ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_t.c
Revision: 3.11
Committed: Thu Apr 28 17:46:25 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.10: +4 -13 lines
Log Message:
Minor fixes

File Contents

# User Rev Content
1 greg 3.2 #ifndef lint
2 greg 3.11 static const char RCSid[] = "$Id: bsdf_t.c,v 3.10 2011/04/28 04:05:11 greg Exp $";
3 greg 3.2 #endif
4 greg 3.1 /*
5     * bsdf_t.c
6     *
7     * Definitions for variable-resolution BSDF trees
8     *
9     * Created by Greg Ward on 2/2/11.
10     *
11     */
12    
13 greg 3.3 #include "rtio.h"
14 greg 3.1 #include <stdlib.h>
15 greg 3.3 #include <math.h>
16     #include <ctype.h>
17 greg 3.1 #include "ezxml.h"
18     #include "bsdf.h"
19     #include "bsdf_t.h"
20 greg 3.6 #include "hilbert.h"
21    
22     /* Callback function type for SDtraverseTre() */
23     typedef int SDtreCallback(float val, const double *cmin,
24     double csiz, void *cptr);
25    
26     /* reference width maximum (1.0) */
27 greg 3.7 static const unsigned iwbits = sizeof(unsigned)*4;
28 greg 3.6 static const unsigned iwmax = (1<<(sizeof(unsigned)*4))-1;
29 greg 3.7 /* maximum cumulative value */
30     static const unsigned cumlmax = ~0;
31 greg 3.6
32     /* Struct used for our distribution-building callback */
33     typedef struct {
34     int nic; /* number of input coordinates */
35 greg 3.7 unsigned alen; /* current array length */
36     unsigned nall; /* number of allocated entries */
37     unsigned wmin; /* minimum square size so far */
38     unsigned wmax; /* maximum square size */
39 greg 3.6 struct outdir_s {
40     unsigned hent; /* entering Hilbert index */
41     int wid; /* this square size */
42     float bsdf; /* BSDF for this square */
43     } *darr; /* output direction array */
44     } SDdistScaffold;
45 greg 3.1
46     /* Allocate a new scattering distribution node */
47     static SDNode *
48     SDnewNode(int nd, int lg)
49     {
50     SDNode *st;
51    
52     if (nd <= 0) {
53     strcpy(SDerrorDetail, "Zero dimension BSDF node request");
54     return NULL;
55     }
56     if (nd > SD_MAXDIM) {
57     sprintf(SDerrorDetail, "Illegal BSDF dimension (%d > %d)",
58     nd, SD_MAXDIM);
59     return NULL;
60     }
61     if (lg < 0) {
62     st = (SDNode *)malloc(sizeof(SDNode) +
63 greg 3.7 sizeof(st->u.t[0])*((1<<nd) - 1));
64 greg 3.1 if (st != NULL)
65 greg 3.5 memset(st->u.t, 0, sizeof(st->u.t[0])<<nd);
66 greg 3.1 } else
67     st = (SDNode *)malloc(sizeof(SDNode) +
68 greg 3.7 sizeof(st->u.v[0])*((1 << nd*lg) - 1));
69 greg 3.1
70     if (st == NULL) {
71     if (lg < 0)
72     sprintf(SDerrorDetail,
73 greg 3.6 "Cannot allocate %d branch BSDF tree", 1<<nd);
74 greg 3.1 else
75     sprintf(SDerrorDetail,
76     "Cannot allocate %d BSDF leaves", 1 << nd*lg);
77     return NULL;
78     }
79     st->ndim = nd;
80     st->log2GR = lg;
81     return st;
82     }
83    
84     /* Free an SD tree */
85     static void
86 greg 3.6 SDfreeTre(SDNode *st)
87 greg 3.1 {
88     int i;
89    
90     if (st == NULL)
91     return;
92     for (i = (st->log2GR < 0) << st->ndim; i--; )
93 greg 3.5 SDfreeTre(st->u.t[i]);
94 greg 3.1 free((void *)st);
95     }
96    
97 greg 3.6 /* Free a variable-resolution BSDF */
98     static void
99     SDFreeBTre(void *p)
100     {
101     SDTre *sdt = (SDTre *)p;
102    
103     if (sdt == NULL)
104     return;
105     SDfreeTre(sdt->st);
106     free(sdt);
107     }
108 greg 3.5
109 greg 3.7 /* Fill branch's worth of grid values from subtree */
110     static void
111     fill_grid_branch(float *dptr, const float *sptr, int nd, int shft)
112     {
113     unsigned n = 1 << (shft-1);
114    
115     if (!--nd) { /* end on the line */
116     memcpy(dptr, sptr, sizeof(*dptr)*n);
117     return;
118     }
119     while (n--) /* recurse on each slice */
120     fill_grid_branch(dptr + (n << shft*nd),
121     sptr + (n << (shft-1)*nd), nd, shft);
122     }
123    
124     /* Get pointer at appropriate offset for the given branch */
125     static float *
126     grid_branch_start(SDNode *st, int n)
127     {
128     unsigned skipsiz = 1 << st->log2GR;
129     float *vptr = st->u.v;
130     int i;
131    
132 greg 3.10 for (i = 0; i < st->ndim; skipsiz <<= st->log2GR)
133     if (1<<i++ & n)
134 greg 3.7 vptr += skipsiz >> 1;
135     return vptr;
136     }
137    
138     /* Simplify (consolidate) a tree by flattening uniform depth regions */
139     static SDNode *
140     SDsimplifyTre(SDNode *st)
141     {
142     int match, n;
143    
144     if (st == NULL) /* check for invalid tree */
145     return NULL;
146     if (st->log2GR >= 0) /* grid just returns unaltered */
147     return st;
148     match = 1; /* check if grids below match */
149     for (n = 0; n < 1<<st->ndim; n++) {
150     if ((st->u.t[n] = SDsimplifyTre(st->u.t[n])) == NULL)
151     return NULL; /* propogate error up call stack */
152     match &= (st->u.t[n]->log2GR == st->u.t[0]->log2GR);
153     }
154 greg 3.9 if (match && (match = st->u.t[0]->log2GR) >= 0) {
155     SDNode *stn = SDnewNode(st->ndim, match + 1);
156 greg 3.7 if (stn == NULL) /* out of memory? */
157     return st;
158     /* transfer values to new grid */
159     for (n = 1 << st->ndim; n--; )
160     fill_grid_branch(grid_branch_start(stn, n),
161 greg 3.9 st->u.t[n]->u.v, stn->ndim, stn->log2GR);
162 greg 3.7 SDfreeTre(st); /* free old tree */
163     st = stn; /* return new one */
164     }
165     return st;
166     }
167    
168     /* Find smallest leaf in tree */
169     static double
170     SDsmallestLeaf(const SDNode *st)
171     {
172     if (st->log2GR < 0) { /* tree branches */
173     double lmin = 1.;
174     int n;
175     for (n = 1<<st->ndim; n--; ) {
176     double lsiz = SDsmallestLeaf(st->u.t[n]);
177     if (lsiz < lmin)
178     lmin = lsiz;
179     }
180     return .5*lmin;
181     }
182     /* leaf grid width */
183     return 1. / (double)(1 << st->log2GR);
184     }
185    
186 greg 3.1 /* Add up N-dimensional hypercube array values over the given box */
187     static double
188 greg 3.7 SDiterSum(const float *va, int nd, int shft, const int *imin, const int *imax)
189 greg 3.1 {
190 greg 3.10 const unsigned skipsiz = 1 << --nd*shft;
191 greg 3.1 double sum = .0;
192     int i;
193    
194     if (skipsiz == 1)
195     for (i = *imin; i < *imax; i++)
196     sum += va[i];
197     else
198     for (i = *imin; i < *imax; i++)
199 greg 3.10 sum += SDiterSum(va + i*skipsiz, nd, shft, imin+1, imax+1);
200 greg 3.1 return sum;
201     }
202    
203     /* Average BSDF leaves over an orthotope defined by the unit hypercube */
204     static double
205 greg 3.6 SDavgTreBox(const SDNode *st, const double *bmin, const double *bmax)
206 greg 3.1 {
207     int imin[SD_MAXDIM], imax[SD_MAXDIM];
208     unsigned n;
209     int i;
210    
211     if (!st)
212     return .0;
213     /* check box limits */
214     for (i = st->ndim; i--; ) {
215     if (bmin[i] >= 1.)
216     return .0;
217     if (bmax[i] <= .0)
218     return .0;
219     if (bmin[i] >= bmax[i])
220     return .0;
221     }
222     if (st->log2GR < 0) { /* iterate on subtree */
223     double sum = .0, wsum = 1e-20;
224     double sbmin[SD_MAXDIM], sbmax[SD_MAXDIM], w;
225    
226     for (n = 1 << st->ndim; n--; ) {
227     w = 1.;
228     for (i = st->ndim; i--; ) {
229     sbmin[i] = 2.*bmin[i];
230     sbmax[i] = 2.*bmax[i];
231     if (n & 1<<i) {
232     sbmin[i] -= 1.;
233     sbmax[i] -= 1.;
234     }
235     if (sbmin[i] < .0) sbmin[i] = .0;
236     if (sbmax[i] > 1.) sbmax[i] = 1.;
237     w *= sbmax[i] - sbmin[i];
238     }
239     if (w > 1e-10) {
240 greg 3.6 sum += w * SDavgTreBox(st->u.t[n], sbmin, sbmax);
241 greg 3.1 wsum += w;
242     }
243     }
244     return sum / wsum;
245     }
246     n = 1; /* iterate over leaves */
247     for (i = st->ndim; i--; ) {
248 greg 3.7 imin[i] = (bmin[i] <= 0) ? 0
249 greg 3.1 : (int)((1 << st->log2GR)*bmin[i]);
250     imax[i] = (bmax[i] >= 1.) ? (1 << st->log2GR)
251     : (int)((1 << st->log2GR)*bmax[i] + .999999);
252     n *= imax[i] - imin[i];
253     }
254     if (!n)
255     return .0;
256    
257 greg 3.7 return SDiterSum(st->u.v, st->ndim, st->log2GR, imin, imax) / (double)n;
258 greg 3.1 }
259    
260 greg 3.6 /* Recursive call for SDtraverseTre() */
261     static int
262     SDdotravTre(const SDNode *st, const double *pos, int cmask,
263     SDtreCallback *cf, void *cptr,
264     const double *cmin, double csiz)
265     {
266     int rv, rval = 0;
267     double bmin[SD_MAXDIM];
268     int i, n;
269     /* in branches? */
270     if (st->log2GR < 0) {
271     unsigned skipmask = 0;
272    
273     csiz *= .5;
274     for (i = st->ndim; i--; )
275     if (1<<i & cmask)
276     if (pos[i] < cmin[i] + csiz)
277     for (n = 1 << st->ndim; n--; )
278     if (n & 1<<i)
279     skipmask |= 1<<n;
280     else
281     for (n = 1 << st->ndim; n--; )
282     if (!(n & 1<<i))
283     skipmask |= 1<<n;
284     for (n = 1 << st->ndim; n--; ) {
285     if (1<<n & skipmask)
286     continue;
287     for (i = st->ndim; i--; )
288     if (1<<i & n)
289     bmin[i] = cmin[i] + csiz;
290     else
291     bmin[i] = cmin[i];
292    
293     rval += rv = SDdotravTre(st->u.t[n], pos, cmask,
294     cf, cptr, bmin, csiz);
295     if (rv < 0)
296     return rv;
297     }
298     } else { /* else traverse leaves */
299     int clim[SD_MAXDIM][2];
300     int cpos[SD_MAXDIM];
301    
302     if (st->log2GR == 0) /* short cut */
303     return (*cf)(st->u.v[0], cmin, csiz, cptr);
304    
305     csiz /= (double)(1 << st->log2GR);
306     /* assign coord. ranges */
307     for (i = st->ndim; i--; )
308     if (1<<i & cmask) {
309     clim[i][0] = (pos[i] - cmin[i])/csiz;
310     /* check overflow from f.p. error */
311     clim[i][0] -= clim[i][0] >> st->log2GR;
312     clim[i][1] = clim[i][0] + 1;
313     } else {
314     clim[i][0] = 0;
315     clim[i][1] = 1 << st->log2GR;
316     }
317     /* fill in unused dimensions */
318     for (i = SD_MAXDIM; i-- > st->ndim; ) {
319     clim[i][0] = 0; clim[i][1] = 1;
320     }
321     #if (SD_MAXDIM == 4)
322     bmin[0] = cmin[0] + csiz*clim[0][0];
323     for (cpos[0] = clim[0][0]; cpos[0] < clim[0][1]; cpos[0]++) {
324     bmin[1] = cmin[1] + csiz*clim[1][0];
325     for (cpos[1] = clim[1][0]; cpos[1] < clim[1][1]; cpos[1]++) {
326     bmin[2] = cmin[2] + csiz*clim[2][0];
327     for (cpos[2] = clim[2][0]; cpos[2] < clim[2][1]; cpos[2]++) {
328     bmin[3] = cmin[3] + csiz*(cpos[3] = clim[3][0]);
329     n = cpos[0];
330     for (i = 1; i < st->ndim; i++)
331     n = (n << st->log2GR) + cpos[i];
332     for ( ; cpos[3] < clim[3][1]; cpos[3]++) {
333     rval += rv = (*cf)(st->u.v[n++], bmin, csiz, cptr);
334     if (rv < 0)
335     return rv;
336     bmin[3] += csiz;
337     }
338     bmin[2] += csiz;
339     }
340     bmin[1] += csiz;
341     }
342     bmin[0] += csiz;
343     }
344     #else
345     _!_ "broken code segment!"
346     #endif
347     }
348     return rval;
349     }
350    
351     /* Traverse a tree, visiting nodes in a slice that fits partial position */
352     static int
353     SDtraverseTre(const SDNode *st, const double *pos, int cmask,
354     SDtreCallback *cf, void *cptr)
355     {
356     static double czero[SD_MAXDIM];
357     int i;
358     /* check arguments */
359     if ((st == NULL) | (cf == NULL))
360     return -1;
361     for (i = st->ndim; i--; )
362     if (1<<i & cmask && (pos[i] < 0) | (pos[i] >= 1.))
363     return -1;
364    
365     return SDdotravTre(st, pos, cmask, cf, cptr, czero, 1.);
366     }
367 greg 3.5
368     /* Look up tree value at the given grid position */
369     static float
370 greg 3.6 SDlookupTre(const SDNode *st, const double *pos, double *hcube)
371 greg 3.5 {
372     double spos[SD_MAXDIM];
373     int i, n, t;
374 greg 3.6 /* initialize voxel return */
375     if (hcube) {
376     hcube[i = st->ndim] = 1.;
377     while (i--)
378     hcube[i] = .0;
379     }
380 greg 3.5 /* climb the tree */
381     while (st->log2GR < 0) {
382     n = 0; /* move to appropriate branch */
383 greg 3.6 if (hcube) hcube[st->ndim] *= .5;
384 greg 3.5 for (i = st->ndim; i--; ) {
385     spos[i] = 2.*pos[i];
386     t = (spos[i] >= 1.);
387     n |= t<<i;
388     spos[i] -= (double)t;
389 greg 3.6 if (hcube) hcube[i] += (double)t * hcube[st->ndim];
390 greg 3.5 }
391     st = st->u.t[n]; /* avoids tail recursion */
392     pos = spos;
393     }
394 greg 3.6 if (st->log2GR == 0) /* short cut */
395     return st->u.v[0];
396 greg 3.5 n = t = 0; /* find grid array index */
397     for (i = st->ndim; i--; ) {
398     n += (int)((1<<st->log2GR)*pos[i]) << t;
399     t += st->log2GR;
400     }
401 greg 3.6 if (hcube) { /* compute final hypercube */
402     hcube[st->ndim] /= (double)(1<<st->log2GR);
403     for (i = st->ndim; i--; )
404     hcube[i] += floor((1<<st->log2GR)*pos[i])*hcube[st->ndim];
405     }
406     return st->u.v[n]; /* no interpolation */
407     }
408    
409     /* Query BSDF value and sample hypercube for the given vectors */
410     static float
411     SDqueryTre(const SDTre *sdt, const FVECT outVec, const FVECT inVec, double *hc)
412     {
413     static const FVECT zvec = {.0, .0, 1.};
414     FVECT rOutVec;
415     double gridPos[4];
416 greg 3.7
417     switch (sdt->sidef) { /* whose side are you on? */
418     case SD_UFRONT:
419     if ((outVec[2] < 0) | (inVec[2] < 0))
420     return -1.;
421     break;
422     case SD_UBACK:
423     if ((outVec[2] > 0) | (inVec[2] > 0))
424     return -1.;
425     break;
426     case SD_XMIT:
427     if ((outVec[2] > 0) == (inVec[2] > 0))
428     return -1.;
429     break;
430     default:
431 greg 3.6 return -1.;
432 greg 3.7 }
433 greg 3.6 /* convert vector coordinates */
434     if (sdt->st->ndim == 3) {
435     spinvector(rOutVec, outVec, zvec, -atan2(inVec[1],inVec[0]));
436     gridPos[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
437     SDdisk2square(gridPos+1, rOutVec[0], rOutVec[1]);
438     } else if (sdt->st->ndim == 4) {
439     SDdisk2square(gridPos, -inVec[0], -inVec[1]);
440     SDdisk2square(gridPos+2, outVec[0], outVec[1]);
441     } else
442     return -1.; /* should be internal error */
443    
444     return SDlookupTre(sdt->st, gridPos, hc);
445 greg 3.5 }
446    
447     /* Compute non-diffuse component for variable-resolution BSDF */
448     static int
449     SDgetTreBSDF(float coef[SDmaxCh], const FVECT outVec,
450 greg 3.6 const FVECT inVec, SDComponent *sdc)
451 greg 3.5 {
452 greg 3.6 /* check arguments */
453     if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
454     || sdc->dist == NULL)
455     return 0;
456 greg 3.5 /* get nearest BSDF value */
457 greg 3.6 coef[0] = SDqueryTre((SDTre *)sdc->dist, outVec, inVec, NULL);
458     return (coef[0] >= 0); /* monochromatic for now */
459     }
460    
461     /* Callback to build cumulative distribution using SDtraverseTre() */
462     static int
463     build_scaffold(float val, const double *cmin, double csiz, void *cptr)
464     {
465     SDdistScaffold *sp = (SDdistScaffold *)cptr;
466     int wid = csiz*(double)iwmax + .5;
467     bitmask_t bmin[2], bmax[2];
468    
469     cmin += sp->nic; /* skip to output coords */
470     if (wid < sp->wmin) /* new minimum width? */
471     sp->wmin = wid;
472     if (wid > sp->wmax) /* new maximum? */
473     sp->wmax = wid;
474     if (sp->alen >= sp->nall) { /* need more space? */
475     struct outdir_s *ndarr;
476     sp->nall += 8192;
477     ndarr = (struct outdir_s *)realloc(sp->darr,
478     sizeof(struct outdir_s)*sp->nall);
479     if (ndarr == NULL)
480     return -1; /* abort build */
481     sp->darr = ndarr;
482     }
483     /* find Hilbert entry index */
484     bmin[0] = cmin[0]*(double)iwmax + .5;
485     bmin[1] = cmin[1]*(double)iwmax + .5;
486 greg 3.10 bmax[0] = bmin[0] + wid-1;
487     bmax[1] = bmin[1] + wid-1;
488 greg 3.7 hilbert_box_vtx(2, sizeof(bitmask_t), iwbits, 1, bmin, bmax);
489     sp->darr[sp->alen].hent = hilbert_c2i(2, iwbits, bmin);
490 greg 3.6 sp->darr[sp->alen].wid = wid;
491     sp->darr[sp->alen].bsdf = val;
492     sp->alen++; /* on to the next entry */
493     return 0;
494     }
495    
496     /* Scaffold comparison function for qsort -- ascending Hilbert index */
497     static int
498     sscmp(const void *p1, const void *p2)
499     {
500 greg 3.10 unsigned h1 = (*(const struct outdir_s *)p1).hent;
501     unsigned h2 = (*(const struct outdir_s *)p2).hent;
502    
503     if (h1 > h2)
504     return 1;
505     if (h1 < h2)
506     return -1;
507     return 0;
508 greg 3.6 }
509    
510     /* Create a new cumulative distribution for the given input direction */
511     static SDTreCDst *
512     make_cdist(const SDTre *sdt, const double *pos)
513     {
514     SDdistScaffold myScaffold;
515     SDTreCDst *cd;
516     struct outdir_s *sp;
517     double scale, cursum;
518     int i;
519     /* initialize scaffold */
520     myScaffold.wmin = iwmax;
521     myScaffold.wmax = 0;
522     myScaffold.nic = sdt->st->ndim - 2;
523     myScaffold.alen = 0;
524     myScaffold.nall = 8192;
525     myScaffold.darr = (struct outdir_s *)malloc(sizeof(struct outdir_s) *
526     myScaffold.nall);
527     if (myScaffold.darr == NULL)
528     return NULL;
529     /* grow the distribution */
530     if (SDtraverseTre(sdt->st, pos, (1<<myScaffold.nic)-1,
531     &build_scaffold, &myScaffold) < 0) {
532     free(myScaffold.darr);
533     return NULL;
534     }
535     /* allocate result holder */
536     cd = (SDTreCDst *)malloc(sizeof(SDTreCDst) +
537     sizeof(cd->carr[0])*myScaffold.alen);
538     if (cd == NULL) {
539     free(myScaffold.darr);
540     return NULL;
541     }
542     /* sort the distribution */
543     qsort(myScaffold.darr, cd->calen = myScaffold.alen,
544     sizeof(struct outdir_s), &sscmp);
545    
546     /* record input range */
547 greg 3.7 scale = myScaffold.wmin / (double)iwmax;
548 greg 3.6 for (i = myScaffold.nic; i--; ) {
549 greg 3.7 cd->clim[i][0] = floor(pos[i]/scale) * scale;
550 greg 3.6 cd->clim[i][1] = cd->clim[i][0] + scale;
551     }
552     cd->max_psa = myScaffold.wmax / (double)iwmax;
553     cd->max_psa *= cd->max_psa * M_PI;
554 greg 3.7 cd->sidef = sdt->sidef;
555 greg 3.6 cd->cTotal = 1e-20; /* compute directional total */
556     sp = myScaffold.darr;
557     for (i = myScaffold.alen; i--; sp++)
558     cd->cTotal += sp->bsdf * (double)sp->wid * sp->wid;
559     cursum = .0; /* go back and get cumulative values */
560     scale = (double)cumlmax / cd->cTotal;
561     sp = myScaffold.darr;
562     for (i = 0; i < cd->calen; i++, sp++) {
563 greg 3.7 cd->carr[i].hndx = sp->hent;
564 greg 3.6 cd->carr[i].cuml = scale*cursum + .5;
565     cursum += sp->bsdf * (double)sp->wid * sp->wid;
566     }
567     cd->carr[i].hndx = ~0; /* make final entry */
568     cd->carr[i].cuml = cumlmax;
569     cd->cTotal *= M_PI/(double)iwmax/iwmax;
570     /* all done, clean up and return */
571     free(myScaffold.darr);
572     return cd;
573     }
574    
575     /* Find or allocate a cumulative distribution for the given incoming vector */
576     const SDCDst *
577     SDgetTreCDist(const FVECT inVec, SDComponent *sdc)
578     {
579     const SDTre *sdt;
580     double inCoord[2];
581     int vflags;
582     int i;
583     SDTreCDst *cd, *cdlast;
584     /* check arguments */
585     if ((inVec == NULL) | (sdc == NULL) ||
586     (sdt = (SDTre *)sdc->dist) == NULL)
587     return NULL;
588     if (sdt->st->ndim == 3) /* isotropic BSDF? */
589     inCoord[0] = .5 - .5*sqrt(inVec[0]*inVec[0] + inVec[1]*inVec[1]);
590     else if (sdt->st->ndim == 4)
591     SDdisk2square(inCoord, -inVec[0], -inVec[1]);
592     else
593     return NULL; /* should be internal error */
594     cdlast = NULL; /* check for direction in cache list */
595     for (cd = (SDTreCDst *)sdc->cdList; cd != NULL;
596     cdlast = cd, cd = (SDTreCDst *)cd->next) {
597     for (i = sdt->st->ndim - 2; i--; )
598     if ((cd->clim[i][0] > inCoord[i]) |
599     (inCoord[i] >= cd->clim[i][1]))
600     break;
601     if (i < 0)
602     break; /* means we have a match */
603     }
604     if (cd == NULL) /* need to create new entry? */
605     cdlast = cd = make_cdist(sdt, inCoord);
606     if (cdlast != NULL) { /* move entry to head of cache list */
607     cdlast->next = cd->next;
608     cd->next = sdc->cdList;
609     sdc->cdList = (SDCDst *)cd;
610     }
611     return (SDCDst *)cd; /* ready to go */
612     }
613    
614     /* Query solid angle for vector(s) */
615     static SDError
616     SDqueryTreProjSA(double *psa, const FVECT v1, const RREAL *v2,
617     int qflags, SDComponent *sdc)
618     {
619     double myPSA[2];
620     /* check arguments */
621     if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
622     sdc->dist == NULL)
623     return SDEargument;
624     /* get projected solid angle(s) */
625     if (v2 != NULL) {
626     const SDTre *sdt = (SDTre *)sdc->dist;
627     double hcube[SD_MAXDIM];
628     if (SDqueryTre(sdt, v1, v2, hcube) < 0) {
629 greg 3.7 strcpy(SDerrorDetail, "Bad call to SDqueryTreProjSA");
630     return SDEinternal;
631 greg 3.6 }
632     myPSA[0] = hcube[sdt->st->ndim];
633     myPSA[1] = myPSA[0] *= myPSA[0] * M_PI;
634     } else {
635     const SDTreCDst *cd = (const SDTreCDst *)SDgetTreCDist(v1, sdc);
636     if (cd == NULL)
637     return SDEmemory;
638     myPSA[0] = M_PI * (cd->clim[0][1] - cd->clim[0][0]) *
639     (cd->clim[1][1] - cd->clim[1][0]);
640     myPSA[1] = cd->max_psa;
641     }
642     switch (qflags) { /* record based on flag settings */
643     case SDqueryVal:
644     *psa = myPSA[0];
645     break;
646     case SDqueryMax:
647     if (myPSA[1] > *psa)
648     *psa = myPSA[1];
649     break;
650     case SDqueryMin+SDqueryMax:
651     if (myPSA[1] > psa[1])
652     psa[1] = myPSA[1];
653     /* fall through */
654     case SDqueryMin:
655     if (myPSA[0] < psa[0])
656     psa[0] = myPSA[0];
657     break;
658     }
659     return SDEnone;
660     }
661    
662     /* Sample cumulative distribution */
663     static SDError
664     SDsampTreCDist(FVECT ioVec, double randX, const SDCDst *cdp)
665     {
666     const unsigned nBitsC = 4*sizeof(bitmask_t);
667     const unsigned nExtraBits = 8*(sizeof(bitmask_t)-sizeof(unsigned));
668     const SDTreCDst *cd = (const SDTreCDst *)cdp;
669 greg 3.7 const unsigned target = randX*cumlmax;
670 greg 3.6 bitmask_t hndx, hcoord[2];
671     double gpos[3];
672     int i, iupper, ilower;
673     /* check arguments */
674     if ((ioVec == NULL) | (cd == NULL))
675     return SDEargument;
676 greg 3.7 if (ioVec[2] > 0) {
677     if (!(cd->sidef & SD_UFRONT))
678     return SDEargument;
679     } else if (!(cd->sidef & SD_UBACK))
680     return SDEargument;
681 greg 3.6 /* binary search to find position */
682     ilower = 0; iupper = cd->calen;
683     while ((i = (iupper + ilower) >> 1) != ilower)
684     if ((long)target >= (long)cd->carr[i].cuml)
685     ilower = i;
686     else
687     iupper = i;
688     /* localize random position */
689 greg 3.7 randX = (randX*cumlmax - cd->carr[ilower].cuml) /
690 greg 3.6 (double)(cd->carr[iupper].cuml - cd->carr[ilower].cuml);
691     /* index in longer Hilbert curve */
692     hndx = (randX*cd->carr[iupper].hndx + (1.-randX)*cd->carr[ilower].hndx)
693     * (double)((bitmask_t)1 << nExtraBits);
694     /* convert Hilbert index to vector */
695     hilbert_i2c(2, nBitsC, hndx, hcoord);
696     for (i = 2; i--; )
697     gpos[i] = ((double)hcoord[i] + rand()*(1./(RAND_MAX+.5))) /
698     (double)((bitmask_t)1 << nBitsC);
699     SDsquare2disk(gpos, gpos[0], gpos[1]);
700 greg 3.7 /* compute Z-coordinate */
701 greg 3.6 gpos[2] = 1. - gpos[0]*gpos[0] - gpos[1]*gpos[1];
702     if (gpos[2] > 0) /* paranoia, I hope */
703     gpos[2] = sqrt(gpos[2]);
704 greg 3.7 /* emit from back? */
705     if (ioVec[2] > 0 ^ cd->sidef != SD_XMIT)
706 greg 3.6 gpos[2] = -gpos[2];
707     VCOPY(ioVec, gpos);
708     return SDEnone;
709 greg 3.5 }
710    
711 greg 3.7 /* Advance pointer to the next non-white character in the string (or nul) */
712     static int
713     next_token(char **spp)
714     {
715     while (isspace(**spp))
716     ++*spp;
717     return **spp;
718     }
719    
720 greg 3.9 #define eat_token(spp,c) (next_token(spp)==(c) ? *(*(spp))++ : 0)
721    
722 greg 3.7 /* Count words from this point in string to '}' */
723     static int
724     count_values(char *cp)
725     {
726     int n = 0;
727    
728 greg 3.9 while (next_token(&cp) != '}' && *cp) {
729 greg 3.11 while (!isspace(*cp) & (*cp != ',') & (*cp != '}'))
730     if (!*++cp)
731     break;
732 greg 3.7 ++n;
733 greg 3.9 eat_token(&cp, ',');
734 greg 3.7 }
735     return n;
736     }
737    
738     /* Load an array of real numbers, returning total */
739     static int
740     load_values(char **spp, float *va, int n)
741     {
742     float *v = va;
743     char *svnext;
744    
745     while (n-- > 0 && (svnext = fskip(*spp)) != NULL) {
746     *v++ = atof(*spp);
747     *spp = svnext;
748 greg 3.9 eat_token(spp, ',');
749 greg 3.7 }
750     return v - va;
751     }
752    
753     /* Load BSDF tree data */
754     static SDNode *
755     load_tree_data(char **spp, int nd)
756     {
757     SDNode *st;
758     int n;
759    
760 greg 3.9 if (!eat_token(spp, '{')) {
761 greg 3.7 strcpy(SDerrorDetail, "Missing '{' in tensor tree");
762     return NULL;
763     }
764     if (next_token(spp) == '{') { /* tree branches */
765     st = SDnewNode(nd, -1);
766     if (st == NULL)
767     return NULL;
768     for (n = 0; n < 1<<nd; n++)
769     if ((st->u.t[n] = load_tree_data(spp, nd)) == NULL) {
770     SDfreeTre(st);
771     return NULL;
772     }
773     } else { /* else load value grid */
774     int bsiz;
775     n = count_values(*spp); /* see how big the grid is */
776     for (bsiz = 0; bsiz < 8*sizeof(size_t)-1; bsiz += nd)
777     if (1<<bsiz == n)
778     break;
779     if (bsiz >= 8*sizeof(size_t)) {
780     strcpy(SDerrorDetail, "Illegal value count in tensor tree");
781     return NULL;
782     }
783     st = SDnewNode(nd, bsiz/nd);
784     if (st == NULL)
785     return NULL;
786     if (load_values(spp, st->u.v, n) != n) {
787     strcpy(SDerrorDetail, "Real format error in tensor tree");
788     SDfreeTre(st);
789     return NULL;
790     }
791     }
792 greg 3.9 if (!eat_token(spp, '}')) {
793 greg 3.7 strcpy(SDerrorDetail, "Missing '}' in tensor tree");
794     SDfreeTre(st);
795     return NULL;
796     }
797 greg 3.9 eat_token(spp, ',');
798 greg 3.7 return st;
799     }
800    
801     /* Compute min. proj. solid angle and max. direct hemispherical scattering */
802     static SDError
803     get_extrema(SDSpectralDF *df)
804     {
805     SDNode *st = (*(SDTre *)df->comp[0].dist).st;
806     double stepWidth, dhemi, bmin[4], bmax[4];
807    
808     stepWidth = SDsmallestLeaf(st);
809     df->minProjSA = M_PI*stepWidth*stepWidth;
810     if (stepWidth < .03125)
811     stepWidth = .03125; /* 1/32 resolution good enough */
812     df->maxHemi = .0;
813     if (st->ndim == 3) { /* isotropic BSDF */
814     bmin[1] = bmin[2] = .0;
815     bmax[1] = bmax[2] = 1.;
816     for (bmin[0] = .0; bmin[0] < .5-FTINY; bmin[0] += stepWidth) {
817     bmax[0] = bmin[0] + stepWidth;
818     dhemi = SDavgTreBox(st, bmin, bmax);
819     if (dhemi > df->maxHemi)
820     df->maxHemi = dhemi;
821     }
822     } else if (st->ndim == 4) { /* anisotropic BSDF */
823     bmin[2] = bmin[3] = .0;
824     bmax[2] = bmax[3] = 1.;
825     for (bmin[0] = .0; bmin[0] < 1.-FTINY; bmin[0] += stepWidth) {
826     bmax[0] = bmin[0] + stepWidth;
827     for (bmin[1] = .0; bmin[1] < 1.-FTINY; bmin[1] += stepWidth) {
828     bmax[1] = bmin[1] + stepWidth;
829     dhemi = SDavgTreBox(st, bmin, bmax);
830     if (dhemi > df->maxHemi)
831     df->maxHemi = dhemi;
832     }
833     }
834     } else
835     return SDEinternal;
836     /* correct hemispherical value */
837     df->maxHemi *= M_PI;
838     return SDEnone;
839     }
840    
841     /* Load BSDF distribution for this wavelength */
842     static SDError
843     load_bsdf_data(SDData *sd, ezxml_t wdb, int ndim)
844     {
845     SDSpectralDF *df;
846     SDTre *sdt;
847     char *sdata;
848     int i;
849     /* allocate BSDF component */
850     sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
851     if (!sdata)
852     return SDEnone;
853     /*
854     * Remember that front and back are reversed from WINDOW 6 orientations
855     */
856     if (!strcasecmp(sdata, "Transmission")) {
857     if (sd->tf != NULL)
858     SDfreeSpectralDF(sd->tf);
859     if ((sd->tf = SDnewSpectralDF(1)) == NULL)
860     return SDEmemory;
861     df = sd->tf;
862     } else if (!strcasecmp(sdata, "Reflection Front")) {
863     if (sd->rb != NULL) /* note back-front reversal */
864     SDfreeSpectralDF(sd->rb);
865     if ((sd->rb = SDnewSpectralDF(1)) == NULL)
866     return SDEmemory;
867     df = sd->rb;
868     } else if (!strcasecmp(sdata, "Reflection Back")) {
869     if (sd->rf != NULL) /* note front-back reversal */
870     SDfreeSpectralDF(sd->rf);
871     if ((sd->rf = SDnewSpectralDF(1)) == NULL)
872     return SDEmemory;
873     df = sd->rf;
874     } else
875     return SDEnone;
876     /* XXX should also check "ScatteringDataType" for consistency? */
877     /* get angle bases */
878     sdata = ezxml_txt(ezxml_child(wdb,"AngleBasis"));
879     if (!sdata || strcasecmp(sdata, "LBNL/Shirley-Chiu")) {
880     sprintf(SDerrorDetail, "%s angle basis for BSDF '%s'",
881     !sdata ? "Missing" : "Unsupported", sd->name);
882     return !sdata ? SDEformat : SDEsupport;
883     }
884     /* allocate BSDF tree */
885     sdt = (SDTre *)malloc(sizeof(SDTre));
886     if (sdt == NULL)
887     return SDEmemory;
888     if (df == sd->rf)
889     sdt->sidef = SD_UFRONT;
890     else if (df == sd->rb)
891     sdt->sidef = SD_UBACK;
892     else
893     sdt->sidef = SD_XMIT;
894     sdt->st = NULL;
895     df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
896     df->comp[0].dist = sdt;
897     df->comp[0].func = &SDhandleTre;
898     /* read BSDF data */
899     sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData"));
900     if (!sdata || !next_token(&sdata)) {
901     sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
902     sd->name);
903     return SDEformat;
904     }
905     sdt->st = load_tree_data(&sdata, ndim);
906     if (sdt->st == NULL)
907     return SDEformat;
908     if (next_token(&sdata)) { /* check for unconsumed characters */
909     sprintf(SDerrorDetail,
910     "Extra characters at end of ScatteringData in '%s'",
911     sd->name);
912     return SDEformat;
913     }
914     /* flatten branches where possible */
915     sdt->st = SDsimplifyTre(sdt->st);
916     if (sdt->st == NULL)
917     return SDEinternal;
918     return get_extrema(df); /* compute global quantities */
919     }
920    
921     /* Find minimum value in tree */
922     static float
923     SDgetTreMin(const SDNode *st)
924     {
925 greg 3.10 float vmin = FHUGE;
926 greg 3.7 int n;
927    
928     if (st->log2GR < 0) {
929     for (n = 1<<st->ndim; n--; ) {
930     float v = SDgetTreMin(st->u.t[n]);
931     if (v < vmin)
932     vmin = v;
933     }
934     } else {
935     for (n = 1<<(st->ndim*st->log2GR); n--; )
936     if (st->u.v[n] < vmin)
937     vmin = st->u.v[n];
938     }
939     return vmin;
940     }
941    
942     /* Subtract the given value from all tree nodes */
943     static void
944     SDsubtractTreVal(SDNode *st, float val)
945     {
946     int n;
947    
948     if (st->log2GR < 0) {
949     for (n = 1<<st->ndim; n--; )
950     SDsubtractTreVal(st->u.t[n], val);
951     } else {
952     for (n = 1<<(st->ndim*st->log2GR); n--; )
953     st->u.v[n] -= val;
954     }
955     }
956    
957     /* Subtract minimum value from BSDF */
958     static double
959     subtract_min(SDNode *st)
960     {
961     float vmin;
962     /* be sure to skip unused portion */
963 greg 3.10 if (st->ndim == 3) {
964     int n;
965 greg 3.7 vmin = 1./M_PI;
966 greg 3.10 if (st->log2GR < 0) {
967     for (n = 0; n < 4; n++) {
968     float v = SDgetTreMin(st->u.t[n]);
969     if (v < vmin)
970     vmin = v;
971     }
972     } else if (st->log2GR) {
973     for (n = 1 << (3*st->log2GR - 1); n--; )
974     if (st->u.v[n] < vmin)
975     vmin = st->u.v[n];
976     } else
977     vmin = st->u.v[0];
978 greg 3.7 } else /* anisotropic covers entire tree */
979     vmin = SDgetTreMin(st);
980    
981     if (vmin <= FTINY)
982     return .0;
983    
984 greg 3.8 SDsubtractTreVal(st, vmin);
985 greg 3.7
986     return M_PI * vmin; /* return hemispherical value */
987     }
988    
989     /* Extract and separate diffuse portion of BSDF */
990     static void
991     extract_diffuse(SDValue *dv, SDSpectralDF *df)
992     {
993     int n;
994    
995     if (df == NULL || df->ncomp <= 0) {
996     dv->spec = c_dfcolor;
997     dv->cieY = .0;
998     return;
999     }
1000     dv->spec = df->comp[0].cspec[0];
1001 greg 3.9 dv->cieY = subtract_min((*(SDTre *)df->comp[0].dist).st);
1002 greg 3.7 /* in case of multiple components */
1003     for (n = df->ncomp; --n; ) {
1004     double ymin = subtract_min((*(SDTre *)df->comp[n].dist).st);
1005     c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
1006     dv->cieY += ymin;
1007     }
1008     df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */
1009     /* make sure everything is set */
1010     c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
1011     }
1012    
1013 greg 3.1 /* Load a variable-resolution BSDF tree from an open XML file */
1014     SDError
1015 greg 3.4 SDloadTre(SDData *sd, ezxml_t wtl)
1016 greg 3.1 {
1017 greg 3.7 SDError ec;
1018     ezxml_t wld, wdb;
1019     int rank;
1020     char *txt;
1021     /* basic checks and tensor rank */
1022     txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
1023     "DataDefinition"), "IncidentDataStructure"));
1024     if (txt == NULL || !*txt) {
1025     sprintf(SDerrorDetail,
1026     "BSDF \"%s\": missing IncidentDataStructure",
1027     sd->name);
1028     return SDEformat;
1029     }
1030     if (!strcasecmp(txt, "TensorTree3"))
1031     rank = 3;
1032     else if (!strcasecmp(txt, "TensorTree4"))
1033     rank = 4;
1034     else {
1035     sprintf(SDerrorDetail,
1036     "BSDF \"%s\": unsupported IncidentDataStructure",
1037     sd->name);
1038     return SDEsupport;
1039     }
1040     /* load BSDF components */
1041     for (wld = ezxml_child(wtl, "WavelengthData");
1042     wld != NULL; wld = wld->next) {
1043     if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1044     "Visible"))
1045     continue; /* just visible for now */
1046     for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1047     wdb != NULL; wdb = wdb->next)
1048     if ((ec = load_bsdf_data(sd, wdb, rank)) != SDEnone)
1049     return ec;
1050     }
1051     /* separate diffuse components */
1052     extract_diffuse(&sd->rLambFront, sd->rf);
1053     extract_diffuse(&sd->rLambBack, sd->rb);
1054     extract_diffuse(&sd->tLamb, sd->tf);
1055     /* return success */
1056     return SDEnone;
1057 greg 3.1 }
1058    
1059     /* Variable resolution BSDF methods */
1060 greg 3.5 SDFunc SDhandleTre = {
1061     &SDgetTreBSDF,
1062 greg 3.6 &SDqueryTreProjSA,
1063     &SDgetTreCDist,
1064     &SDsampTreCDist,
1065     &SDFreeBTre,
1066 greg 3.1 };