ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.21
Committed: Mon Aug 22 05:48:39 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.20: +9 -5 lines
Log Message:
Fixed floating point epsilon errors in position branch testing

File Contents

# User Rev Content
1 greg 3.2 #ifndef lint
2 greg 3.21 static const char RCSid[] = "$Id: bsdf_t.c,v 3.20 2011/08/21 22:38:12 greg Exp $";
3 greg 3.2 #endif
4 greg 3.1 /*
5     * bsdf_t.c
6     *
7     * Definitions for variable-resolution BSDF trees
8     *
9     * Created by Greg Ward on 2/2/11.
10     *
11     */
12    
13 greg 3.17 #define _USE_MATH_DEFINES
14 greg 3.3 #include "rtio.h"
15 greg 3.1 #include <stdlib.h>
16 greg 3.3 #include <math.h>
17     #include <ctype.h>
18 greg 3.1 #include "ezxml.h"
19     #include "bsdf.h"
20     #include "bsdf_t.h"
21 greg 3.6 #include "hilbert.h"
22    
23     /* Callback function type for SDtraverseTre() */
24     typedef int SDtreCallback(float val, const double *cmin,
25     double csiz, void *cptr);
26    
27     /* reference width maximum (1.0) */
28 greg 3.7 static const unsigned iwbits = sizeof(unsigned)*4;
29 greg 3.6 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
30 greg 3.7 /* maximum cumulative value */
31     static const unsigned cumlmax = ~0;
32 greg 3.15 /* constant z-vector */
33     static const FVECT zvec = {.0, .0, 1.};
34 greg 3.6
35     /* Struct used for our distribution-building callback */
36     typedef struct {
37     int nic; /* number of input coordinates */
38 greg 3.7 unsigned alen; /* current array length */
39     unsigned nall; /* number of allocated entries */
40     unsigned wmin; /* minimum square size so far */
41     unsigned wmax; /* maximum square size */
42 greg 3.6 struct outdir_s {
43     unsigned hent; /* entering Hilbert index */
44     int wid; /* this square size */
45     float bsdf; /* BSDF for this square */
46     } *darr; /* output direction array */
47     } SDdistScaffold;
48 greg 3.1
49     /* Allocate a new scattering distribution node */
50     static SDNode *
51     SDnewNode(int nd, int lg)
52     {
53     SDNode *st;
54    
55     if (nd <= 0) {
56     strcpy(SDerrorDetail, "Zero dimension BSDF node request");
57     return NULL;
58     }
59     if (nd > SD_MAXDIM) {
60     sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
61     nd, SD_MAXDIM);
62     return NULL;
63     }
64     if (lg < 0) {
65     st = (SDNode *)malloc(sizeof(SDNode) +
66 greg 3.7 sizeof(st->u.t[0])*((1<<nd) - 1));
67 greg 3.12 if (st == NULL) {
68 greg 3.1 sprintf(SDerrorDetail,
69 greg 3.6 "Cannot allocate %d branch BSDF tree", 1<<nd);
70 greg 3.12 return NULL;
71     }
72     memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
73     } else {
74     st = (SDNode *)malloc(sizeof(SDNode) +
75     sizeof(st->u.v[0])*((1 << nd*lg) - 1));
76     if (st == NULL) {
77 greg 3.1 sprintf(SDerrorDetail,
78     "Cannot allocate %d BSDF leaves", 1 << nd*lg);
79 greg 3.12 return NULL;
80     }
81 greg 3.1 }
82     st->ndim = nd;
83     st->log2GR = lg;
84     return st;
85     }
86    
87     /* Free an SD tree */
88     static void
89 greg 3.6 SDfreeTre(SDNode *st)
90 greg 3.1 {
91 greg 3.12 int n;
92 greg 3.1
93     if (st == NULL)
94     return;
95 greg 3.12 for (n = (st->log2GR < 0) << st->ndim; n--; )
96     SDfreeTre(st->u.t[n]);
97 greg 3.14 free(st);
98 greg 3.1 }
99    
100 greg 3.6 /* Free a variable-resolution BSDF */
101     static void
102     SDFreeBTre(void *p)
103     {
104     SDTre *sdt = (SDTre *)p;
105    
106     if (sdt == NULL)
107     return;
108     SDfreeTre(sdt->st);
109     free(sdt);
110     }
111 greg 3.5
112 greg 3.7 /* Fill branch's worth of grid values from subtree */
113     static void
114     fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
115     {
116     unsigned n = 1 << (shft-1);
117    
118     if (!--nd) { /* end on the line */
119     memcpy(dptr, sptr, sizeof(*dptr)*n);
120     return;
121     }
122     while (n--) /* recurse on each slice */
123     fill_grid_branch(dptr + (n << shft*nd),
124     sptr + (n << (shft-1)*nd), nd, shft);
125     }
126    
127     /* Get pointer at appropriate offset for the given branch */
128     static float *
129     grid_branch_start(SDNode *st, int n)
130     {
131 greg 3.14 unsigned skipsiz = 1 << (st->log2GR - 1);
132 greg 3.7 float *vptr = st->u.v;
133     int i;
134    
135 greg 3.14 for (i = st->ndim; i--; skipsiz <<= st->log2GR)
136     if (1<<i & n)
137     vptr += skipsiz;
138 greg 3.7 return vptr;
139     }
140    
141     /* Simplify (consolidate) a tree by flattening uniform depth regions */
142     static SDNode *
143     SDsimplifyTre(SDNode *st)
144     {
145     int match, n;
146    
147     if (st == NULL) /* check for invalid tree */
148     return NULL;
149     if (st->log2GR >= 0) /* grid just returns unaltered */
150     return st;
151     match = 1; /* check if grids below match */
152     for (n = 0; n < 1<<st->ndim; n++) {
153     if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
154     return NULL; /* propogate error up call stack */
155     match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
156     }
157 greg 3.9 if (match && (match = st->u.t[0]->log2GR) >= 0) {
158     SDNode *stn = SDnewNode(st->ndim, match + 1);
159 greg 3.7 if (stn == NULL) /* out of memory? */
160     return st;
161     /* transfer values to new grid */
162     for (n = 1 << st->ndim; n--; )
163     fill_grid_branch(grid_branch_start(stn, n),
164 greg 3.9 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
165 greg 3.7 SDfreeTre(st); /* free old tree */
166     st = stn; /* return new one */
167     }
168     return st;
169     }
170    
171     /* Find smallest leaf in tree */
172     static double
173     SDsmallestLeaf(const SDNode *st)
174     {
175     if (st->log2GR < 0) { /* tree branches */
176     double lmin = 1.;
177     int n;
178     for (n = 1<<st->ndim; n--; ) {
179     double lsiz = SDsmallestLeaf(st->u.t[n]);
180     if (lsiz < lmin)
181     lmin = lsiz;
182     }
183     return .5*lmin;
184     }
185     /* leaf grid width */
186     return 1. / (double)(1 << st->log2GR);
187     }
188    
189 greg 3.1 /* Add up N-dimensional hypercube array values over the given box */
190     static double
191 greg 3.7 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
192 greg 3.1 {
193 greg 3.10 const unsigned skipsiz = 1 << --nd*shft;
194 greg 3.1 double sum = .0;
195     int i;
196 greg 3.15
197     va += *imin * skipsiz;
198    
199 greg 3.1 if (skipsiz == 1)
200     for (i = *imin; i < *imax; i++)
201 greg 3.15 sum += *va++;
202 greg 3.1 else
203 greg 3.15 for (i = *imin; i < *imax; i++, va += skipsiz)
204     sum += SDiterSum(va, nd, shft, imin+1, imax+1);
205 greg 3.1 return sum;
206     }
207    
208     /* Average BSDF leaves over an orthotope defined by the unit hypercube */
209     static double
210 greg 3.6 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
211 greg 3.1 {
212     unsigned n;
213     int i;
214    
215     if (!st)
216     return .0;
217     /* check box limits */
218     for (i = st->ndim; i--; ) {
219     if (bmin[i] >= 1.)
220     return .0;
221 greg 3.13 if (bmax[i] <= 0)
222 greg 3.1 return .0;
223     if (bmin[i] >= bmax[i])
224     return .0;
225     }
226     if (st->log2GR < 0) { /* iterate on subtree */
227     double sum = .0, wsum = 1e-20;
228     double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
229     for (n = 1 << st->ndim; n--; ) {
230     w = 1.;
231     for (i = st->ndim; i--; ) {
232     sbmin[i] = 2.*bmin[i];
233     sbmax[i] = 2.*bmax[i];
234     if (n & 1<<i) {
235     sbmin[i] -= 1.;
236     sbmax[i] -= 1.;
237     }
238     if (sbmin[i] < .0) sbmin[i] = .0;
239     if (sbmax[i] > 1.) sbmax[i] = 1.;
240 greg 3.13 if (sbmin[i] >= sbmax[i]) {
241     w = .0;
242     break;
243     }
244 greg 3.1 w *= sbmax[i] - sbmin[i];
245     }
246     if (w > 1e-10) {
247 greg 3.6 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
248 greg 3.1 wsum += w;
249     }
250     }
251     return sum / wsum;
252 greg 3.15 } else { /* iterate over leaves */
253     int imin[SD_MAXDIM], imax[SD_MAXDIM];
254    
255     n = 1;
256     for (i = st->ndim; i--; ) {
257     imin[i] = (bmin[i] <= 0) ? 0 :
258     (int)((1 << st->log2GR)*bmin[i]);
259     imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR) :
260     (int)((1 << st->log2GR)*bmax[i] + .999999);
261     n *= imax[i] - imin[i];
262     }
263     if (n)
264     return SDiterSum(st->u.v, st->ndim,
265     st->log2GR, imin, imax) / (double)n;
266 greg 3.1 }
267 greg 3.15 return .0;
268 greg 3.1 }
269    
270 greg 3.6 /* Recursive call for SDtraverseTre() */
271     static int
272     SDdotravTre(const SDNode *st, const double *pos, int cmask,
273     SDtreCallback *cf, void *cptr,
274     const double *cmin, double csiz)
275     {
276     int rv, rval = 0;
277     double bmin[SD_MAXDIM];
278     int i, n;
279     /* in branches? */
280     if (st->log2GR < 0) {
281     unsigned skipmask = 0;
282     csiz *= .5;
283     for (i = st->ndim; i--; )
284     if (1<<i & cmask)
285     if (pos[i] < cmin[i] + csiz)
286 greg 3.13 for (n = 1 << st->ndim; n--; ) {
287 greg 3.6 if (n & 1<<i)
288     skipmask |= 1<<n;
289 greg 3.13 }
290 greg 3.6 else
291 greg 3.13 for (n = 1 << st->ndim; n--; ) {
292 greg 3.6 if (!(n & 1<<i))
293     skipmask |= 1<<n;
294 greg 3.13 }
295 greg 3.6 for (n = 1 << st->ndim; n--; ) {
296     if (1<<n & skipmask)
297     continue;
298     for (i = st->ndim; i--; )
299     if (1<<i & n)
300     bmin[i] = cmin[i] + csiz;
301     else
302     bmin[i] = cmin[i];
303    
304     rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
305     cf, cptr, bmin, csiz);
306     if (rv < 0)
307     return rv;
308     }
309     } else { /* else traverse leaves */
310     int clim[SD_MAXDIM][2];
311     int cpos[SD_MAXDIM];
312    
313     if (st->log2GR == 0) /* short cut */
314     return (*cf)(st->u.v[0], cmin, csiz, cptr);
315    
316     csiz /= (double)(1 << st->log2GR);
317     /* assign coord. ranges */
318     for (i = st->ndim; i--; )
319     if (1<<i & cmask) {
320     clim[i][0] = (pos[i] - cmin[i])/csiz;
321     /* check overflow from f.p. error */
322     clim[i][0] -= clim[i][0] >> st->log2GR;
323     clim[i][1] = clim[i][0] + 1;
324     } else {
325     clim[i][0] = 0;
326     clim[i][1] = 1 << st->log2GR;
327     }
328     #if (SD_MAXDIM == 4)
329     bmin[0] = cmin[0] + csiz*clim[0][0];
330     for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
331     bmin[1] = cmin[1] + csiz*clim[1][0];
332     for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
333     bmin[2] = cmin[2] + csiz*clim[2][0];
334 greg 3.16 if (st->ndim == 3) {
335     cpos[2] = clim[2][0];
336 greg 3.6 n = cpos[0];
337 greg 3.16 for (i = 1; i < 3; i++)
338 greg 3.6 n = (n << st->log2GR) + cpos[i];
339 greg 3.16 for ( ; cpos[2] < clim[2][1]; cpos[2]++) {
340 greg 3.6 rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
341     if (rv < 0)
342     return rv;
343 greg 3.16 bmin[2] += csiz;
344     }
345     } else {
346     for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
347     bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
348     n = cpos[0];
349     for (i = 1; i < 4; i++)
350     n = (n << st->log2GR) + cpos[i];
351     for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
352     rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
353     if (rv < 0)
354     return rv;
355     bmin[3] += csiz;
356     }
357     bmin[2] += csiz;
358 greg 3.6 }
359     }
360     bmin[1] += csiz;
361     }
362     bmin[0] += csiz;
363     }
364     #else
365     _!_ "broken code segment!"
366     #endif
367     }
368     return rval;
369     }
370    
371     /* Traverse a tree, visiting nodes in a slice that fits partial position */
372     static int
373     SDtraverseTre(const SDNode *st, const double *pos, int cmask,
374     SDtreCallback *cf, void *cptr)
375     {
376     static double czero[SD_MAXDIM];
377     int i;
378     /* check arguments */
379     if ((st == NULL) | (cf == NULL))
380     return -1;
381     for (i = st->ndim; i--; )
382     if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
383     return -1;
384    
385     return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
386     }
387 greg 3.5
388     /* Look up tree value at the given grid position */
389     static float
390 greg 3.6 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
391 greg 3.5 {
392     double spos[SD_MAXDIM];
393     int i, n, t;
394 greg 3.6 /* initialize voxel return */
395     if (hcube) {
396     hcube[i = st->ndim] = 1.;
397     while (i--)
398     hcube[i] = .0;
399     }
400 greg 3.5 /* climb the tree */
401     while (st->log2GR < 0) {
402     n = 0; /* move to appropriate branch */
403 greg 3.6 if (hcube) hcube[st->ndim] *= .5;
404 greg 3.5 for (i = st->ndim; i--; ) {
405     spos[i] = 2.*pos[i];
406     t = (spos[i] >= 1.);
407     n |= t<<i;
408     spos[i] -= (double)t;
409 greg 3.6 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
410 greg 3.5 }
411     st = st->u.t[n]; /* avoids tail recursion */
412     pos = spos;
413     }
414 greg 3.6 if (st->log2GR == 0) /* short cut */
415     return st->u.v[0];
416 greg 3.5 n = t = 0; /* find grid array index */
417     for (i = st->ndim; i--; ) {
418     n += (int)((1<<st->log2GR)*pos[i]) << t;
419     t += st->log2GR;
420     }
421 greg 3.6 if (hcube) { /* compute final hypercube */
422     hcube[st->ndim] /= (double)(1<<st->log2GR);
423     for (i = st->ndim; i--; )
424     hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
425     }
426     return st->u.v[n]; /* no interpolation */
427     }
428    
429     /* Query BSDF value and sample hypercube for the given vectors */
430     static float
431     SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
432     {
433     FVECT rOutVec;
434     double gridPos[4];
435 greg 3.7
436     switch (sdt->sidef) { /* whose side are you on? */
437     case SD_UFRONT:
438     if ((outVec[2] < 0) | (inVec[2] < 0))
439     return -1.;
440     break;
441     case SD_UBACK:
442     if ((outVec[2] > 0) | (inVec[2] > 0))
443     return -1.;
444     break;
445     case SD_XMIT:
446     if ((outVec[2] > 0) == (inVec[2] > 0))
447     return -1.;
448     break;
449     default:
450 greg 3.6 return -1.;
451 greg 3.7 }
452 greg 3.6 /* convert vector coordinates */
453     if (sdt->st->ndim == 3) {
454 greg 3.15 spinvector(rOutVec, outVec, zvec, -atan2(-inVec[1],-inVec[0]));
455 greg 3.6 gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
456     SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
457     } else if (sdt->st->ndim == 4) {
458     SDdisk2square(gridPos, -inVec[0], -inVec[1]);
459     SDdisk2square(gridPos+2, outVec[0], outVec[1]);
460     } else
461     return -1.; /* should be internal error */
462    
463     return SDlookupTre(sdt->st, gridPos, hc);
464 greg 3.5 }
465    
466     /* Compute non-diffuse component for variable-resolution BSDF */
467     static int
468     SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
469 greg 3.6 const FVECT inVec, SDComponent *sdc)
470 greg 3.5 {
471 greg 3.6 /* check arguments */
472     if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
473     || sdc->dist == NULL)
474     return 0;
475 greg 3.5 /* get nearest BSDF value */
476 greg 3.6 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
477     return (coef[0] >= 0); /* monochromatic for now */
478     }
479    
480     /* Callback to build cumulative distribution using SDtraverseTre() */
481     static int
482     build_scaffold(float val, const double *cmin, double csiz, void *cptr)
483     {
484     SDdistScaffold *sp = (SDdistScaffold *)cptr;
485     int wid = csiz*(double)iwmax + .5;
486     bitmask_t bmin[2], bmax[2];
487    
488     cmin += sp->nic; /* skip to output coords */
489     if (wid < sp->wmin) /* new minimum width? */
490     sp->wmin = wid;
491     if (wid > sp->wmax) /* new maximum? */
492     sp->wmax = wid;
493     if (sp->alen >= sp->nall) { /* need more space? */
494     struct outdir_s *ndarr;
495 greg 3.12 sp->nall += 1024;
496 greg 3.6 ndarr = (struct outdir_s *)realloc(sp->darr,
497     sizeof(struct outdir_s)*sp->nall);
498 greg 3.12 if (ndarr == NULL) {
499     sprintf(SDerrorDetail,
500     "Cannot grow scaffold to %u entries", sp->nall);
501 greg 3.6 return -1; /* abort build */
502 greg 3.12 }
503 greg 3.6 sp->darr = ndarr;
504     }
505     /* find Hilbert entry index */
506     bmin[0] = cmin[0]*(double)iwmax + .5;
507     bmin[1] = cmin[1]*(double)iwmax + .5;
508 greg 3.10 bmax[0] = bmin[0] + wid-1;
509     bmax[1] = bmin[1] + wid-1;
510 greg 3.7 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
511     sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
512 greg 3.6 sp->darr[sp->alen].wid = wid;
513     sp->darr[sp->alen].bsdf = val;
514     sp->alen++; /* on to the next entry */
515     return 0;
516     }
517    
518     /* Scaffold comparison function for qsort -- ascending Hilbert index */
519     static int
520     sscmp(const void *p1, const void *p2)
521     {
522 greg 3.10 unsigned h1 = (*(const struct outdir_s *)p1).hent;
523     unsigned h2 = (*(const struct outdir_s *)p2).hent;
524    
525     if (h1 > h2)
526     return 1;
527     if (h1 < h2)
528     return -1;
529     return 0;
530 greg 3.6 }
531    
532     /* Create a new cumulative distribution for the given input direction */
533     static SDTreCDst *
534     make_cdist(const SDTre *sdt, const double *pos)
535     {
536     SDdistScaffold myScaffold;
537     SDTreCDst *cd;
538     struct outdir_s *sp;
539     double scale, cursum;
540     int i;
541     /* initialize scaffold */
542     myScaffold.wmin = iwmax;
543     myScaffold.wmax = 0;
544     myScaffold.nic = sdt->st->ndim - 2;
545     myScaffold.alen = 0;
546 greg 3.12 myScaffold.nall = 512;
547 greg 3.6 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
548     myScaffold.nall);
549     if (myScaffold.darr == NULL)
550     return NULL;
551     /* grow the distribution */
552     if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
553     &build_scaffold, &myScaffold) < 0) {
554     free(myScaffold.darr);
555     return NULL;
556     }
557     /* allocate result holder */
558     cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
559     sizeof(cd->carr[0])*myScaffold.alen);
560     if (cd == NULL) {
561 greg 3.12 sprintf(SDerrorDetail,
562     "Cannot allocate %u entry cumulative distribution",
563     myScaffold.alen);
564 greg 3.6 free(myScaffold.darr);
565     return NULL;
566     }
567 greg 3.15 cd->isodist = (myScaffold.nic == 1);
568 greg 3.6 /* sort the distribution */
569     qsort(myScaffold.darr, cd->calen = myScaffold.alen,
570     sizeof(struct outdir_s), &sscmp);
571    
572     /* record input range */
573 greg 3.7 scale = myScaffold.wmin / (double)iwmax;
574 greg 3.6 for (i = myScaffold.nic; i--; ) {
575 greg 3.7 cd->clim[i][0] = floor(pos[i]/scale) * scale;
576 greg 3.6 cd->clim[i][1] = cd->clim[i][0] + scale;
577     }
578 greg 3.15 if (cd->isodist) { /* avoid issue in SDqueryTreProjSA() */
579     cd->clim[1][0] = cd->clim[0][0];
580     cd->clim[1][1] = cd->clim[0][1];
581     }
582 greg 3.6 cd->max_psa = myScaffold.wmax / (double)iwmax;
583     cd->max_psa *= cd->max_psa * M_PI;
584 greg 3.7 cd->sidef = sdt->sidef;
585 greg 3.6 cd->cTotal = 1e-20; /* compute directional total */
586     sp = myScaffold.darr;
587     for (i = myScaffold.alen; i--; sp++)
588     cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
589     cursum = .0; /* go back and get cumulative values */
590     scale = (double)cumlmax / cd->cTotal;
591     sp = myScaffold.darr;
592     for (i = 0; i < cd->calen; i++, sp++) {
593 greg 3.7 cd->carr[i].hndx = sp->hent;
594 greg 3.6 cd->carr[i].cuml = scale*cursum + .5;
595     cursum += sp->bsdf * (double)sp->wid * sp->wid;
596     }
597     cd->carr[i].hndx = ~0; /* make final entry */
598     cd->carr[i].cuml = cumlmax;
599     cd->cTotal *= M_PI/(double)iwmax/iwmax;
600     /* all done, clean up and return */
601     free(myScaffold.darr);
602     return cd;
603     }
604    
605     /* Find or allocate a cumulative distribution for the given incoming vector */
606     const SDCDst *
607     SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
608     {
609     const SDTre *sdt;
610 greg 3.21 double inCoord[2], quantum;
611 greg 3.6 int i;
612     SDTreCDst *cd, *cdlast;
613     /* check arguments */
614     if ((inVec == NULL) | (sdc == NULL) ||
615     (sdt = (SDTre *)sdc->dist) == NULL)
616     return NULL;
617 greg 3.21 if (sdt->st->ndim == 3) { /* isotropic BSDF? */
618 greg 3.6 inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
619 greg 3.21 } else if (sdt->st->ndim == 4) {
620 greg 3.6 SDdisk2square(inCoord, -inVec[0], -inVec[1]);
621 greg 3.21 } else
622 greg 3.6 return NULL; /* should be internal error */
623 greg 3.21 /* quantize to avoid f.p. errors */
624     quantum = SDsmallestLeaf(sdt->st);
625     for (i = sdt->st->ndim - 2; i--; )
626     inCoord[i] = floor(inCoord[i]/quantum)*quantum + .5*quantum;
627 greg 3.6 cdlast = NULL; /* check for direction in cache list */
628     for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
629 greg 3.20 cdlast = cd, cd = cd->next) {
630 greg 3.6 for (i = sdt->st->ndim - 2; i--; )
631     if ((cd->clim[i][0] > inCoord[i]) |
632     (inCoord[i] >= cd->clim[i][1]))
633     break;
634     if (i < 0)
635     break; /* means we have a match */
636     }
637     if (cd == NULL) /* need to create new entry? */
638     cdlast = cd = make_cdist(sdt, inCoord);
639     if (cdlast != NULL) { /* move entry to head of cache list */
640     cdlast->next = cd->next;
641 greg 3.20 cd->next = (SDTreCDst *)sdc->cdList;
642 greg 3.6 sdc->cdList = (SDCDst *)cd;
643     }
644     return (SDCDst *)cd; /* ready to go */
645     }
646    
647     /* Query solid angle for vector(s) */
648     static SDError
649     SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
650     int qflags, SDComponent *sdc)
651     {
652     double myPSA[2];
653     /* check arguments */
654     if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
655     sdc->dist == NULL)
656     return SDEargument;
657     /* get projected solid angle(s) */
658     if (v2 != NULL) {
659     const SDTre *sdt = (SDTre *)sdc->dist;
660     double hcube[SD_MAXDIM];
661     if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
662 greg 3.7 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
663     return SDEinternal;
664 greg 3.6 }
665     myPSA[0] = hcube[sdt->st->ndim];
666     myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
667     } else {
668     const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
669     if (cd == NULL)
670     return SDEmemory;
671     myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
672     (cd->clim[1][1] - cd->clim[1][0]);
673     myPSA[1] = cd->max_psa;
674     }
675     switch (qflags) { /* record based on flag settings */
676     case SDqueryVal:
677     *psa = myPSA[0];
678     break;
679     case SDqueryMax:
680     if (myPSA[1] > *psa)
681     *psa = myPSA[1];
682     break;
683     case SDqueryMin+SDqueryMax:
684     if (myPSA[1] > psa[1])
685     psa[1] = myPSA[1];
686     /* fall through */
687     case SDqueryMin:
688     if (myPSA[0] < psa[0])
689     psa[0] = myPSA[0];
690     break;
691     }
692     return SDEnone;
693     }
694    
695     /* Sample cumulative distribution */
696     static SDError
697     SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
698     {
699     const unsigned nBitsC = 4*sizeof(bitmask_t);
700     const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
701     const SDTreCDst *cd = (const SDTreCDst *)cdp;
702 greg 3.7 const unsigned target = randX*cumlmax;
703 greg 3.6 bitmask_t hndx, hcoord[2];
704 greg 3.15 double gpos[3], rotangle;
705 greg 3.6 int i, iupper, ilower;
706     /* check arguments */
707     if ((ioVec == NULL) | (cd == NULL))
708     return SDEargument;
709 greg 3.7 if (ioVec[2] > 0) {
710     if (!(cd->sidef & SD_UFRONT))
711     return SDEargument;
712     } else if (!(cd->sidef & SD_UBACK))
713     return SDEargument;
714 greg 3.6 /* binary search to find position */
715     ilower = 0; iupper = cd->calen;
716     while ((i = (iupper + ilower) >> 1) != ilower)
717 greg 3.19 if (target >= cd->carr[i].cuml)
718 greg 3.6 ilower = i;
719     else
720     iupper = i;
721     /* localize random position */
722 greg 3.7 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
723 greg 3.6 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
724     /* index in longer Hilbert curve */
725     hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
726     * (double)((bitmask_t)1 << nExtraBits);
727     /* convert Hilbert index to vector */
728     hilbert_i2c(2, nBitsC, hndx, hcoord);
729     for (i = 2; i--; )
730     gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
731     (double)((bitmask_t)1 << nBitsC);
732     SDsquare2disk(gpos, gpos[0], gpos[1]);
733 greg 3.7 /* compute Z-coordinate */
734 greg 3.6 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
735     if (gpos[2] > 0) /* paranoia, I hope */
736     gpos[2] = sqrt(gpos[2]);
737 greg 3.7 /* emit from back? */
738     if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
739 greg 3.6 gpos[2] = -gpos[2];
740 greg 3.15 if (cd->isodist) { /* rotate isotropic result */
741     rotangle = atan2(-ioVec[1],-ioVec[0]);
742     VCOPY(ioVec, gpos);
743     spinvector(ioVec, ioVec, zvec, rotangle);
744     } else
745     VCOPY(ioVec, gpos);
746 greg 3.6 return SDEnone;
747 greg 3.5 }
748    
749 greg 3.7 /* Advance pointer to the next non-white character in the string (or nul) */
750     static int
751     next_token(char **spp)
752     {
753     while (isspace(**spp))
754     ++*spp;
755     return **spp;
756     }
757    
758 greg 3.12 /* Advance pointer past matching token (or any token if c==0) */
759     #define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0)
760 greg 3.9
761 greg 3.7 /* Count words from this point in string to '}' */
762     static int
763     count_values(char *cp)
764     {
765     int n = 0;
766    
767 greg 3.9 while (next_token(&cp) != '}' && *cp) {
768 greg 3.11 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
769     if (!*++cp)
770     break;
771 greg 3.7 ++n;
772 greg 3.9 eat_token(&cp, ',');
773 greg 3.7 }
774     return n;
775     }
776    
777     /* Load an array of real numbers, returning total */
778     static int
779     load_values(char **spp, float *va, int n)
780     {
781     float *v = va;
782     char *svnext;
783    
784     while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
785     *v++ = atof(*spp);
786     *spp = svnext;
787 greg 3.9 eat_token(spp, ',');
788 greg 3.7 }
789     return v - va;
790     }
791    
792     /* Load BSDF tree data */
793     static SDNode *
794     load_tree_data(char **spp, int nd)
795     {
796     SDNode *st;
797     int n;
798    
799 greg 3.9 if (!eat_token(spp, '{')) {
800 greg 3.7 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
801     return NULL;
802     }
803     if (next_token(spp) == '{') { /* tree branches */
804     st = SDnewNode(nd, -1);
805     if (st == NULL)
806     return NULL;
807     for (n = 0; n < 1<<nd; n++)
808     if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
809     SDfreeTre(st);
810     return NULL;
811     }
812     } else { /* else load value grid */
813     int bsiz;
814     n = count_values(*spp); /* see how big the grid is */
815 greg 3.15 for (bsiz = 0; bsiz < 8*sizeof(size_t); bsiz += nd)
816 greg 3.7 if (1<<bsiz == n)
817     break;
818     if (bsiz >= 8*sizeof(size_t)) {
819     strcpy(SDerrorDetail, "Illegal value count in tensor tree");
820     return NULL;
821     }
822     st = SDnewNode(nd, bsiz/nd);
823     if (st == NULL)
824     return NULL;
825     if (load_values(spp, st->u.v, n) != n) {
826     strcpy(SDerrorDetail, "Real format error in tensor tree");
827     SDfreeTre(st);
828     return NULL;
829     }
830     }
831 greg 3.9 if (!eat_token(spp, '}')) {
832 greg 3.7 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
833     SDfreeTre(st);
834     return NULL;
835     }
836 greg 3.9 eat_token(spp, ',');
837 greg 3.7 return st;
838     }
839    
840     /* Compute min. proj. solid angle and max. direct hemispherical scattering */
841     static SDError
842     get_extrema(SDSpectralDF *df)
843     {
844     SDNode *st = (*(SDTre *)df->comp[0].dist).st;
845     double stepWidth, dhemi, bmin[4], bmax[4];
846    
847     stepWidth = SDsmallestLeaf(st);
848     df->minProjSA = M_PI*stepWidth*stepWidth;
849     if (stepWidth < .03125)
850     stepWidth = .03125; /* 1/32 resolution good enough */
851     df->maxHemi = .0;
852     if (st->ndim == 3) { /* isotropic BSDF */
853     bmin[1] = bmin[2] = .0;
854     bmax[1] = bmax[2] = 1.;
855     for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
856     bmax[0] = bmin[0] + stepWidth;
857     dhemi = SDavgTreBox(st, bmin, bmax);
858     if (dhemi > df->maxHemi)
859     df->maxHemi = dhemi;
860     }
861     } else if (st->ndim == 4) { /* anisotropic BSDF */
862     bmin[2] = bmin[3] = .0;
863     bmax[2] = bmax[3] = 1.;
864     for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
865     bmax[0] = bmin[0] + stepWidth;
866     for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
867     bmax[1] = bmin[1] + stepWidth;
868     dhemi = SDavgTreBox(st, bmin, bmax);
869     if (dhemi > df->maxHemi)
870     df->maxHemi = dhemi;
871     }
872     }
873     } else
874     return SDEinternal;
875     /* correct hemispherical value */
876     df->maxHemi *= M_PI;
877     return SDEnone;
878     }
879    
880     /* Load BSDF distribution for this wavelength */
881     static SDError
882     load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
883     {
884     SDSpectralDF *df;
885     SDTre *sdt;
886     char *sdata;
887     /* allocate BSDF component */
888     sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
889     if (!sdata)
890     return SDEnone;
891     /*
892     * Remember that front and back are reversed from WINDOW 6 orientations
893     */
894     if (!strcasecmp(sdata, "Transmission")) {
895     if (sd->tf != NULL)
896     SDfreeSpectralDF(sd->tf);
897     if ((sd->tf = SDnewSpectralDF(1)) == NULL)
898     return SDEmemory;
899     df = sd->tf;
900     } else if (!strcasecmp(sdata, "Reflection Front")) {
901     if (sd->rb != NULL) /* note back-front reversal */
902     SDfreeSpectralDF(sd->rb);
903     if ((sd->rb = SDnewSpectralDF(1)) == NULL)
904     return SDEmemory;
905     df = sd->rb;
906     } else if (!strcasecmp(sdata, "Reflection Back")) {
907     if (sd->rf != NULL) /* note front-back reversal */
908     SDfreeSpectralDF(sd->rf);
909     if ((sd->rf = SDnewSpectralDF(1)) == NULL)
910     return SDEmemory;
911     df = sd->rf;
912     } else
913     return SDEnone;
914     /* XXX should also check "ScatteringDataType" for consistency? */
915     /* get angle bases */
916     sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
917     if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
918     sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
919     !sdata ? "Missing" : "Unsupported", sd->name);
920     return !sdata ? SDEformat : SDEsupport;
921     }
922     /* allocate BSDF tree */
923     sdt = (SDTre *)malloc(sizeof(SDTre));
924     if (sdt == NULL)
925     return SDEmemory;
926     if (df == sd->rf)
927     sdt->sidef = SD_UFRONT;
928     else if (df == sd->rb)
929     sdt->sidef = SD_UBACK;
930     else
931     sdt->sidef = SD_XMIT;
932     sdt->st = NULL;
933     df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
934     df->comp[0].dist = sdt;
935     df->comp[0].func = &SDhandleTre;
936     /* read BSDF data */
937     sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
938     if (!sdata || !next_token(&sdata)) {
939     sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
940     sd->name);
941     return SDEformat;
942     }
943     sdt->st = load_tree_data(&sdata, ndim);
944     if (sdt->st == NULL)
945     return SDEformat;
946     if (next_token(&sdata)) { /* check for unconsumed characters */
947     sprintf(SDerrorDetail,
948     "Extra characters at end of ScatteringData in '%s'",
949     sd->name);
950     return SDEformat;
951     }
952     /* flatten branches where possible */
953     sdt->st = SDsimplifyTre(sdt->st);
954     if (sdt->st == NULL)
955     return SDEinternal;
956     return get_extrema(df); /* compute global quantities */
957     }
958    
959     /* Find minimum value in tree */
960     static float
961     SDgetTreMin(const SDNode *st)
962     {
963 greg 3.10 float vmin = FHUGE;
964 greg 3.7 int n;
965    
966     if (st->log2GR < 0) {
967     for (n = 1<<st->ndim; n--; ) {
968     float v = SDgetTreMin(st->u.t[n]);
969     if (v < vmin)
970     vmin = v;
971     }
972     } else {
973     for (n = 1<<(st->ndim*st->log2GR); n--; )
974     if (st->u.v[n] < vmin)
975     vmin = st->u.v[n];
976     }
977     return vmin;
978     }
979    
980     /* Subtract the given value from all tree nodes */
981     static void
982     SDsubtractTreVal(SDNode *st, float val)
983     {
984     int n;
985    
986     if (st->log2GR < 0) {
987     for (n = 1<<st->ndim; n--; )
988     SDsubtractTreVal(st->u.t[n], val);
989     } else {
990     for (n = 1<<(st->ndim*st->log2GR); n--; )
991 greg 3.15 if ((st->u.v[n] -= val) < 0)
992     st->u.v[n] = .0f;
993 greg 3.7 }
994     }
995    
996     /* Subtract minimum value from BSDF */
997     static double
998     subtract_min(SDNode *st)
999     {
1000     float vmin;
1001     /* be sure to skip unused portion */
1002 greg 3.10 if (st->ndim == 3) {
1003     int n;
1004 greg 3.7 vmin = 1./M_PI;
1005 greg 3.10 if (st->log2GR < 0) {
1006 greg 3.15 for (n = 0; n < 8; n += 2) {
1007 greg 3.10 float v = SDgetTreMin(st->u.t[n]);
1008     if (v < vmin)
1009     vmin = v;
1010     }
1011     } else if (st->log2GR) {
1012     for (n = 1 << (3*st->log2GR - 1); n--; )
1013     if (st->u.v[n] < vmin)
1014     vmin = st->u.v[n];
1015     } else
1016     vmin = st->u.v[0];
1017 greg 3.7 } else /* anisotropic covers entire tree */
1018     vmin = SDgetTreMin(st);
1019    
1020     if (vmin <= FTINY)
1021     return .0;
1022    
1023 greg 3.8 SDsubtractTreVal(st, vmin);
1024 greg 3.7
1025     return M_PI * vmin; /* return hemispherical value */
1026     }
1027    
1028     /* Extract and separate diffuse portion of BSDF */
1029     static void
1030     extract_diffuse(SDValue *dv, SDSpectralDF *df)
1031     {
1032     int n;
1033    
1034     if (df == NULL || df->ncomp <= 0) {
1035     dv->spec = c_dfcolor;
1036     dv->cieY = .0;
1037     return;
1038     }
1039     dv->spec = df->comp[0].cspec[0];
1040 greg 3.9 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1041 greg 3.7 /* in case of multiple components */
1042     for (n = df->ncomp; --n; ) {
1043     double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1044     c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1045     dv->cieY += ymin;
1046     }
1047     df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1048     /* make sure everything is set */
1049     c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1050     }
1051    
1052 greg 3.1 /* Load a variable-resolution BSDF tree from an open XML file */
1053     SDError
1054 greg 3.4 SDloadTre(SDData *sd, ezxml_t wtl)
1055 greg 3.1 {
1056 greg 3.7 SDError ec;
1057     ezxml_t wld, wdb;
1058     int rank;
1059     char *txt;
1060     /* basic checks and tensor rank */
1061     txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1062     "DataDefinition"), "IncidentDataStructure"));
1063     if (txt == NULL || !*txt) {
1064     sprintf(SDerrorDetail,
1065     "BSDF \"%s\": missing IncidentDataStructure",
1066     sd->name);
1067     return SDEformat;
1068     }
1069     if (!strcasecmp(txt, "TensorTree3"))
1070     rank = 3;
1071     else if (!strcasecmp(txt, "TensorTree4"))
1072     rank = 4;
1073     else {
1074     sprintf(SDerrorDetail,
1075     "BSDF \"%s\": unsupported IncidentDataStructure",
1076     sd->name);
1077     return SDEsupport;
1078     }
1079     /* load BSDF components */
1080     for (wld = ezxml_child(wtl, "WavelengthData");
1081     wld != NULL; wld = wld->next) {
1082     if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1083     "Visible"))
1084     continue; /* just visible for now */
1085     for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1086     wdb != NULL; wdb = wdb->next)
1087     if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1088     return ec;
1089     }
1090     /* separate diffuse components */
1091     extract_diffuse(&sd->rLambFront, sd->rf);
1092     extract_diffuse(&sd->rLambBack, sd->rb);
1093     extract_diffuse(&sd->tLamb, sd->tf);
1094     /* return success */
1095     return SDEnone;
1096 greg 3.1 }
1097    
1098     /* Variable resolution BSDF methods */
1099 greg 3.5 SDFunc SDhandleTre = {
1100     &SDgetTreBSDF,
1101 greg 3.6 &SDqueryTreProjSA,
1102     &SDgetTreCDist,
1103     &SDsampTreCDist,
1104     &SDFreeBTre,
1105 greg 3.1 };