#ifndef lint static const char RCSid[] = "$Id: bsdf_m.c,v 3.28 2014/03/21 17:49:53 greg Exp $"; #endif /* * bsdf_m.c * * Definitions supporting BSDF matrices * * Created by Greg Ward on 2/2/11. * Copyright 2011 Anyhere Software. All rights reserved. * */ #define _USE_MATH_DEFINES #include "rtio.h" #include #include #include #include "ezxml.h" #include "bsdf.h" #include "bsdf_m.h" /* Function return codes */ #define RC_GOOD 1 #define RC_FAIL 0 #define RC_FORMERR (-1) #define RC_DATERR (-2) #define RC_UNSUPP (-3) #define RC_INTERR (-4) #define RC_MEMERR (-5) ANGLE_BASIS abase_list[MAXABASES] = { { "LBNL/Klems Full", 145, { {0., 1}, {5., 8}, {15., 16}, {25., 20}, {35., 24}, {45., 24}, {55., 24}, {65., 16}, {75., 12}, {90., 0} } }, { "LBNL/Klems Half", 73, { {0., 1}, {6.5, 8}, {19.5, 12}, {32.5, 16}, {46.5, 20}, {61.5, 12}, {76.5, 4}, {90., 0} } }, { "LBNL/Klems Quarter", 41, { {0., 1}, {9., 8}, {27., 12}, {46., 12}, {66., 8}, {90., 0} } } }; int nabases = 3; /* current number of defined bases */ static int fequal(double a, double b) { if (b != 0) a = a/b - 1.; return (a <= 1e-6) & (a >= -1e-6); } /* Returns the given tag's character content or empty string if none */ #ifdef ezxml_txt #undef ezxml_txt static char * ezxml_txt(ezxml_t xml) { if (xml == NULL) return ""; return xml->txt; } #endif /* Convert error to standard BSDF code */ static SDError convert_errcode(int ec) { switch (ec) { case RC_GOOD: return SDEnone; case RC_FORMERR: return SDEformat; case RC_DATERR: return SDEdata; case RC_UNSUPP: return SDEsupport; case RC_INTERR: return SDEinternal; case RC_MEMERR: return SDEmemory; } return SDEunknown; } /* Allocate a BSDF matrix of the given size */ static SDMat * SDnewMatrix(int ni, int no) { SDMat *sm; if ((ni <= 0) | (no <= 0)) { strcpy(SDerrorDetail, "Empty BSDF matrix request"); return NULL; } sm = (SDMat *)malloc(sizeof(SDMat) + (ni*no - 1)*sizeof(float)); if (sm == NULL) { sprintf(SDerrorDetail, "Cannot allocate %dx%d BSDF matrix", ni, no); return NULL; } memset(sm, 0, sizeof(SDMat)-sizeof(float)); sm->ninc = ni; sm->nout = no; return sm; } /* Free a BSDF matrix */ #define SDfreeMatrix free /* Get vector for this angle basis index (front exiting) */ int fo_getvec(FVECT v, double ndxr, void *p) { ANGLE_BASIS *ab = (ANGLE_BASIS *)p; int ndx = (int)ndxr; double randX = ndxr - ndx; double rx[2]; int li; double pol, azi, d; if ((ndxr < 0) | (ndx >= ab->nangles)) return RC_FAIL; for (li = 0; ndx >= ab->lat[li].nphis; li++) ndx -= ab->lat[li].nphis; SDmultiSamp(rx, 2, randX); pol = M_PI/180.*( (1.-rx[0])*ab->lat[li].tmin + rx[0]*ab->lat[li+1].tmin ); azi = 2.*M_PI*(ndx + rx[1] - .5)/ab->lat[li].nphis; v[2] = d = cos(pol); d = sqrt(1. - d*d); /* sin(pol) */ v[0] = cos(azi)*d; v[1] = sin(azi)*d; return RC_GOOD; } /* Get index corresponding to the given vector (front exiting) */ int fo_getndx(const FVECT v, void *p) { ANGLE_BASIS *ab = (ANGLE_BASIS *)p; int li, ndx; double pol, azi; if (v == NULL) return -1; if ((v[2] < 0) | (v[2] > 1.)) return -1; pol = 180.0/M_PI*Acos(v[2]); azi = 180.0/M_PI*atan2(v[1], v[0]); if (azi < 0.0) azi += 360.0; for (li = 1; ab->lat[li].tmin <= pol; li++) if (!ab->lat[li].nphis) return -1; --li; ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5); if (ndx >= ab->lat[li].nphis) ndx = 0; while (li--) ndx += ab->lat[li].nphis; return ndx; } /* compute square of real value */ static double sq(double x) { return x*x; } /* Get projected solid angle for this angle basis index (universal) */ double io_getohm(int ndx, void *p) { static int last_li = -1; static double last_ohm; ANGLE_BASIS *ab = (ANGLE_BASIS *)p; int li; double theta, theta1; if ((ndx < 0) | (ndx >= ab->nangles)) return -1.; for (li = 0; ndx >= ab->lat[li].nphis; li++) ndx -= ab->lat[li].nphis; if (li == last_li) /* cached latitude? */ return last_ohm; last_li = li; theta = M_PI/180. * ab->lat[li].tmin; theta1 = M_PI/180. * ab->lat[li+1].tmin; return last_ohm = M_PI*(sq(cos(theta)) - sq(cos(theta1))) / (double)ab->lat[li].nphis; } /* Get vector for this angle basis index (back incident) */ int bi_getvec(FVECT v, double ndxr, void *p) { if (!fo_getvec(v, ndxr, p)) return RC_FAIL; v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; return RC_GOOD; } /* Get index corresponding to the vector (back incident) */ int bi_getndx(const FVECT v, void *p) { FVECT v2; v2[0] = -v[0]; v2[1] = -v[1]; v2[2] = -v[2]; return fo_getndx(v2, p); } /* Get vector for this angle basis index (back exiting) */ int bo_getvec(FVECT v, double ndxr, void *p) { if (!fo_getvec(v, ndxr, p)) return RC_FAIL; v[2] = -v[2]; return RC_GOOD; } /* Get index corresponding to the vector (back exiting) */ int bo_getndx(const FVECT v, void *p) { FVECT v2; v2[0] = v[0]; v2[1] = v[1]; v2[2] = -v[2]; return fo_getndx(v2, p); } /* Get vector for this angle basis index (front incident) */ int fi_getvec(FVECT v, double ndxr, void *p) { if (!fo_getvec(v, ndxr, p)) return RC_FAIL; v[0] = -v[0]; v[1] = -v[1]; return RC_GOOD; } /* Get index corresponding to the vector (front incident) */ int fi_getndx(const FVECT v, void *p) { FVECT v2; v2[0] = -v[0]; v2[1] = -v[1]; v2[2] = v[2]; return fo_getndx(v2, p); } /* load custom BSDF angle basis */ static int load_angle_basis(ezxml_t wab) { char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName")); ezxml_t wbb; int i; if (!abname || !*abname) return RC_FAIL; for (i = nabases; i--; ) if (!strcasecmp(abname, abase_list[i].name)) return RC_GOOD; /* assume it's the same */ if (nabases >= MAXABASES) { sprintf(SDerrorDetail, "Out of angle bases reading '%s'", abname); return RC_INTERR; } strcpy(abase_list[nabases].name, abname); abase_list[nabases].nangles = 0; for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock"); wbb != NULL; i++, wbb = wbb->next) { if (i >= MAXLATS) { sprintf(SDerrorDetail, "Too many latitudes for '%s'", abname); return RC_INTERR; } abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt( ezxml_child(ezxml_child(wbb, "ThetaBounds"), "UpperTheta"))); if (!i) abase_list[nabases].lat[0].tmin = 0; else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb, "ThetaBounds"), "LowerTheta"))), abase_list[nabases].lat[i].tmin)) { sprintf(SDerrorDetail, "Theta values disagree in '%s'", abname); return RC_DATERR; } abase_list[nabases].nangles += abase_list[nabases].lat[i].nphis = atoi(ezxml_txt(ezxml_child(wbb, "nPhis"))); if (abase_list[nabases].lat[i].nphis <= 0 || (abase_list[nabases].lat[i].nphis == 1 && abase_list[nabases].lat[i].tmin > FTINY)) { sprintf(SDerrorDetail, "Illegal phi count in '%s'", abname); return RC_DATERR; } } abase_list[nabases++].lat[i].nphis = 0; return RC_GOOD; } /* compute min. proj. solid angle and max. direct hemispherical scattering */ static int get_extrema(SDSpectralDF *df) { SDMat *dp = (SDMat *)df->comp[0].dist; double *ohma; int i, o; /* initialize extrema */ df->minProjSA = M_PI; df->maxHemi = .0; ohma = (double *)malloc(dp->nout*sizeof(double)); if (ohma == NULL) return RC_MEMERR; /* get outgoing solid angles */ for (o = dp->nout; o--; ) if ((ohma[o] = mBSDF_outohm(dp,o)) < df->minProjSA) df->minProjSA = ohma[o]; /* compute hemispherical sums */ for (i = dp->ninc; i--; ) { double hemi = .0; for (o = dp->nout; o--; ) hemi += ohma[o] * mBSDF_value(dp, i, o); if (hemi > df->maxHemi) df->maxHemi = hemi; } free(ohma); /* need incoming solid angles, too? */ if ((dp->ib_ohm != dp->ob_ohm) | (dp->ib_priv != dp->ob_priv)) { double ohm; for (i = dp->ninc; i--; ) if ((ohm = mBSDF_incohm(dp,i)) < df->minProjSA) df->minProjSA = ohm; } return (df->maxHemi <= 1.01); } /* load BSDF distribution for this wavelength */ static int load_bsdf_data(SDData *sd, ezxml_t wdb, int rowinc) { SDSpectralDF *df; SDMat *dp; char *sdata; int inbi, outbi; int i; /* allocate BSDF component */ sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection")); if (!sdata) return RC_FAIL; /* * Remember that front and back are reversed from WINDOW 6 orientations */ if (!strcasecmp(sdata, "Transmission Front")) { if (sd->tb != NULL) SDfreeSpectralDF(sd->tb); if ((sd->tb = SDnewSpectralDF(1)) == NULL) return RC_MEMERR; df = sd->tb; } else if (!strcasecmp(sdata, "Transmission Back")) { if (sd->tf != NULL) SDfreeSpectralDF(sd->tf); if ((sd->tf = SDnewSpectralDF(1)) == NULL) return RC_MEMERR; df = sd->tf; } else if (!strcasecmp(sdata, "Reflection Front")) { if (sd->rb != NULL) SDfreeSpectralDF(sd->rb); if ((sd->rb = SDnewSpectralDF(1)) == NULL) return RC_MEMERR; df = sd->rb; } else if (!strcasecmp(sdata, "Reflection Back")) { if (sd->rf != NULL) SDfreeSpectralDF(sd->rf); if ((sd->rf = SDnewSpectralDF(1)) == NULL) return RC_MEMERR; df = sd->rf; } else return RC_FAIL; /* XXX should also check "ScatteringDataType" for consistency? */ /* get angle bases */ sdata = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis")); if (!sdata || !*sdata) { sprintf(SDerrorDetail, "Missing column basis for BSDF '%s'", sd->name); return RC_FORMERR; } for (inbi = nabases; inbi--; ) if (!strcasecmp(sdata, abase_list[inbi].name)) break; if (inbi < 0) { sprintf(SDerrorDetail, "Undefined ColumnAngleBasis '%s'", sdata); return RC_FORMERR; } sdata = ezxml_txt(ezxml_child(wdb,"RowAngleBasis")); if (!sdata || !*sdata) { sprintf(SDerrorDetail, "Missing row basis for BSDF '%s'", sd->name); return RC_FORMERR; } for (outbi = nabases; outbi--; ) if (!strcasecmp(sdata, abase_list[outbi].name)) break; if (outbi < 0) { sprintf(SDerrorDetail, "Undefined RowAngleBasis '%s'", sdata); return RC_FORMERR; } /* allocate BSDF matrix */ dp = SDnewMatrix(abase_list[inbi].nangles, abase_list[outbi].nangles); if (dp == NULL) return RC_MEMERR; dp->ib_priv = &abase_list[inbi]; dp->ob_priv = &abase_list[outbi]; if (df == sd->tf) { dp->ib_vec = &fi_getvec; dp->ib_ndx = &fi_getndx; dp->ob_vec = &bo_getvec; dp->ob_ndx = &bo_getndx; } else if (df == sd->tb) { dp->ib_vec = &bi_getvec; dp->ib_ndx = &bi_getndx; dp->ob_vec = &fo_getvec; dp->ob_ndx = &fo_getndx; } else if (df == sd->rf) { dp->ib_vec = &fi_getvec; dp->ib_ndx = &fi_getndx; dp->ob_vec = &fo_getvec; dp->ob_ndx = &fo_getndx; } else /* df == sd->rb */ { dp->ib_vec = &bi_getvec; dp->ib_ndx = &bi_getndx; dp->ob_vec = &bo_getvec; dp->ob_ndx = &bo_getndx; } dp->ib_ohm = &io_getohm; dp->ob_ohm = &io_getohm; df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */ df->comp[0].dist = dp; df->comp[0].func = &SDhandleMtx; /* read BSDF data */ sdata = ezxml_txt(ezxml_child(wdb, "ScatteringData")); if (!sdata || !*sdata) { sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'", sd->name); return RC_FORMERR; } for (i = 0; i < dp->ninc*dp->nout; i++) { char *sdnext = fskip(sdata); double val; if (sdnext == NULL) { sprintf(SDerrorDetail, "Bad/missing BSDF ScatteringData in '%s'", sd->name); return RC_FORMERR; } while (isspace(*sdnext)) sdnext++; if (*sdnext == ',') sdnext++; if ((val = atof(sdata)) < 0) val = 0; /* don't allow negative values */ if (rowinc) { int r = i/dp->nout; int c = i - r*dp->nout; mBSDF_value(dp,r,c) = val; } else dp->bsdf[i] = val; sdata = sdnext; } return get_extrema(df); } /* Subtract minimum (diffuse) scattering amount from BSDF */ static double subtract_min(SDMat *sm) { float minv = sm->bsdf[0]; int n = sm->ninc*sm->nout; int i; for (i = n; --i; ) if (sm->bsdf[i] < minv) minv = sm->bsdf[i]; if (minv <= FTINY) return .0; for (i = n; i--; ) sm->bsdf[i] -= minv; return minv*M_PI; /* be sure to include multiplier */ } /* Extract and separate diffuse portion of BSDF */ static void extract_diffuse(SDValue *dv, SDSpectralDF *df) { int n; if (df == NULL || df->ncomp <= 0) { dv->spec = c_dfcolor; dv->cieY = .0; return; } dv->spec = df->comp[0].cspec[0]; dv->cieY = subtract_min((SDMat *)df->comp[0].dist); /* in case of multiple components */ for (n = df->ncomp; --n; ) { double ymin = subtract_min((SDMat *)df->comp[n].dist); c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]); dv->cieY += ymin; } df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */ /* make sure everything is set */ c_ccvt(&dv->spec, C_CSXY+C_CSSPEC); } /* Load a BSDF matrix from an open XML file */ SDError SDloadMtx(SDData *sd, ezxml_t wtl) { ezxml_t wld, wdb; int rowIn; char *txt; int rval; /* basic checks and data ordering */ txt = ezxml_txt(ezxml_child(ezxml_child(wtl, "DataDefinition"), "IncidentDataStructure")); if (txt == NULL || !*txt) { sprintf(SDerrorDetail, "BSDF \"%s\": missing IncidentDataStructure", sd->name); return SDEformat; } if (!strcasecmp(txt, "Rows")) rowIn = 1; else if (!strcasecmp(txt, "Columns")) rowIn = 0; else { sprintf(SDerrorDetail, "BSDF \"%s\": unsupported IncidentDataStructure", sd->name); return SDEsupport; } /* get angle bases */ for (wld = ezxml_child(ezxml_child(wtl, "DataDefinition"), "AngleBasis"); wld != NULL; wld = wld->next) { rval = load_angle_basis(wld); if (rval < 0) return convert_errcode(rval); } /* load BSDF components */ for (wld = ezxml_child(wtl, "WavelengthData"); wld != NULL; wld = wld->next) { if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")), "Visible")) continue; /* just visible for now */ for (wdb = ezxml_child(wld, "WavelengthDataBlock"); wdb != NULL; wdb = wdb->next) if ((rval = load_bsdf_data(sd, wdb, rowIn)) < 0) return convert_errcode(rval); } /* separate diffuse components */ extract_diffuse(&sd->rLambFront, sd->rf); extract_diffuse(&sd->rLambBack, sd->rb); if (sd->tf != NULL) extract_diffuse(&sd->tLamb, sd->tf); if (sd->tb != NULL) extract_diffuse(&sd->tLamb, sd->tb); /* return success */ return SDEnone; } /* Get Matrix BSDF value */ static int SDgetMtxBSDF(float coef[SDmaxCh], const FVECT outVec, const FVECT inVec, SDComponent *sdc) { const SDMat *dp; int i_ndx, o_ndx; /* check arguments */ if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL) || (dp = (SDMat *)sdc->dist) == NULL) return 0; /* get angle indices */ i_ndx = mBSDF_incndx(dp, inVec); o_ndx = mBSDF_outndx(dp, outVec); /* try reciprocity if necessary */ if ((i_ndx < 0) & (o_ndx < 0)) { i_ndx = mBSDF_incndx(dp, outVec); o_ndx = mBSDF_outndx(dp, inVec); } if ((i_ndx < 0) | (o_ndx < 0)) return 0; /* nothing from this component */ coef[0] = mBSDF_value(dp, i_ndx, o_ndx); return 1; /* XXX monochrome for now */ } /* Query solid angle for vector(s) */ static SDError SDqueryMtxProjSA(double *psa, const FVECT v1, const RREAL *v2, int qflags, SDComponent *sdc) { const SDMat *dp; double inc_psa, out_psa; /* check arguments */ if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) || (dp = (SDMat *)sdc->dist) == NULL) return SDEargument; if (v2 == NULL) v2 = v1; /* get projected solid angles */ out_psa = mBSDF_outohm(dp, mBSDF_outndx(dp, v1)); inc_psa = mBSDF_incohm(dp, mBSDF_incndx(dp, v2)); if ((v1 != v2) & (out_psa <= 0) & (inc_psa <= 0)) { inc_psa = mBSDF_outohm(dp, mBSDF_outndx(dp, v2)); out_psa = mBSDF_incohm(dp, mBSDF_incndx(dp, v1)); } switch (qflags) { /* record based on flag settings */ case SDqueryMax: if (inc_psa > psa[0]) psa[0] = inc_psa; if (out_psa > psa[0]) psa[0] = out_psa; break; case SDqueryMin+SDqueryMax: if (inc_psa > psa[1]) psa[1] = inc_psa; if (out_psa > psa[1]) psa[1] = out_psa; /* fall through */ case SDqueryVal: if (qflags == SDqueryVal) psa[0] = M_PI; /* fall through */ case SDqueryMin: if ((inc_psa > 0) & (inc_psa < psa[0])) psa[0] = inc_psa; if ((out_psa > 0) & (out_psa < psa[0])) psa[0] = out_psa; break; } /* make sure it's legal */ return (psa[0] <= 0) ? SDEinternal : SDEnone; } /* Compute new cumulative distribution from BSDF */ static int make_cdist(SDMatCDst *cd, const FVECT inVec, SDMat *dp, int rev) { const unsigned maxval = ~0; double *cmtab, scale; int o; cmtab = (double *)malloc((cd->calen+1)*sizeof(double)); if (cmtab == NULL) return 0; cmtab[0] = .0; for (o = 0; o < cd->calen; o++) { if (rev) cmtab[o+1] = mBSDF_value(dp, o, cd->indx) * (*dp->ib_ohm)(o, dp->ib_priv); else cmtab[o+1] = mBSDF_value(dp, cd->indx, o) * (*dp->ob_ohm)(o, dp->ob_priv); cmtab[o+1] += cmtab[o]; } cd->cTotal = cmtab[cd->calen]; scale = (double)maxval / cd->cTotal; cd->carr[0] = 0; for (o = 1; o < cd->calen; o++) cd->carr[o] = scale*cmtab[o] + .5; cd->carr[cd->calen] = maxval; free(cmtab); return 1; } /* Get cumulative distribution for matrix BSDF */ static const SDCDst * SDgetMtxCDist(const FVECT inVec, SDComponent *sdc) { SDMat *dp; int reverse; SDMatCDst myCD; SDMatCDst *cd, *cdlast; /* check arguments */ if ((inVec == NULL) | (sdc == NULL) || (dp = (SDMat *)sdc->dist) == NULL) return NULL; memset(&myCD, 0, sizeof(myCD)); myCD.indx = mBSDF_incndx(dp, inVec); if (myCD.indx >= 0) { myCD.ob_priv = dp->ob_priv; myCD.ob_vec = dp->ob_vec; myCD.calen = dp->nout; reverse = 0; } else { /* try reciprocity */ myCD.indx = mBSDF_outndx(dp, inVec); if (myCD.indx < 0) return NULL; myCD.ob_priv = dp->ib_priv; myCD.ob_vec = dp->ib_vec; myCD.calen = dp->ninc; reverse = 1; } cdlast = NULL; /* check for it in cache list */ for (cd = (SDMatCDst *)sdc->cdList; cd != NULL; cdlast = cd, cd = cd->next) if (cd->indx == myCD.indx && (cd->calen == myCD.calen) & (cd->ob_priv == myCD.ob_priv) & (cd->ob_vec == myCD.ob_vec)) break; if (cd == NULL) { /* need to allocate new entry */ cd = (SDMatCDst *)malloc(sizeof(SDMatCDst) + sizeof(myCD.carr[0])*myCD.calen); if (cd == NULL) return NULL; *cd = myCD; /* compute cumulative distribution */ if (!make_cdist(cd, inVec, dp, reverse)) { free(cd); return NULL; } cdlast = cd; } if (cdlast != NULL) { /* move entry to head of cache list */ cdlast->next = cd->next; cd->next = (SDMatCDst *)sdc->cdList; sdc->cdList = (SDCDst *)cd; } return (SDCDst *)cd; /* ready to go */ } /* Sample cumulative distribution */ static SDError SDsampMtxCDist(FVECT ioVec, double randX, const SDCDst *cdp) { const unsigned maxval = ~0; const SDMatCDst *mcd = (const SDMatCDst *)cdp; const unsigned target = randX*maxval; int i, iupper, ilower; /* check arguments */ if ((ioVec == NULL) | (mcd == NULL)) return SDEargument; /* binary search to find index */ ilower = 0; iupper = mcd->calen; while ((i = (iupper + ilower) >> 1) != ilower) if (target >= mcd->carr[i]) ilower = i; else iupper = i; /* localize random position */ randX = (randX*maxval - mcd->carr[ilower]) / (double)(mcd->carr[iupper] - mcd->carr[ilower]); /* convert index to vector */ if ((*mcd->ob_vec)(ioVec, i+randX, mcd->ob_priv)) return SDEnone; strcpy(SDerrorDetail, "Matrix BSDF sampling fault"); return SDEinternal; } /* Fixed resolution BSDF methods */ SDFunc SDhandleMtx = { &SDgetMtxBSDF, &SDqueryMtxProjSA, &SDgetMtxCDist, &SDsampMtxCDist, &SDfreeMatrix, };