ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.12
Committed: Sun May 1 16:34:37 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.11: +25 -18 lines
Log Message:
Minor fixes and improvements

File Contents

# User Rev Content
1 greg 3.2 #ifndef lint
2 greg 3.12 static const char RCSid[] = "$Id: bsdf_t.c,v 3.11 2011/04/28 17:46:25 greg Exp $";
3 greg 3.2 #endif
4 greg 3.1 /*
5     * bsdf_t.c
6     *
7     * Definitions for variable-resolution BSDF trees
8     *
9     * Created by Greg Ward on 2/2/11.
10     *
11     */
12    
13 greg 3.3 #include "rtio.h"
14 greg 3.1 #include <stdlib.h>
15 greg 3.3 #include <math.h>
16     #include <ctype.h>
17 greg 3.1 #include "ezxml.h"
18     #include "bsdf.h"
19     #include "bsdf_t.h"
20 greg 3.6 #include "hilbert.h"
21    
22     /* Callback function type for SDtraverseTre() */
23     typedef int SDtreCallback(float val, const double *cmin,
24     double csiz, void *cptr);
25    
26     /* reference width maximum (1.0) */
27 greg 3.7 static const unsigned iwbits = sizeof(unsigned)*4;
28 greg 3.6 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
29 greg 3.7 /* maximum cumulative value */
30     static const unsigned cumlmax = ~0;
31 greg 3.6
32     /* Struct used for our distribution-building callback */
33     typedef struct {
34     int nic; /* number of input coordinates */
35 greg 3.7 unsigned alen; /* current array length */
36     unsigned nall; /* number of allocated entries */
37     unsigned wmin; /* minimum square size so far */
38     unsigned wmax; /* maximum square size */
39 greg 3.6 struct outdir_s {
40     unsigned hent; /* entering Hilbert index */
41     int wid; /* this square size */
42     float bsdf; /* BSDF for this square */
43     } *darr; /* output direction array */
44     } SDdistScaffold;
45 greg 3.1
46     /* Allocate a new scattering distribution node */
47     static SDNode *
48     SDnewNode(int nd, int lg)
49     {
50     SDNode *st;
51    
52     if (nd <= 0) {
53     strcpy(SDerrorDetail, "Zero dimension BSDF node request");
54     return NULL;
55     }
56     if (nd > SD_MAXDIM) {
57     sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
58     nd, SD_MAXDIM);
59     return NULL;
60     }
61     if (lg < 0) {
62     st = (SDNode *)malloc(sizeof(SDNode) +
63 greg 3.7 sizeof(st->u.t[0])*((1<<nd) - 1));
64 greg 3.12 if (st == NULL) {
65 greg 3.1 sprintf(SDerrorDetail,
66 greg 3.6 "Cannot allocate %d branch BSDF tree", 1<<nd);
67 greg 3.12 return NULL;
68     }
69     memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
70     } else {
71     st = (SDNode *)malloc(sizeof(SDNode) +
72     sizeof(st->u.v[0])*((1 << nd*lg) - 1));
73     if (st == NULL) {
74 greg 3.1 sprintf(SDerrorDetail,
75     "Cannot allocate %d BSDF leaves", 1 << nd*lg);
76 greg 3.12 return NULL;
77     }
78 greg 3.1 }
79     st->ndim = nd;
80     st->log2GR = lg;
81     return st;
82     }
83    
84     /* Free an SD tree */
85     static void
86 greg 3.6 SDfreeTre(SDNode *st)
87 greg 3.1 {
88 greg 3.12 int n;
89 greg 3.1
90     if (st == NULL)
91     return;
92 greg 3.12 for (n = (st->log2GR < 0) << st->ndim; n--; )
93     SDfreeTre(st->u.t[n]);
94 greg 3.1 free((void *)st);
95     }
96    
97 greg 3.6 /* Free a variable-resolution BSDF */
98     static void
99     SDFreeBTre(void *p)
100     {
101     SDTre *sdt = (SDTre *)p;
102    
103     if (sdt == NULL)
104     return;
105     SDfreeTre(sdt->st);
106     free(sdt);
107     }
108 greg 3.5
109 greg 3.7 /* Fill branch's worth of grid values from subtree */
110     static void
111     fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
112     {
113     unsigned n = 1 << (shft-1);
114    
115     if (!--nd) { /* end on the line */
116     memcpy(dptr, sptr, sizeof(*dptr)*n);
117     return;
118     }
119     while (n--) /* recurse on each slice */
120     fill_grid_branch(dptr + (n << shft*nd),
121     sptr + (n << (shft-1)*nd), nd, shft);
122     }
123    
124     /* Get pointer at appropriate offset for the given branch */
125     static float *
126     grid_branch_start(SDNode *st, int n)
127     {
128     unsigned skipsiz = 1 << st->log2GR;
129     float *vptr = st->u.v;
130     int i;
131    
132 greg 3.10 for (i = 0; i < st->ndim; skipsiz <<= st->log2GR)
133     if (1<<i++ & n)
134 greg 3.7 vptr += skipsiz >> 1;
135     return vptr;
136     }
137    
138     /* Simplify (consolidate) a tree by flattening uniform depth regions */
139     static SDNode *
140     SDsimplifyTre(SDNode *st)
141     {
142     int match, n;
143    
144     if (st == NULL) /* check for invalid tree */
145     return NULL;
146     if (st->log2GR >= 0) /* grid just returns unaltered */
147     return st;
148     match = 1; /* check if grids below match */
149     for (n = 0; n < 1<<st->ndim; n++) {
150     if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
151     return NULL; /* propogate error up call stack */
152     match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
153     }
154 greg 3.9 if (match && (match = st->u.t[0]->log2GR) >= 0) {
155     SDNode *stn = SDnewNode(st->ndim, match + 1);
156 greg 3.7 if (stn == NULL) /* out of memory? */
157     return st;
158     /* transfer values to new grid */
159     for (n = 1 << st->ndim; n--; )
160     fill_grid_branch(grid_branch_start(stn, n),
161 greg 3.9 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
162 greg 3.7 SDfreeTre(st); /* free old tree */
163     st = stn; /* return new one */
164     }
165     return st;
166     }
167    
168     /* Find smallest leaf in tree */
169     static double
170     SDsmallestLeaf(const SDNode *st)
171     {
172     if (st->log2GR < 0) { /* tree branches */
173     double lmin = 1.;
174     int n;
175     for (n = 1<<st->ndim; n--; ) {
176     double lsiz = SDsmallestLeaf(st->u.t[n]);
177     if (lsiz < lmin)
178     lmin = lsiz;
179     }
180     return .5*lmin;
181     }
182     /* leaf grid width */
183     return 1. / (double)(1 << st->log2GR);
184     }
185    
186 greg 3.1 /* Add up N-dimensional hypercube array values over the given box */
187     static double
188 greg 3.7 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
189 greg 3.1 {
190 greg 3.10 const unsigned skipsiz = 1 << --nd*shft;
191 greg 3.1 double sum = .0;
192     int i;
193    
194     if (skipsiz == 1)
195     for (i = *imin; i < *imax; i++)
196     sum += va[i];
197     else
198     for (i = *imin; i < *imax; i++)
199 greg 3.10 sum += SDiterSum(va + i*skipsiz, nd, shft, imin+1, imax+1);
200 greg 3.1 return sum;
201     }
202    
203     /* Average BSDF leaves over an orthotope defined by the unit hypercube */
204     static double
205 greg 3.6 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
206 greg 3.1 {
207     int imin[SD_MAXDIM], imax[SD_MAXDIM];
208     unsigned n;
209     int i;
210    
211     if (!st)
212     return .0;
213     /* check box limits */
214     for (i = st->ndim; i--; ) {
215     if (bmin[i] >= 1.)
216     return .0;
217     if (bmax[i] <= .0)
218     return .0;
219     if (bmin[i] >= bmax[i])
220     return .0;
221     }
222     if (st->log2GR < 0) { /* iterate on subtree */
223     double sum = .0, wsum = 1e-20;
224     double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
225    
226     for (n = 1 << st->ndim; n--; ) {
227     w = 1.;
228     for (i = st->ndim; i--; ) {
229     sbmin[i] = 2.*bmin[i];
230     sbmax[i] = 2.*bmax[i];
231     if (n & 1<<i) {
232     sbmin[i] -= 1.;
233     sbmax[i] -= 1.;
234     }
235     if (sbmin[i] < .0) sbmin[i] = .0;
236     if (sbmax[i] > 1.) sbmax[i] = 1.;
237     w *= sbmax[i] - sbmin[i];
238     }
239     if (w > 1e-10) {
240 greg 3.6 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
241 greg 3.1 wsum += w;
242     }
243     }
244     return sum / wsum;
245     }
246     n = 1; /* iterate over leaves */
247     for (i = st->ndim; i--; ) {
248 greg 3.7 imin[i] = (bmin[i] <= 0) ? 0
249 greg 3.1 : (int)((1 << st->log2GR)*bmin[i]);
250     imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR)
251     : (int)((1 << st->log2GR)*bmax[i] + .999999);
252     n *= imax[i] - imin[i];
253     }
254     if (!n)
255     return .0;
256    
257 greg 3.7 return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n;
258 greg 3.1 }
259    
260 greg 3.6 /* Recursive call for SDtraverseTre() */
261     static int
262     SDdotravTre(const SDNode *st, const double *pos, int cmask,
263     SDtreCallback *cf, void *cptr,
264     const double *cmin, double csiz)
265     {
266     int rv, rval = 0;
267     double bmin[SD_MAXDIM];
268     int i, n;
269     /* in branches? */
270     if (st->log2GR < 0) {
271     unsigned skipmask = 0;
272    
273     csiz *= .5;
274     for (i = st->ndim; i--; )
275     if (1<<i & cmask)
276     if (pos[i] < cmin[i] + csiz)
277     for (n = 1 << st->ndim; n--; )
278     if (n & 1<<i)
279     skipmask |= 1<<n;
280     else
281     for (n = 1 << st->ndim; n--; )
282     if (!(n & 1<<i))
283     skipmask |= 1<<n;
284     for (n = 1 << st->ndim; n--; ) {
285     if (1<<n & skipmask)
286     continue;
287     for (i = st->ndim; i--; )
288     if (1<<i & n)
289     bmin[i] = cmin[i] + csiz;
290     else
291     bmin[i] = cmin[i];
292    
293     rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
294     cf, cptr, bmin, csiz);
295     if (rv < 0)
296     return rv;
297     }
298     } else { /* else traverse leaves */
299     int clim[SD_MAXDIM][2];
300     int cpos[SD_MAXDIM];
301    
302     if (st->log2GR == 0) /* short cut */
303     return (*cf)(st->u.v[0], cmin, csiz, cptr);
304    
305     csiz /= (double)(1 << st->log2GR);
306     /* assign coord. ranges */
307     for (i = st->ndim; i--; )
308     if (1<<i & cmask) {
309     clim[i][0] = (pos[i] - cmin[i])/csiz;
310     /* check overflow from f.p. error */
311     clim[i][0] -= clim[i][0] >> st->log2GR;
312     clim[i][1] = clim[i][0] + 1;
313     } else {
314     clim[i][0] = 0;
315     clim[i][1] = 1 << st->log2GR;
316     }
317     /* fill in unused dimensions */
318     for (i = SD_MAXDIM; i-- > st->ndim; ) {
319     clim[i][0] = 0; clim[i][1] = 1;
320     }
321     #if (SD_MAXDIM == 4)
322     bmin[0] = cmin[0] + csiz*clim[0][0];
323     for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
324     bmin[1] = cmin[1] + csiz*clim[1][0];
325     for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
326     bmin[2] = cmin[2] + csiz*clim[2][0];
327     for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
328     bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
329     n = cpos[0];
330     for (i = 1; i < st->ndim; i++)
331     n = (n << st->log2GR) + cpos[i];
332     for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
333     rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
334     if (rv < 0)
335     return rv;
336     bmin[3] += csiz;
337     }
338     bmin[2] += csiz;
339     }
340     bmin[1] += csiz;
341     }
342     bmin[0] += csiz;
343     }
344     #else
345     _!_ "broken code segment!"
346     #endif
347     }
348     return rval;
349     }
350    
351     /* Traverse a tree, visiting nodes in a slice that fits partial position */
352     static int
353     SDtraverseTre(const SDNode *st, const double *pos, int cmask,
354     SDtreCallback *cf, void *cptr)
355     {
356     static double czero[SD_MAXDIM];
357     int i;
358     /* check arguments */
359     if ((st == NULL) | (cf == NULL))
360     return -1;
361     for (i = st->ndim; i--; )
362     if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
363     return -1;
364    
365     return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
366     }
367 greg 3.5
368     /* Look up tree value at the given grid position */
369     static float
370 greg 3.6 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
371 greg 3.5 {
372     double spos[SD_MAXDIM];
373     int i, n, t;
374 greg 3.6 /* initialize voxel return */
375     if (hcube) {
376     hcube[i = st->ndim] = 1.;
377     while (i--)
378     hcube[i] = .0;
379     }
380 greg 3.5 /* climb the tree */
381     while (st->log2GR < 0) {
382     n = 0; /* move to appropriate branch */
383 greg 3.6 if (hcube) hcube[st->ndim] *= .5;
384 greg 3.5 for (i = st->ndim; i--; ) {
385     spos[i] = 2.*pos[i];
386     t = (spos[i] >= 1.);
387     n |= t<<i;
388     spos[i] -= (double)t;
389 greg 3.6 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
390 greg 3.5 }
391     st = st->u.t[n]; /* avoids tail recursion */
392     pos = spos;
393     }
394 greg 3.6 if (st->log2GR == 0) /* short cut */
395     return st->u.v[0];
396 greg 3.5 n = t = 0; /* find grid array index */
397     for (i = st->ndim; i--; ) {
398     n += (int)((1<<st->log2GR)*pos[i]) << t;
399     t += st->log2GR;
400     }
401 greg 3.6 if (hcube) { /* compute final hypercube */
402     hcube[st->ndim] /= (double)(1<<st->log2GR);
403     for (i = st->ndim; i--; )
404     hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
405     }
406     return st->u.v[n]; /* no interpolation */
407     }
408    
409     /* Query BSDF value and sample hypercube for the given vectors */
410     static float
411     SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
412     {
413     static const FVECT zvec = {.0, .0, 1.};
414     FVECT rOutVec;
415     double gridPos[4];
416 greg 3.7
417     switch (sdt->sidef) { /* whose side are you on? */
418     case SD_UFRONT:
419     if ((outVec[2] < 0) | (inVec[2] < 0))
420     return -1.;
421     break;
422     case SD_UBACK:
423     if ((outVec[2] > 0) | (inVec[2] > 0))
424     return -1.;
425     break;
426     case SD_XMIT:
427     if ((outVec[2] > 0) == (inVec[2] > 0))
428     return -1.;
429     break;
430     default:
431 greg 3.6 return -1.;
432 greg 3.7 }
433 greg 3.6 /* convert vector coordinates */
434     if (sdt->st->ndim == 3) {
435     spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0]));
436     gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
437     SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
438     } else if (sdt->st->ndim == 4) {
439     SDdisk2square(gridPos, -inVec[0], -inVec[1]);
440     SDdisk2square(gridPos+2, outVec[0], outVec[1]);
441     } else
442     return -1.; /* should be internal error */
443    
444     return SDlookupTre(sdt->st, gridPos, hc);
445 greg 3.5 }
446    
447     /* Compute non-diffuse component for variable-resolution BSDF */
448     static int
449     SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
450 greg 3.6 const FVECT inVec, SDComponent *sdc)
451 greg 3.5 {
452 greg 3.6 /* check arguments */
453     if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
454     || sdc->dist == NULL)
455     return 0;
456 greg 3.5 /* get nearest BSDF value */
457 greg 3.6 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
458     return (coef[0] >= 0); /* monochromatic for now */
459     }
460    
461     /* Callback to build cumulative distribution using SDtraverseTre() */
462     static int
463     build_scaffold(float val, const double *cmin, double csiz, void *cptr)
464     {
465     SDdistScaffold *sp = (SDdistScaffold *)cptr;
466     int wid = csiz*(double)iwmax + .5;
467     bitmask_t bmin[2], bmax[2];
468    
469     cmin += sp->nic; /* skip to output coords */
470     if (wid < sp->wmin) /* new minimum width? */
471     sp->wmin = wid;
472     if (wid > sp->wmax) /* new maximum? */
473     sp->wmax = wid;
474     if (sp->alen >= sp->nall) { /* need more space? */
475     struct outdir_s *ndarr;
476 greg 3.12 sp->nall += 1024;
477 greg 3.6 ndarr = (struct outdir_s *)realloc(sp->darr,
478     sizeof(struct outdir_s)*sp->nall);
479 greg 3.12 if (ndarr == NULL) {
480     sprintf(SDerrorDetail,
481     "Cannot grow scaffold to %u entries", sp->nall);
482 greg 3.6 return -1; /* abort build */
483 greg 3.12 }
484 greg 3.6 sp->darr = ndarr;
485     }
486     /* find Hilbert entry index */
487     bmin[0] = cmin[0]*(double)iwmax + .5;
488     bmin[1] = cmin[1]*(double)iwmax + .5;
489 greg 3.10 bmax[0] = bmin[0] + wid-1;
490     bmax[1] = bmin[1] + wid-1;
491 greg 3.7 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
492     sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
493 greg 3.6 sp->darr[sp->alen].wid = wid;
494     sp->darr[sp->alen].bsdf = val;
495     sp->alen++; /* on to the next entry */
496     return 0;
497     }
498    
499     /* Scaffold comparison function for qsort -- ascending Hilbert index */
500     static int
501     sscmp(const void *p1, const void *p2)
502     {
503 greg 3.10 unsigned h1 = (*(const struct outdir_s *)p1).hent;
504     unsigned h2 = (*(const struct outdir_s *)p2).hent;
505    
506     if (h1 > h2)
507     return 1;
508     if (h1 < h2)
509     return -1;
510     return 0;
511 greg 3.6 }
512    
513     /* Create a new cumulative distribution for the given input direction */
514     static SDTreCDst *
515     make_cdist(const SDTre *sdt, const double *pos)
516     {
517     SDdistScaffold myScaffold;
518     SDTreCDst *cd;
519     struct outdir_s *sp;
520     double scale, cursum;
521     int i;
522     /* initialize scaffold */
523     myScaffold.wmin = iwmax;
524     myScaffold.wmax = 0;
525     myScaffold.nic = sdt->st->ndim - 2;
526     myScaffold.alen = 0;
527 greg 3.12 myScaffold.nall = 512;
528 greg 3.6 myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
529     myScaffold.nall);
530     if (myScaffold.darr == NULL)
531     return NULL;
532     /* grow the distribution */
533     if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
534     &build_scaffold, &myScaffold) < 0) {
535     free(myScaffold.darr);
536     return NULL;
537     }
538     /* allocate result holder */
539     cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
540     sizeof(cd->carr[0])*myScaffold.alen);
541     if (cd == NULL) {
542 greg 3.12 sprintf(SDerrorDetail,
543     "Cannot allocate %u entry cumulative distribution",
544     myScaffold.alen);
545 greg 3.6 free(myScaffold.darr);
546     return NULL;
547     }
548     /* sort the distribution */
549     qsort(myScaffold.darr, cd->calen = myScaffold.alen,
550     sizeof(struct outdir_s), &sscmp);
551    
552     /* record input range */
553 greg 3.7 scale = myScaffold.wmin / (double)iwmax;
554 greg 3.6 for (i = myScaffold.nic; i--; ) {
555 greg 3.7 cd->clim[i][0] = floor(pos[i]/scale) * scale;
556 greg 3.6 cd->clim[i][1] = cd->clim[i][0] + scale;
557     }
558     cd->max_psa = myScaffold.wmax / (double)iwmax;
559     cd->max_psa *= cd->max_psa * M_PI;
560 greg 3.7 cd->sidef = sdt->sidef;
561 greg 3.6 cd->cTotal = 1e-20; /* compute directional total */
562     sp = myScaffold.darr;
563     for (i = myScaffold.alen; i--; sp++)
564     cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
565     cursum = .0; /* go back and get cumulative values */
566     scale = (double)cumlmax / cd->cTotal;
567     sp = myScaffold.darr;
568     for (i = 0; i < cd->calen; i++, sp++) {
569 greg 3.7 cd->carr[i].hndx = sp->hent;
570 greg 3.6 cd->carr[i].cuml = scale*cursum + .5;
571     cursum += sp->bsdf * (double)sp->wid * sp->wid;
572     }
573     cd->carr[i].hndx = ~0; /* make final entry */
574     cd->carr[i].cuml = cumlmax;
575     cd->cTotal *= M_PI/(double)iwmax/iwmax;
576     /* all done, clean up and return */
577     free(myScaffold.darr);
578     return cd;
579     }
580    
581     /* Find or allocate a cumulative distribution for the given incoming vector */
582     const SDCDst *
583     SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
584     {
585     const SDTre *sdt;
586     double inCoord[2];
587     int vflags;
588     int i;
589     SDTreCDst *cd, *cdlast;
590     /* check arguments */
591     if ((inVec == NULL) | (sdc == NULL) ||
592     (sdt = (SDTre *)sdc->dist) == NULL)
593     return NULL;
594     if (sdt->st->ndim == 3) /* isotropic BSDF? */
595     inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
596     else if (sdt->st->ndim == 4)
597     SDdisk2square(inCoord, -inVec[0], -inVec[1]);
598     else
599     return NULL; /* should be internal error */
600     cdlast = NULL; /* check for direction in cache list */
601     for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
602     cdlast = cd, cd = (SDTreCDst *)cd->next) {
603     for (i = sdt->st->ndim - 2; i--; )
604     if ((cd->clim[i][0] > inCoord[i]) |
605     (inCoord[i] >= cd->clim[i][1]))
606     break;
607     if (i < 0)
608     break; /* means we have a match */
609     }
610     if (cd == NULL) /* need to create new entry? */
611     cdlast = cd = make_cdist(sdt, inCoord);
612     if (cdlast != NULL) { /* move entry to head of cache list */
613     cdlast->next = cd->next;
614     cd->next = sdc->cdList;
615     sdc->cdList = (SDCDst *)cd;
616     }
617     return (SDCDst *)cd; /* ready to go */
618     }
619    
620     /* Query solid angle for vector(s) */
621     static SDError
622     SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
623     int qflags, SDComponent *sdc)
624     {
625     double myPSA[2];
626     /* check arguments */
627     if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
628     sdc->dist == NULL)
629     return SDEargument;
630     /* get projected solid angle(s) */
631     if (v2 != NULL) {
632     const SDTre *sdt = (SDTre *)sdc->dist;
633     double hcube[SD_MAXDIM];
634     if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
635 greg 3.7 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
636     return SDEinternal;
637 greg 3.6 }
638     myPSA[0] = hcube[sdt->st->ndim];
639     myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
640     } else {
641     const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
642     if (cd == NULL)
643     return SDEmemory;
644     myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
645     (cd->clim[1][1] - cd->clim[1][0]);
646     myPSA[1] = cd->max_psa;
647     }
648     switch (qflags) { /* record based on flag settings */
649     case SDqueryVal:
650     *psa = myPSA[0];
651     break;
652     case SDqueryMax:
653     if (myPSA[1] > *psa)
654     *psa = myPSA[1];
655     break;
656     case SDqueryMin+SDqueryMax:
657     if (myPSA[1] > psa[1])
658     psa[1] = myPSA[1];
659     /* fall through */
660     case SDqueryMin:
661     if (myPSA[0] < psa[0])
662     psa[0] = myPSA[0];
663     break;
664     }
665     return SDEnone;
666     }
667    
668     /* Sample cumulative distribution */
669     static SDError
670     SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
671     {
672     const unsigned nBitsC = 4*sizeof(bitmask_t);
673     const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
674     const SDTreCDst *cd = (const SDTreCDst *)cdp;
675 greg 3.7 const unsigned target = randX*cumlmax;
676 greg 3.6 bitmask_t hndx, hcoord[2];
677     double gpos[3];
678     int i, iupper, ilower;
679     /* check arguments */
680     if ((ioVec == NULL) | (cd == NULL))
681     return SDEargument;
682 greg 3.7 if (ioVec[2] > 0) {
683     if (!(cd->sidef & SD_UFRONT))
684     return SDEargument;
685     } else if (!(cd->sidef & SD_UBACK))
686     return SDEargument;
687 greg 3.6 /* binary search to find position */
688     ilower = 0; iupper = cd->calen;
689     while ((i = (iupper + ilower) >> 1) != ilower)
690     if ((long)target >= (long)cd->carr[i].cuml)
691     ilower = i;
692     else
693     iupper = i;
694     /* localize random position */
695 greg 3.7 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
696 greg 3.6 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
697     /* index in longer Hilbert curve */
698     hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
699     * (double)((bitmask_t)1 << nExtraBits);
700     /* convert Hilbert index to vector */
701     hilbert_i2c(2, nBitsC, hndx, hcoord);
702     for (i = 2; i--; )
703     gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
704     (double)((bitmask_t)1 << nBitsC);
705     SDsquare2disk(gpos, gpos[0], gpos[1]);
706 greg 3.7 /* compute Z-coordinate */
707 greg 3.6 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
708     if (gpos[2] > 0) /* paranoia, I hope */
709     gpos[2] = sqrt(gpos[2]);
710 greg 3.7 /* emit from back? */
711     if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
712 greg 3.6 gpos[2] = -gpos[2];
713     VCOPY(ioVec, gpos);
714     return SDEnone;
715 greg 3.5 }
716    
717 greg 3.7 /* Advance pointer to the next non-white character in the string (or nul) */
718     static int
719     next_token(char **spp)
720     {
721     while (isspace(**spp))
722     ++*spp;
723     return **spp;
724     }
725    
726 greg 3.12 /* Advance pointer past matching token (or any token if c==0) */
727     #define eat_token(spp,c) (next_token(spp)==(c) ^ !(c) ? *(*(spp))++ : 0)
728 greg 3.9
729 greg 3.7 /* Count words from this point in string to '}' */
730     static int
731     count_values(char *cp)
732     {
733     int n = 0;
734    
735 greg 3.9 while (next_token(&cp) != '}' && *cp) {
736 greg 3.11 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
737     if (!*++cp)
738     break;
739 greg 3.7 ++n;
740 greg 3.9 eat_token(&cp, ',');
741 greg 3.7 }
742     return n;
743     }
744    
745     /* Load an array of real numbers, returning total */
746     static int
747     load_values(char **spp, float *va, int n)
748     {
749     float *v = va;
750     char *svnext;
751    
752     while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
753     *v++ = atof(*spp);
754     *spp = svnext;
755 greg 3.9 eat_token(spp, ',');
756 greg 3.7 }
757     return v - va;
758     }
759    
760     /* Load BSDF tree data */
761     static SDNode *
762     load_tree_data(char **spp, int nd)
763     {
764     SDNode *st;
765     int n;
766    
767 greg 3.9 if (!eat_token(spp, '{')) {
768 greg 3.7 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
769     return NULL;
770     }
771     if (next_token(spp) == '{') { /* tree branches */
772     st = SDnewNode(nd, -1);
773     if (st == NULL)
774     return NULL;
775     for (n = 0; n < 1<<nd; n++)
776     if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
777     SDfreeTre(st);
778     return NULL;
779     }
780     } else { /* else load value grid */
781     int bsiz;
782     n = count_values(*spp); /* see how big the grid is */
783     for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd)
784     if (1<<bsiz == n)
785     break;
786     if (bsiz >= 8*sizeof(size_t)) {
787     strcpy(SDerrorDetail, "Illegal value count in tensor tree");
788     return NULL;
789     }
790     st = SDnewNode(nd, bsiz/nd);
791     if (st == NULL)
792     return NULL;
793     if (load_values(spp, st->u.v, n) != n) {
794     strcpy(SDerrorDetail, "Real format error in tensor tree");
795     SDfreeTre(st);
796     return NULL;
797     }
798     }
799 greg 3.9 if (!eat_token(spp, '}')) {
800 greg 3.7 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
801     SDfreeTre(st);
802     return NULL;
803     }
804 greg 3.9 eat_token(spp, ',');
805 greg 3.7 return st;
806     }
807    
808     /* Compute min. proj. solid angle and max. direct hemispherical scattering */
809     static SDError
810     get_extrema(SDSpectralDF *df)
811     {
812     SDNode *st = (*(SDTre *)df->comp[0].dist).st;
813     double stepWidth, dhemi, bmin[4], bmax[4];
814    
815     stepWidth = SDsmallestLeaf(st);
816     df->minProjSA = M_PI*stepWidth*stepWidth;
817     if (stepWidth < .03125)
818     stepWidth = .03125; /* 1/32 resolution good enough */
819     df->maxHemi = .0;
820     if (st->ndim == 3) { /* isotropic BSDF */
821     bmin[1] = bmin[2] = .0;
822     bmax[1] = bmax[2] = 1.;
823     for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
824     bmax[0] = bmin[0] + stepWidth;
825     dhemi = SDavgTreBox(st, bmin, bmax);
826     if (dhemi > df->maxHemi)
827     df->maxHemi = dhemi;
828     }
829     } else if (st->ndim == 4) { /* anisotropic BSDF */
830     bmin[2] = bmin[3] = .0;
831     bmax[2] = bmax[3] = 1.;
832     for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
833     bmax[0] = bmin[0] + stepWidth;
834     for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
835     bmax[1] = bmin[1] + stepWidth;
836     dhemi = SDavgTreBox(st, bmin, bmax);
837     if (dhemi > df->maxHemi)
838     df->maxHemi = dhemi;
839     }
840     }
841     } else
842     return SDEinternal;
843     /* correct hemispherical value */
844     df->maxHemi *= M_PI;
845     return SDEnone;
846     }
847    
848     /* Load BSDF distribution for this wavelength */
849     static SDError
850     load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
851     {
852     SDSpectralDF *df;
853     SDTre *sdt;
854     char *sdata;
855     int i;
856     /* allocate BSDF component */
857     sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
858     if (!sdata)
859     return SDEnone;
860     /*
861     * Remember that front and back are reversed from WINDOW 6 orientations
862     */
863     if (!strcasecmp(sdata, "Transmission")) {
864     if (sd->tf != NULL)
865     SDfreeSpectralDF(sd->tf);
866     if ((sd->tf = SDnewSpectralDF(1)) == NULL)
867     return SDEmemory;
868     df = sd->tf;
869     } else if (!strcasecmp(sdata, "Reflection Front")) {
870     if (sd->rb != NULL) /* note back-front reversal */
871     SDfreeSpectralDF(sd->rb);
872     if ((sd->rb = SDnewSpectralDF(1)) == NULL)
873     return SDEmemory;
874     df = sd->rb;
875     } else if (!strcasecmp(sdata, "Reflection Back")) {
876     if (sd->rf != NULL) /* note front-back reversal */
877     SDfreeSpectralDF(sd->rf);
878     if ((sd->rf = SDnewSpectralDF(1)) == NULL)
879     return SDEmemory;
880     df = sd->rf;
881     } else
882     return SDEnone;
883     /* XXX should also check "ScatteringDataType" for consistency? */
884     /* get angle bases */
885     sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
886     if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
887     sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
888     !sdata ? "Missing" : "Unsupported", sd->name);
889     return !sdata ? SDEformat : SDEsupport;
890     }
891     /* allocate BSDF tree */
892     sdt = (SDTre *)malloc(sizeof(SDTre));
893     if (sdt == NULL)
894     return SDEmemory;
895     if (df == sd->rf)
896     sdt->sidef = SD_UFRONT;
897     else if (df == sd->rb)
898     sdt->sidef = SD_UBACK;
899     else
900     sdt->sidef = SD_XMIT;
901     sdt->st = NULL;
902     df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
903     df->comp[0].dist = sdt;
904     df->comp[0].func = &SDhandleTre;
905     /* read BSDF data */
906     sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
907     if (!sdata || !next_token(&sdata)) {
908     sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
909     sd->name);
910     return SDEformat;
911     }
912     sdt->st = load_tree_data(&sdata, ndim);
913     if (sdt->st == NULL)
914     return SDEformat;
915     if (next_token(&sdata)) { /* check for unconsumed characters */
916     sprintf(SDerrorDetail,
917     "Extra characters at end of ScatteringData in '%s'",
918     sd->name);
919     return SDEformat;
920     }
921     /* flatten branches where possible */
922     sdt->st = SDsimplifyTre(sdt->st);
923     if (sdt->st == NULL)
924     return SDEinternal;
925     return get_extrema(df); /* compute global quantities */
926     }
927    
928     /* Find minimum value in tree */
929     static float
930     SDgetTreMin(const SDNode *st)
931     {
932 greg 3.10 float vmin = FHUGE;
933 greg 3.7 int n;
934    
935     if (st->log2GR < 0) {
936     for (n = 1<<st->ndim; n--; ) {
937     float v = SDgetTreMin(st->u.t[n]);
938     if (v < vmin)
939     vmin = v;
940     }
941     } else {
942     for (n = 1<<(st->ndim*st->log2GR); n--; )
943     if (st->u.v[n] < vmin)
944     vmin = st->u.v[n];
945     }
946     return vmin;
947     }
948    
949     /* Subtract the given value from all tree nodes */
950     static void
951     SDsubtractTreVal(SDNode *st, float val)
952     {
953     int n;
954    
955     if (st->log2GR < 0) {
956     for (n = 1<<st->ndim; n--; )
957     SDsubtractTreVal(st->u.t[n], val);
958     } else {
959     for (n = 1<<(st->ndim*st->log2GR); n--; )
960     st->u.v[n] -= val;
961     }
962     }
963    
964     /* Subtract minimum value from BSDF */
965     static double
966     subtract_min(SDNode *st)
967     {
968     float vmin;
969     /* be sure to skip unused portion */
970 greg 3.10 if (st->ndim == 3) {
971     int n;
972 greg 3.7 vmin = 1./M_PI;
973 greg 3.10 if (st->log2GR < 0) {
974     for (n = 0; n < 4; n++) {
975     float v = SDgetTreMin(st->u.t[n]);
976     if (v < vmin)
977     vmin = v;
978     }
979     } else if (st->log2GR) {
980     for (n = 1 << (3*st->log2GR - 1); n--; )
981     if (st->u.v[n] < vmin)
982     vmin = st->u.v[n];
983     } else
984     vmin = st->u.v[0];
985 greg 3.7 } else /* anisotropic covers entire tree */
986     vmin = SDgetTreMin(st);
987    
988     if (vmin <= FTINY)
989     return .0;
990    
991 greg 3.8 SDsubtractTreVal(st, vmin);
992 greg 3.7
993     return M_PI * vmin; /* return hemispherical value */
994     }
995    
996     /* Extract and separate diffuse portion of BSDF */
997     static void
998     extract_diffuse(SDValue *dv, SDSpectralDF *df)
999     {
1000     int n;
1001    
1002     if (df == NULL || df->ncomp <= 0) {
1003     dv->spec = c_dfcolor;
1004     dv->cieY = .0;
1005     return;
1006     }
1007     dv->spec = df->comp[0].cspec[0];
1008 greg 3.9 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1009 greg 3.7 /* in case of multiple components */
1010     for (n = df->ncomp; --n; ) {
1011     double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1012     c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1013     dv->cieY += ymin;
1014     }
1015     df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1016     /* make sure everything is set */
1017     c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1018     }
1019    
1020 greg 3.1 /* Load a variable-resolution BSDF tree from an open XML file */
1021     SDError
1022 greg 3.4 SDloadTre(SDData *sd, ezxml_t wtl)
1023 greg 3.1 {
1024 greg 3.7 SDError ec;
1025     ezxml_t wld, wdb;
1026     int rank;
1027     char *txt;
1028     /* basic checks and tensor rank */
1029     txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1030     "DataDefinition"), "IncidentDataStructure"));
1031     if (txt == NULL || !*txt) {
1032     sprintf(SDerrorDetail,
1033     "BSDF \"%s\": missing IncidentDataStructure",
1034     sd->name);
1035     return SDEformat;
1036     }
1037     if (!strcasecmp(txt, "TensorTree3"))
1038     rank = 3;
1039     else if (!strcasecmp(txt, "TensorTree4"))
1040     rank = 4;
1041     else {
1042     sprintf(SDerrorDetail,
1043     "BSDF \"%s\": unsupported IncidentDataStructure",
1044     sd->name);
1045     return SDEsupport;
1046     }
1047     /* load BSDF components */
1048     for (wld = ezxml_child(wtl, "WavelengthData");
1049     wld != NULL; wld = wld->next) {
1050     if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1051     "Visible"))
1052     continue; /* just visible for now */
1053     for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1054     wdb != NULL; wdb = wdb->next)
1055     if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1056     return ec;
1057     }
1058     /* separate diffuse components */
1059     extract_diffuse(&sd->rLambFront, sd->rf);
1060     extract_diffuse(&sd->rLambBack, sd->rb);
1061     extract_diffuse(&sd->tLamb, sd->tf);
1062     /* return success */
1063     return SDEnone;
1064 greg 3.1 }
1065    
1066     /* Variable resolution BSDF methods */
1067 greg 3.5 SDFunc SDhandleTre = {
1068     &SDgetTreBSDF,
1069 greg 3.6 &SDqueryTreProjSA,
1070     &SDgetTreCDist,
1071     &SDsampTreCDist,
1072     &SDFreeBTre,
1073 greg 3.1 };