)
105     {
106     SDTre *sdt = (SDTre *)p;
107    
108     if (sdt == NULL)
109     return;
110     SDfreeTre(sdt->st);
111     free(sdt);
112     }
113 greg 3.5
114 greg 3.7 /* Fill branch's worth of grid values from subtree */
115     static void
116     fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
117     {
118     unsigned n = 1 << (shft-1);
119    
120     if (!--nd) { /* end on the line */
121     memcpy(dptr, sptr, sizeof(*dptr)*n);
122     return;
123     }
124     while (n--) /* recurse on each slice */
125     fill_grid_branch(dptr + (n << shft*nd),
126     sptr + (n << (shft-1)*nd), nd, shft);
127     }
128    
129     /* Get pointer at appropriate offset for the given branch */
130     static float *
131     grid_branch_start(SDNode *st, int n)
132     {
133 greg 3.14 unsigned skipsiz = 1 << (st->log2GR - 1);
134 greg 3.7 float *vptr = st->u.v;
135     int i;
136    
137 greg 3.14 for (i = st->ndim; i--; skipsiz <<= st->log2GR)
138     if (1<<i & n)
139     vptr += skipsiz;
140 greg 3.7 return vptr;
141     }
142    
143     /* Simplify (consolidate) a tree by flattening uniform depth regions */
144     static SDNode *
145     SDsimplifyTre(SDNode *st)
146     {
147     int match, n;
148    
149     if (st == NULL) /* check for invalid tree */
150     return NULL;
151     if (st->log2GR >= 0) /* grid just returns unaltered */
152     return st;
153     match = 1; /* check if grids below match */
154     for (n = 0; n < 1<<st->ndim; n++) {
155     if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
156     return NULL; /* propogate error up call stack */
157     match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
158     }
159 greg 3.9 if (match && (match = st->u.t[0]->log2GR) >= 0) {
160     SDNode *stn = SDnewNode(st->ndim, match + 1);
161 greg 3.7 if (stn == NULL) /* out of memory? */
162     return st;
163     /* transfer values to new grid */
164     for (n = 1 << st->ndim; n--; )
165     fill_grid_branch(grid_branch_start(stn, n),
166 greg 3.9 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
167 greg 3.7 SDfreeTre(st); /* free old tree */
168     st = stn; /* return new one */
169     }
170     return st;
171     }
172    
173     /* Find smallest leaf in tree */
174     static double
175     SDsmallestLeaf(const SDNode *st)
176     {
177     if (st->log2GR < 0) { /* tree branches */
178     double lmin = 1.;
179     int n;
180     for (n = 1<<st->ndim; n--; ) {
181     double lsiz = SDsmallestLeaf(st->u.t[n]);
182     if (lsiz < lmin)
183     lmin = lsiz;
184     }
185     return .5*lmin;
186     }
187     /* leaf grid width */
188     return 1. / (double)(1 << st->log2GR);
189     }
190    
191 greg 3.1 /* Add up N-dimensional hypercube array values over the given box */
192     static double
193 greg 3.7 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
194 greg 3.1 {
195 greg 3.10 const unsigned skipsiz = 1 << --nd*shft;
196 greg 3.1 double sum = .0;
197     int i;
198 greg 3.15
199     va += *imin * skipsiz;
200    
201 greg 3.1 if (skipsiz == 1)
202     for (i = *imin; i < *imax; i++)
203 greg 3.15 sum += *va++;
204 greg 3.1 else
205 greg 3.15 for (i = *imin; i < *imax; i++, va += skipsiz)
206     sum += SDiterSum(va, nd, shft, imin+1, imax+1);
207 greg 3.1 return sum;
208     }
209    
210     /* Average BSDF leaves over an orthotope defined by the unit hypercube */
211     static double
212 greg 3.6 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
213 greg 3.1 {
214     unsigned n;
215     int i;
216    
217     if (!st)
218     return .0;
219     /* check box limits */
220     for (i = st->ndim; i--; ) {
221     if (bmin[i] >= 1.)
222     return .0;
223 greg 3.13 if (bmax[i] <= 0)
224 greg 3.1 return .0;
225     if (bmin[i] >= bmax[i])
226     return .0;
227     }
228     if (st->log2GR < 0) { /* iterate on subtree */
229     double sum = .0, wsum = 1e-20;
230     double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
231     for (n = 1 << st->ndim; n--; ) {
232     w = 1.;
233     for (i = st->ndim; i--; ) {
234     sbmin[i] = 2.*bmin[i];
235     sbmax[i] = 2.*bmax[i];
236     if (n & 1<<i) {
237     sbmin[i] -= 1.;
238     sbmax[i] -= 1.;
239     }
240     if (sbmin[i] < .0) sbmin[i] = .0;
241     if (sbmax[i] > 1.) sbmax[i] = 1.;
242 greg 3.13 if (sbmin[i] >= sbmax[i]) {
243     w = .0;
244     break;
245     }
246 greg 3.1 w *= sbmax[i] - sbmin[i];
247     }
248     if (w > 1e-10) {
249 greg 3.6 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
250 greg 3.1 wsum += w;
251     }
252     }
253     return sum / wsum;
254 greg 3.15 } else { /* iterate over leaves */
255     int imin[SD_MAXDIM], imax[SD_MAXDIM];
256    
257     n = 1;
258     for (i = st->ndim; i--; ) {
259     imin[i] = (bmin[i] <= 0) ? 0 :
260     (int)((1 << st->log2GR)*bmin[i]);
261     imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) :
262     (int)((1 << st->log2GR)*bmax[i] + .999999);
263     n *= imax[i] - imin[i];
264     }
265     if (n)
266     return SDiterSum(st->u.v, st->ndim,
267     st->log2GR, imin, imax) / (double)n;
268 greg 3.1 }
269 greg 3.15 return .0;
270 greg 3.1 }
271    
272 greg 3.6 /* Recursive call for SDtraverseTre() */
273     static int
274     SDdotravTre(const SDNode *st, const double *pos, int cmask,
275     SDtreCallback *cf, void *cptr,
276     const double *cmin, double csiz)
277     {
278     int rv, rval = 0;
279     double bmin[SD_MAXDIM];
280     int i, n;
281     /* in branches? */
282     if (st->log2GR < 0) {
283     unsigned skipmask = 0;
284     csiz *= .5;
285     for (i = st->ndim; i--; )
286     if (1<<i & cmask)
287     if (pos[i] < cmin[i] + csiz)
288 greg 3.13 for (n = 1 << st->ndim; n--; ) {
289 greg 3.6 if (n & 1<<i)
290     skipmask |= 1<<n;
291 greg 3.13 }
292 greg 3.6 else
293 greg 3.13 for (n = 1 << st->ndim; n--; ) {
294 greg 3.6 if (!(n & 1<<i))
295     skipmask |= 1<<n;
296 greg 3.13 }
297 greg 3.6 for (n = 1 << st->ndim; n--; ) {
298     if (1<<n & skipmask)
299     continue;
300     for (i = st->ndim; i--; )
301     if (1<<i & n)
302     bmin[i] = cmin[i] + csiz;
303     else
304     bmin[i] = cmin[i];
305    
306     rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
307     cf, cptr, bmin, csiz);
308     if (rv < 0)
309     return rv;
310     }
311     } else { /* else traverse leaves */
312     int clim[SD_MAXDIM][2];
313     int cpos[SD_MAXDIM];
314    
315     if (st->log2GR == 0) /* short cut */
316     return (*cf)(st->u.v[0], cmin, csiz, cptr);
317    
318     csiz /= (double)(1 << st->log2GR);
319     /* assign coord. ranges */
320     for (i = st->ndim; i--; )
321     if (1<<i & cmask) {
322     clim[i][0] = (pos[i] - cmin[i])/csiz;
323     /* check overflow from f.p. error */
324     clim[i][0] -= clim[i][0] >> st->log2GR;
325     clim[i][1] = clim[i][0] + 1;
326     } else {
327     clim[i][0] = 0;
328     clim[i][1] = 1 << st->log2GR;
329     }
330     #if (SD_MAXDIM == 4)
331     bmin[0] = cmin[0] + csiz*clim[0][0];
332     for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
333     bmin[1] = cmin[1] + csiz*clim[1][0];
334     for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
335     bmin[2] = cmin[2] + csiz*clim[2][0];
336 greg 3.16 if (st->ndim == 3) {
337     cpos[2] = clim[2][0];
338 greg 3.6 n = cpos[0];
339 greg 3.16 for (i = 1; i < 3; i++)
340 greg 3.6 n = (n << st->log2GR) + cpos[i];
341 greg 3.16 for ( ; cpos[2] < clim[2][1]; cpos[2]++) {
342 greg 3.6 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
343     if (rv < 0)
344     return rv;
345 greg 3.16 bmin[2] += csiz;
346     }
347     } else {
348     for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
349     bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
350     n = cpos[0];
351     for (i = 1; i < 4; i++)
352     n = (n << st->log2GR) + cpos[i];
353     for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
354     rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
355     if (rv < 0)
356     return rv;
357     bmin[3] += csiz;
358     }
359     bmin[2] += csiz;
360 greg 3.6 }
361     }
362     bmin[1] += csiz;
363     }
364     bmin[0] += csiz;
365     }
366     #else
367     _!_ "broken code segment!"
368     #endif
369     }
370     return rval;
371     }
372    
373     /* Traverse a tree, visiting nodes in a slice that fits partial position */
374     static int
375     SDtraverseTre(const SDNode *st, const double *pos, int cmask,
376     SDtreCallback *cf, void *cptr)
377     {
378     static double czero[SD_MAXDIM];
379     int i;
380     /* check arguments */
381     if ((st == NULL) | (cf == NULL))
382     return -1;
383     for (i = st->ndim; i--; )
384     if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
385     return -1;
386    
387     return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
388     }
389 greg 3.5
390     /* Look up tree value at the given grid position */
391     static float
392 greg 3.6 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
393 greg 3.5 {
394     double spos[SD_MAXDIM];
395     int i, n, t;
396 greg 3.6 /* initialize voxel return */
397     if (hcube) {
398     hcube[i = st->ndim] = 1.;
399     while (i--)
400     hcube[i] = .0;
401     }
402 greg 3.5 /* climb the tree */
403     while (st->log2GR < 0) {
404     n = 0; /* move to appropriate branch */
405 greg 3.6 if (hcube) hcube[st->ndim] *= .5;
406 greg 3.5 for (i = st->ndim; i--; ) {
407     spos[i] = 2.*pos[i];
408     t = (spos[i] >= 1.);
409     n |= t<<i;
410     spos[i] -= (double)t;
411 greg 3.6 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
412 greg 3.5 }
413     st = st->u.t[n]; /* avoids tail recursion */
414     pos = spos;
415     }
416 greg 3.6 if (st->log2GR == 0) /* short cut */
417     return st->u.v[0];
418 greg 3.5 n = t = 0; /* find grid array index */
419     for (i = st->ndim; i--; ) {
420     n += (int)((1<<st->log2GR)*pos[i]) << t;
421     t += st->log2GR;
422     }
423 greg 3.6 if (hcube) { /* compute final hypercube */
424     hcube[st->ndim] /= (double)(1<<st->log2GR);
425     for (i = st->ndim; i--; )
426     hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
427     }
428     return st->u.v[n]; /* no interpolation */
429     }
430    
431     /* Query BSDF value and sample hypercube for the given vectors */
432     static float
433     SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
434     {
435     FVECT rOutVec;
436     double gridPos[4];
437 greg 3.7
438     switch (sdt->sidef) { /* whose side are you on? */
439     case SD_UFRONT:
440     if ((outVec[2] < 0) | (inVec[2] < 0))
441     return -1.;
442     break;
443     case SD_UBACK:
444     if ((outVec[2] > 0) | (inVec[2] > 0))
445     return -1.;
446     break;
447     case SD_XMIT:
448     if ((outVec[2] > 0) == (inVec[2] > 0))
449     return -1.;
450     break;
451     default:
452 greg 3.6 return -1.;
453 greg 3.7 }
454 greg 3.6 /* convert vector coordinates */
455     if (sdt->st->ndim == 3) {
456 greg 3.15 spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0]));
457 greg 3.6 gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
458     SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
459     } else if (sdt->st->ndim == 4) {
460     SDdisk2square(gridPos, -inVec[0], -inVec[1]);
461     SDdisk2square(gridPos+2, outVec[0], outVec[1]);
462     } else
463     return -1.; /* should be internal error */
464    
465     return SDlookupTre(sdt->st, gridPos, hc);
466 greg 3.5 }
467    
468     /* Compute non-diffuse component for variable-resolution BSDF */
469     static int
470     SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
471 greg 3.6 const FVECT inVec, SDComponent *sdc)
472 greg 3.5 {
473 greg 3.6 /* check arguments */
474     if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
475     || sdc->dist == NULL)
476     return 0;
477 greg 3.5 /* get nearest BSDF value */
478 greg 3.6 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
479     return (coef[0] >= 0); /* monochromatic for now */
480     }
481    
482     /* Callback to build cumulative distribution using SDtraverseTre() */
483     static int
484     build_scaffold(float val, const double *cmin, double csiz, void *cptr)
485     {
486     SDdistScaffold *sp = (SDdistScaffold *)cptr;
487     int wid = csiz*(double)iwmax + .5;
488     bitmask_t bmin[2], bmax[2];
489    
490     cmin += sp->nic; /* skip to output coords */
491     if (wid < sp->wmin) /* new minimum width? */
492     sp->wmin = wid;
493     if (wid > sp->wmax) /* new maximum? */
494     sp->wmax = wid;
495     if (sp->alen >= sp->nall) { /* need more space? */
496     struct outdir_s *ndarr;
497 greg 3.12 sp->nall += 1024;
498 greg 3.6 ndarr = (struct outdir_s *)realloc(sp->darr,
499     sizeof(struct outdir_s)*sp->nall);
500 greg 3.12 if (ndarr == NULL) {
501     sprintf(SDerrorDetail,
502     "Cannot grow scaffold to %u entries", sp->nall);
503 greg 3.6 return -1; /* abort build */
504 greg 3.12 }
505 greg 3.6 sp->darr = ndarr;
506     }
507     /* find Hilbert entry index */
508     bmin[0] = cmin[0]*(double)iwmax + .5;
509     bmin[1] = cmin[1]*(double)iwmax + .5;
510 greg 3.10 bmax[0] = bmin[0] + wid-1;
511     bmax[1] = bmin[1] + wid-1;
512 greg 3.7 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
513     sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
514 greg 3.6 sp->darr[sp->alen].wid = wid;
515     sp->darr[sp->alen].bsdf = val;
516     sp->alen++; /* on to the next entry */
517     return 0;
518     }
519    
520     /* Scaffold comparison function for qsort -- ascending Hilbert index */
521     static int
522     sscmp(const void *p1, const void *p2)
523     {
524 greg 3.10 unsigned h1 = (*(const struct outdir_s *)p1).hent;
525     unsigned h2 = (*(const struct outdir_s *)p2).hent;
526    
527     if (h1 > h2)
528     return 1;
529     if (h1 < h2)
530     return -1;
531     return 0;
532 greg 3.6 }
533    
534     /* Create a new cumulative distribution for the given input direction */
535     static SDTreCDst *
536     make_cdist(const SDTre *sdt, const double *pos)
537     {
538     SDdistScaffold myScaffold;
539     SDTreCDst *cd;
540     struct outdir_s *sp;
541     double scale, cursum;
542     int i;
543     /* initialize scaffold */
544     myScaffold.wmin = iwmax;
545     myScaffold.wmax = 0;
546     myScaffold.nic = sdt->st->ndim - 2;
547     myScaffold.alen = 0;
548 greg 3.12 myScaffold.nall = 512;
549 greg 3.6 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
550     myScaffold.nall);
551     if (myScaffold.darr == NULL)
552     return NULL;
553     /* grow the distribution */
554     if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
555     &build_scaffold, &myScaffold) < 0) {
556     free(myScaffold.darr);
557     return NULL;
558     }
559     /* allocate result holder */
560     cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
561     sizeof(cd->carr[0])*myScaffold.alen);
562     if (cd == NULL) {
563 greg 3.12 sprintf(SDerrorDetail,
564     "Cannot allocate %u entry cumulative distribution",
565     myScaffold.alen);
566 greg 3.6 free(myScaffold.darr);
567     return NULL;
568     }
569 greg 3.15 cd->isodist = (myScaffold.nic == 1);
570 greg 3.6 /* sort the distribution */
571     qsort(myScaffold.darr, cd->calen = myScaffold.alen,
572     sizeof(struct outdir_s), &sscmp);
573    
574     /* record input range */
575 greg 3.7 scale = myScaffold.wmin / (double)iwmax;
576 greg 3.6 for (i = myScaffold.nic; i--; ) {
577 greg 3.7 cd->clim[i][0] = floor(pos[i]/scale) * scale;
578 greg 3.6 cd->clim[i][1] = cd->clim[i][0] + scale;
579     }
580 greg 3.15 if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */
581     cd->clim[1][0] = cd->clim[0][0];
582     cd->clim[1][1] = cd->clim[0][1];
583     }
584 greg 3.6 cd->max_psa = myScaffold.wmax / (double)iwmax;
585     cd->max_psa *= cd->max_psa * M_PI;
586 greg 3.7 cd->sidef = sdt->sidef;
587 greg 3.6 cd->cTotal = 1e-20; /* compute directional total */
588     sp = myScaffold.darr;
589     for (i = myScaffold.alen; i--; sp++)
590     cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
591     cursum = .0; /* go back and get cumulative values */
592     scale = (double)cumlmax / cd->cTotal;
593     sp = myScaffold.darr;
594     for (i = 0; i < cd->calen; i++, sp++) {
595 greg 3.7 cd->carr[i].hndx = sp->hent;
596 greg 3.6 cd->carr[i].cuml = scale*cursum + .5;
597     cursum += sp->bsdf * (double)sp->wid * sp->wid;
598     }
599     cd->carr[i].hndx = ~0; /* make final entry */
600     cd->carr[i].cuml = cumlmax;
601     cd->cTotal *= M_PI/(double)iwmax/iwmax;
602     /* all done, clean up and return */
603     free(myScaffold.darr);
604     return cd;
605     }
606    
607     /* Find or allocate a cumulative distribution for the given incoming vector */
608     const SDCDst *
609     SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
610     {
611     const SDTre *sdt;
612 greg 3.22 double inCoord[2];
613 greg 3.6 int i;
614     SDTreCDst *cd, *cdlast;
615     /* check arguments */
616     if ((inVec == NULL) | (sdc == NULL) ||
617     (sdt = (SDTre *)sdc->dist) == NULL)
618     return NULL;
619 greg 3.21 if (sdt->st->ndim == 3) { /* isotropic BSDF? */
620 greg 3.6 inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
621 greg 3.21 } else if (sdt->st->ndim == 4) {
622 greg 3.6 SDdisk2square(inCoord, -inVec[0], -inVec[1]);
623 greg 3.21 } else
624 greg 3.6 return NULL; /* should be internal error */
625 greg 3.21 /* quantize to avoid f.p. errors */
626     for (i = sdt->st->ndim - 2; i--; )
627     inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum;
628 greg 3.6 cdlast = NULL; /* check for direction in cache list */
629     for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
630 greg 3.20 cdlast = cd, cd = cd->next) {
631 greg 3.6 for (i = sdt->st->ndim - 2; i--; )
632     if ((cd->clim[i][0] > inCoord[i]) |
633     (inCoord[i] >= cd->clim[i][1]))
634     break;
635     if (i < 0)
636     break; /* means we have a match */
637     }
638     if (cd == NULL) /* need to create new entry? */
639     cdlast = cd = make_cdist(sdt, inCoord);
640     if (cdlast != NULL) { /* move entry to head of cache list */
641     cdlast->next = cd->next;
642 greg 3.20 cd->next = (SDTreCDst *)sdc->cdList;
643 greg 3.6 sdc->cdList = (SDCDst *)cd;
644     }
645     return (SDCDst *)cd; /* ready to go */
646     }
647    
648     /* Query solid angle for vector(s) */
649     static SDError
650     SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
651     int qflags, SDComponent *sdc)
652     {
653     double myPSA[2];
654     /* check arguments */
655     if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
656     sdc->dist == NULL)
657     return SDEargument;
658     /* get projected solid angle(s) */
659     if (v2 != NULL) {
660     const SDTre *sdt = (SDTre *)sdc->dist;
661     double hcube[SD_MAXDIM];
662     if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
663 greg 3.7 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
664     return SDEinternal;
665 greg 3.6 }
666     myPSA[0] = hcube[sdt->st->ndim];
667     myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
668     } else {
669     const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
670     if (cd == NULL)
671     return SDEmemory;
672     myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
673     (cd->clim[1][1] - cd->clim[1][0]);
674     myPSA[1] = cd->max_psa;
675     }
676     switch (qflags) { /* record based on flag settings */
677     case SDqueryVal:
678     *psa = myPSA[0];
679     break;
680     case SDqueryMax:
681     if (myPSA[1] > *psa)
682     *psa = myPSA[1];
683     break;
684     case SDqueryMin+SDqueryMax:
685     if (myPSA[1] > psa[1])
686     psa[1] = myPSA[1];
687     /* fall through */
688     case SDqueryMin:
689     if (myPSA[0] < psa[0])
690     psa[0] = myPSA[0];
691     break;
692     }
693     return SDEnone;
694     }
695    
696     /* Sample cumulative distribution */
697     static SDError
698     SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
699     {
700     const unsigned nBitsC = 4*sizeof(bitmask_t);
701     const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
702     const SDTreCDst *cd = (const SDTreCDst *)cdp;
703 greg 3.7 const unsigned target = randX*cumlmax;
704 greg 3.6 bitmask_t hndx, hcoord[2];
705 greg 3.15 double gpos[3], rotangle;
706 greg 3.6 int i, iupper, ilower;
707     /* check arguments */
708     if ((ioVec == NULL) | (cd == NULL))
709     return SDEargument;
710 greg 3.7 if (ioVec[2] > 0) {
711     if (!(cd->sidef & SD_UFRONT))
712     return SDEargument;
713     } else if (!(cd->sidef & SD_UBACK))
714     return SDEargument;
715 greg 3.6 /* binary search to find position */
716     ilower = 0; iupper = cd->calen;
717     while ((i = (iupper + ilower) >> 1) != ilower)
718 greg 3.19 if (target >= cd->carr[i].cuml)
719 greg 3.6 ilower = i;
720     else
721     iupper = i;
722     /* localize random position */
723 greg 3.7 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
724 greg 3.6 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
725     /* index in longer Hilbert curve */
726     hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
727     * (double)((bitmask_t)1 << nExtraBits);
728     /* convert Hilbert index to vector */
729     hilbert_i2c(2, nBitsC, hndx, hcoord);
730     for (i = 2; i--; )
731     gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
732     (double)((bitmask_t)1 << nBitsC);
733     SDsquare2disk(gpos, gpos[0], gpos[1]);
734 greg 3.7 /* compute Z-coordinate */
735 greg 3.6 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
736     if (gpos[2] > 0) /* paranoia, I hope */
737     gpos[2] = sqrt(gpos[2]);
738 greg 3.7 /* emit from back? */
739     if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
740 greg 3.6 gpos[2] = -gpos[2];
741 greg 3.15 if (cd->isodist) { /* rotate isotropic result */
742     rotangle = atan2(-ioVec[1],-ioVec[0]);
743     VCOPY(ioVec, gpos);
744     spinvector(ioVec, ioVec, zvec, rotangle);
745     } else
746     VCOPY(ioVec, gpos);
747 greg 3.6 return SDEnone;
748 greg 3.5 }
749    
750 greg 3.7 /* Advance pointer to the next non-white character in the string (or nul) */
751     static int
752     next_token(char **spp)
753     {
754     while (isspace(**spp))
755     ++*spp;
756     return **spp;
757     }
758    
759 greg 3.12 /* Advance pointer past matching token (or any token if c==0) */
760     #define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0)
761 greg 3.9
762 greg 3.7 /* Count words from this point in string to '}' */
763     static int
764     count_values(char *cp)
765     {
766     int n = 0;
767    
768 greg 3.9 while (next_token(&cp) != '}' && *cp) {
769 greg 3.11 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
770     if (!*++cp)
771     break;
772 greg 3.7 ++n;
773 greg 3.9 eat_token(&cp, ',');
774 greg 3.7 }
775     return n;
776     }
777    
778     /* Load an array of real numbers, returning total */
779     static int
780     load_values(char **spp, float *va, int n)
781     {
782     float *v = va;
783     char *svnext;
784    
785     while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
786     *v++ = atof(*spp);
787     *spp = svnext;
788 greg 3.9 eat_token(spp, ',');
789 greg 3.7 }
790     return v - va;
791     }
792    
793     /* Load BSDF tree data */
794     static SDNode *
795     load_tree_data(char **spp, int nd)
796     {
797     SDNode *st;
798     int n;
799    
800 greg 3.9 if (!eat_token(spp, '{')) {
801 greg 3.7 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
802     return NULL;
803     }
804     if (next_token(spp) == '{') { /* tree branches */
805     st = SDnewNode(nd, -1);
806     if (st == NULL)
807     return NULL;
808     for (n = 0; n < 1<<nd; n++)
809     if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
810     SDfreeTre(st);
811     return NULL;
812     }
813     } else { /* else load value grid */
814     int bsiz;
815     n = count_values(*spp); /* see how big the grid is */
816 greg 3.15 for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd)
817 greg 3.7 if (1<<bsiz == n)
818     break;
819     if (bsiz >= 8*sizeof(size_t)) {
820     strcpy(SDerrorDetail, "Illegal value count in tensor tree");
821     return NULL;
822     }
823     st = SDnewNode(nd, bsiz/nd);
824     if (st == NULL)
825     return NULL;
826     if (load_values(spp, st->u.v, n) != n) {
827     strcpy(SDerrorDetail, "Real format error in tensor tree");
828     SDfreeTre(st);
829     return NULL;
830     }
831     }
832 greg 3.9 if (!eat_token(spp, '}')) {
833 greg 3.7 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
834     SDfreeTre(st);
835     return NULL;
836     }
837 greg 3.9 eat_token(spp, ',');
838 greg 3.7 return st;
839     }
840    
841     /* Compute min. proj. solid angle and max. direct hemispherical scattering */
842     static SDError
843     get_extrema(SDSpectralDF *df)
844     {
845     SDNode *st = (*(SDTre *)df->comp[0].dist).st;
846     double stepWidth, dhemi, bmin[4], bmax[4];
847    
848     stepWidth = SDsmallestLeaf(st);
849 greg 3.22 if (quantum > stepWidth) /* adjust quantization factor */
850     quantum = stepWidth;
851 greg 3.7 df->minProjSA = M_PI*stepWidth*stepWidth;
852     if (stepWidth < .03125)
853     stepWidth = .03125; /* 1/32 resolution good enough */
854     df->maxHemi = .0;
855     if (st->ndim == 3) { /* isotropic BSDF */
856     bmin[1] = bmin[2] = .0;
857     bmax[1] = bmax[2] = 1.;
858     for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
859     bmax[0] = bmin[0] + stepWidth;
860     dhemi = SDavgTreBox(st, bmin, bmax);
861     if (dhemi > df->maxHemi)
862     df->maxHemi = dhemi;
863     }
864     } else if (st->ndim == 4) { /* anisotropic BSDF */
865     bmin[2] = bmin[3] = .0;
866     bmax[2] = bmax[3] = 1.;
867     for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
868     bmax[0] = bmin[0] + stepWidth;
869     for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
870     bmax[1] = bmin[1] + stepWidth;
871     dhemi = SDavgTreBox(st, bmin, bmax);
872     if (dhemi > df->maxHemi)
873     df->maxHemi = dhemi;
874     }
875     }
876     } else
877     return SDEinternal;
878     /* correct hemispherical value */
879     df->maxHemi *= M_PI;
880     return SDEnone;
881     }
882    
883     /* Load BSDF distribution for this wavelength */
884     static SDError
885     load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
886     {
887     SDSpectralDF *df;
888     SDTre *sdt;
889     char *sdata;
890     /* allocate BSDF component */
891     sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
892     if (!sdata)
893     return SDEnone;
894     /*
895     * Remember that front and back are reversed from WINDOW 6 orientations
896     */
897     if (!strcasecmp(sdata, "Transmission")) {
898     if (sd->tf != NULL)
899     SDfreeSpectralDF(sd->tf);
900     if ((sd->tf = SDnewSpectralDF(1)) == NULL)
901     return SDEmemory;
902     df = sd->tf;
903     } else if (!strcasecmp(sdata, "Reflection Front")) {
904     if (sd->rb != NULL) /* note back-front reversal */
905     SDfreeSpectralDF(sd->rb);
906     if ((sd->rb = SDnewSpectralDF(1)) == NULL)
907     return SDEmemory;
908     df = sd->rb;
909     } else if (!strcasecmp(sdata, "Reflection Back")) {
910     if (sd->rf != NULL) /* note front-back reversal */
911     SDfreeSpectralDF(sd->rf);
912     if ((sd->rf = SDnewSpectralDF(1)) == NULL)
913     return SDEmemory;
914     df = sd->rf;
915     } else
916     return SDEnone;
917     /* XXX should also check "ScatteringDataType" for consistency? */
918     /* get angle bases */
919     sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
920     if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
921     sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
922     !sdata ? "Missing" : "Unsupported", sd->name);
923     return !sdata ? SDEformat : SDEsupport;
924     }
925     /* allocate BSDF tree */
926     sdt = (SDTre *)malloc(sizeof(SDTre));
927     if (sdt == NULL)
928     return SDEmemory;
929     if (df == sd->rf)
930     sdt->sidef = SD_UFRONT;
931     else if (df == sd->rb)
932     sdt->sidef = SD_UBACK;
933     else
934     sdt->sidef = SD_XMIT;
935     sdt->st = NULL;
936     df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
937     df->comp[0].dist = sdt;
938     df->comp[0].func = &SDhandleTre;
939     /* read BSDF data */
940     sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
941     if (!sdata || !next_token(&sdata)) {
942     sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
943     sd->name);
944     return SDEformat;
945     }
946     sdt->st = load_tree_data(&sdata, ndim);
947     if (sdt->st == NULL)
948     return SDEformat;
949     if (next_token(&sdata)) { /* check for unconsumed characters */
950     sprintf(SDerrorDetail,
951     "Extra characters at end of ScatteringData in '%s'",
952     sd->name);
953     return SDEformat;
954     }
955     /* flatten branches where possible */
956     sdt->st = SDsimplifyTre(sdt->st);
957     if (sdt->st == NULL)
958     return SDEinternal;
959     return get_extrema(df); /* compute global quantities */
960     }
961    
962     /* Find minimum value in tree */
963     static float
964     SDgetTreMin(const SDNode *st)
965     {
966 greg 3.10 float vmin = FHUGE;
967 greg 3.7 int n;
968    
969     if (st->log2GR < 0) {
970     for (n = 1<<st->ndim; n--; ) {
971     float v = SDgetTreMin(st->u.t[n]);
972     if (v < vmin)
973     vmin = v;
974     }
975     } else {
976     for (n = 1<<(st->ndim*st->log2GR); n--; )
977     if (st->u.v[n] < vmin)
978     vmin = st->u.v[n];
979     }
980     return vmin;
981     }
982    
983     /* Subtract the given value from all tree nodes */
984     static void
985     SDsubtractTreVal(SDNode *st, float val)
986     {
987     int n;
988    
989     if (st->log2GR < 0) {
990     for (n = 1<<st->ndim; n--; )
991     SDsubtractTreVal(st->u.t[n], val);
992     } else {
993     for (n = 1<<(st->ndim*st->log2GR); n--; )
994 greg 3.15 if ((st->u.v[n] -= val) < 0)
995     st->u.v[n] = .0f;
996 greg 3.7 }
997     }
998    
999     /* Subtract minimum value from BSDF */
1000     static double
1001     subtract_min(SDNode *st)
1002     {
1003     float vmin;
1004     /* be sure to skip unused portion */
1005 greg 3.10 if (st->ndim == 3) {
1006     int n;
1007 greg 3.7 vmin = 1./M_PI;
1008 greg 3.10 if (st->log2GR < 0) {
1009 greg 3.15 for (n = 0; n < 8; n += 2) {
1010 greg 3.10 float v = SDgetTreMin(st->u.t[n]);
1011     if (v < vmin)
1012     vmin = v;
1013     }
1014     } else if (st->log2GR) {
1015     for (n = 1 << (3*st->log2GR - 1); n--; )
1016     if (st->u.v[n] < vmin)
1017     vmin = st->u.v[n];
1018     } else
1019     vmin = st->u.v[0];
1020 greg 3.7 } else /* anisotropic covers entire tree */
1021     vmin = SDgetTreMin(st);
1022    
1023     if (vmin <= FTINY)
1024     return .0;
1025    
1026 greg 3.8 SDsubtractTreVal(st, vmin);
1027 greg 3.7
1028     return M_PI * vmin; /* return hemispherical value */
1029     }
1030    
1031     /* Extract and separate diffuse portion of BSDF */
1032     static void
1033     extract_diffuse(SDValue *dv, SDSpectralDF *df)
1034     {
1035     int n;
1036    
1037     if (df == NULL || df->ncomp <= 0) {
1038     dv->spec = c_dfcolor;
1039     dv->cieY = .0;
1040     return;
1041     }
1042     dv->spec = df->comp[0].cspec[0];
1043 greg 3.9 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1044 greg 3.7 /* in case of multiple components */
1045     for (n = df->ncomp; --n; ) {
1046     double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1047     c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1048     dv->cieY += ymin;
1049     }
1050     df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1051     /* make sure everything is set */
1052     c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1053     }
1054    
1055 greg 3.1 /* Load a variable-resolution BSDF tree from an open XML file */
1056     SDError
1057 greg 3.4 SDloadTre(SDData *sd, ezxml_t wtl)
1058 greg 3.1 {
1059 greg 3.7 SDError ec;
1060     ezxml_t wld, wdb;
1061     int rank;
1062     char *txt;
1063     /* basic checks and tensor rank */
1064     txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1065     "DataDefinition"), "IncidentDataStructure"));
1066     if (txt == NULL || !*txt) {
1067     sprintf(SDerrorDetail,
1068     "BSDF \"%s\": missing IncidentDataStructure",
1069     sd->name);
1070     return SDEformat;
1071     }
1072     if (!strcasecmp(txt, "TensorTree3"))
1073     rank = 3;
1074     else if (!strcasecmp(txt, "TensorTree4"))
1075     rank = 4;
1076     else {
1077     sprintf(SDerrorDetail,
1078     "BSDF \"%s\": unsupported IncidentDataStructure",
1079     sd->name);
1080     return SDEsupport;
1081     }
1082     /* load BSDF components */
1083     for (wld = ezxml_child(wtl, "WavelengthData");
1084     wld != NULL; wld = wld->next) {
1085     if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1086     "Visible"))
1087     continue; /* just visible for now */
1088     for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1089     wdb != NULL; wdb = wdb->next)
1090     if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1091     return ec;
1092     }
1093     /* separate diffuse components */
1094     extract_diffuse(&sd->rLambFront, sd->rf);
1095     extract_diffuse(&sd->rLambBack, sd->rb);
1096     extract_diffuse(&sd->tLamb, sd->tf);
1097     /* return success */
1098     return SDEnone;
1099 greg 3.1 }
1100    
1101     /* Variable resolution BSDF methods */
1102 greg 3.5 SDFunc SDhandleTre = {
1103     &SDgetTreBSDF,
1104 greg 3.6 &SDqueryTreProjSA,
1105     &SDgetTreCDist,
1106     &SDsampTreCDist,
1107     &SDFreeBTre,
1108 greg 3.1 };