64 |
|
|
65 |
|
int nabases = 3; /* current number of defined bases */ |
66 |
|
|
67 |
< |
C_COLOR mtx_RGB_prim[3]; /* our RGB primaries */ |
68 |
< |
float mtx_RGB_coef[3]; /* corresponding Y coefficients */ |
67 |
> |
C_COLOR mtx_RGB_prim[3]; /* our RGB primaries */ |
68 |
> |
float mtx_RGB_coef[3]; /* corresponding Y coefficients */ |
69 |
|
|
70 |
|
enum {mtx_Y, mtx_X, mtx_Z}; /* matrix components (mtx_Y==0) */ |
71 |
|
|
132 |
|
free(ptr); |
133 |
|
} |
134 |
|
|
135 |
+ |
/* compute square of real value */ |
136 |
+ |
static double sq(double x) { return x*x; } |
137 |
+ |
|
138 |
|
/* Get vector for this angle basis index (front exiting) */ |
139 |
|
int |
140 |
|
fo_getvec(FVECT v, double ndxr, void *p) |
144 |
|
double randX = ndxr - ndx; |
145 |
|
double rx[2]; |
146 |
|
int li; |
147 |
< |
double pol, azi, d; |
147 |
> |
double azi, d; |
148 |
|
|
149 |
|
if ((ndxr < 0) | (ndx >= ab->nangles)) |
150 |
|
return RC_FAIL; |
151 |
|
for (li = 0; ndx >= ab->lat[li].nphis; li++) |
152 |
|
ndx -= ab->lat[li].nphis; |
153 |
|
SDmultiSamp(rx, 2, randX); |
154 |
< |
pol = M_PI/180.*( (1.-rx[0])*ab->lat[li].tmin + |
155 |
< |
rx[0]*ab->lat[li+1].tmin ); |
154 |
> |
d = (1. - rx[0])*sq(cos(M_PI/180.*ab->lat[li].tmin)) + |
155 |
> |
rx[0]*sq(cos(M_PI/180.*ab->lat[li+1].tmin)); |
156 |
> |
v[2] = d = sqrt(d); /* cos(pol) */ |
157 |
|
azi = 2.*M_PI*(ndx + rx[1] - .5)/ab->lat[li].nphis; |
154 |
– |
v[2] = d = cos(pol); |
158 |
|
d = sqrt(1. - d*d); /* sin(pol) */ |
159 |
|
v[0] = cos(azi)*d; |
160 |
|
v[1] = sin(azi)*d; |
187 |
|
return ndx; |
188 |
|
} |
189 |
|
|
187 |
– |
/* compute square of real value */ |
188 |
– |
static double sq(double x) { return x*x; } |
189 |
– |
|
190 |
|
/* Get projected solid angle for this angle basis index (universal) */ |
191 |
|
double |
192 |
|
io_getohm(int ndx, void *p) |
193 |
|
{ |
194 |
+ |
static void *last_p = NULL; |
195 |
|
static int last_li = -1; |
196 |
|
static double last_ohm; |
197 |
|
ANGLE_BASIS *ab = (ANGLE_BASIS *)p; |
202 |
|
return -1.; |
203 |
|
for (li = 0; ndx >= ab->lat[li].nphis; li++) |
204 |
|
ndx -= ab->lat[li].nphis; |
205 |
< |
if (li == last_li) /* cached latitude? */ |
205 |
> |
if ((p == last_p) & (li == last_li)) /* cached latitude? */ |
206 |
|
return last_ohm; |
207 |
+ |
last_p = p; |
208 |
|
last_li = li; |
209 |
|
theta = M_PI/180. * ab->lat[li].tmin; |
210 |
|
theta1 = M_PI/180. * ab->lat[li+1].tmin; |
296 |
|
{ |
297 |
|
C_COLOR cxy; |
298 |
|
|
299 |
< |
coef[0] = mBSDF_value(dp, i, o); |
299 |
> |
coef[0] = mBSDF_value(dp, o, i); |
300 |
|
if (dp->chroma == NULL) |
301 |
|
return 1; /* grayscale */ |
302 |
|
|
303 |
< |
c_decodeChroma(&cxy, dp->chroma[o*dp->ninc + i]); |
303 |
> |
c_decodeChroma(&cxy, mBSDF_chroma(dp,o,i)); |
304 |
|
c_toSharpRGB(&cxy, coef[0], coef); |
305 |
|
coef[0] *= mtx_RGB_coef[0]; |
306 |
|
coef[1] *= mtx_RGB_coef[1]; |
383 |
|
for (i = dp->ninc; i--; ) { |
384 |
|
double hemi = .0; |
385 |
|
for (o = dp->nout; o--; ) |
386 |
< |
hemi += ohma[o] * mBSDF_value(dp, i, o); |
386 |
> |
hemi += ohma[o] * mBSDF_value(dp, o, i); |
387 |
|
if (hemi > df->maxHemi) |
388 |
|
df->maxHemi = hemi; |
389 |
|
} |
519 |
|
if (rowinc) { |
520 |
|
int r = i/dp->nout; |
521 |
|
int c = i - r*dp->nout; |
522 |
< |
mBSDF_value(dp,r,c) = val; |
522 |
> |
mBSDF_value(dp,c,r) = val; |
523 |
|
} else |
524 |
|
dp->bsdf[i] = val; |
525 |
|
sdata = sdnext; |
593 |
|
subtract_min(C_COLOR *cs, SDMat *sm) |
594 |
|
{ |
595 |
|
const int ncomp = 1 + 2*(sm->chroma != NULL); |
596 |
< |
float min_coef[3], coef[3]; |
596 |
> |
float min_coef[3], ymin, coef[3]; |
597 |
|
int i, o, c; |
598 |
|
|
599 |
|
min_coef[0] = min_coef[1] = min_coef[2] = FHUGE; |
604 |
|
if (coef[c] < min_coef[c]) |
605 |
|
min_coef[c] = coef[c]; |
606 |
|
} |
607 |
+ |
ymin = 0; |
608 |
|
for (c = ncomp; c--; ) |
609 |
< |
if (min_coef[c] > FTINY) |
610 |
< |
break; |
608 |
< |
if (c < 0) |
609 |
> |
ymin += min_coef[c]; |
610 |
> |
if (ymin <= .01/M_PI) /* not worth bothering about? */ |
611 |
|
return .0; |
612 |
|
if (ncomp == 1) { /* subtract grayscale minimum */ |
613 |
|
for (i = sm->ninc*sm->nout; i--; ) |
614 |
< |
sm->bsdf[i] -= min_coef[0]; |
614 |
> |
sm->bsdf[i] -= ymin; |
615 |
|
*cs = c_dfcolor; |
616 |
< |
return min_coef[0]*M_PI; |
616 |
> |
return M_PI*ymin; |
617 |
|
} |
618 |
|
/* else subtract colored minimum */ |
619 |
|
for (i = 0; i < sm->ninc; i++) |
623 |
|
while (c--) |
624 |
|
coef[c] = (coef[c] - min_coef[c]) / |
625 |
|
mtx_RGB_coef[c]; |
626 |
< |
c_fromSharpRGB(coef, &cxy); |
627 |
< |
sm->chroma[o*sm->ninc + i] = c_encodeChroma(&cxy); |
628 |
< |
mBSDF_value(sm,i,o) -= min_coef[0]+min_coef[1]+min_coef[2]; |
626 |
> |
if (c_fromSharpRGB(coef, &cxy) > 1e-5) |
627 |
> |
mBSDF_chroma(sm,o,i) = c_encodeChroma(&cxy); |
628 |
> |
mBSDF_value(sm,o,i) -= ymin; |
629 |
|
} |
628 |
– |
|
630 |
|
/* return colored minimum */ |
631 |
< |
c_cmix(cs, min_coef[0], &mtx_RGB_prim[0], min_coef[1], &mtx_RGB_prim[1]); |
632 |
< |
c_cmix(cs, min_coef[0]+min_coef[1], cs, min_coef[2], &mtx_RGB_prim[2]); |
631 |
> |
for (i = 3; i--; ) |
632 |
> |
coef[i] = min_coef[i]/mtx_RGB_coef[i]; |
633 |
> |
c_fromSharpRGB(coef, cs); |
634 |
|
|
635 |
< |
return (min_coef[0]+min_coef[1]+min_coef[2])*M_PI; |
635 |
> |
return M_PI*ymin; |
636 |
|
} |
637 |
|
|
638 |
|
/* Extract and separate diffuse portion of BSDF & convert color */ |
649 |
|
/* subtract minimum value */ |
650 |
|
dv->cieY = subtract_min(&dv->spec, (SDMat *)df->comp[0].dist); |
651 |
|
df->maxHemi -= dv->cieY; /* adjust maximum hemispherical */ |
652 |
< |
/* make sure everything is set */ |
653 |
< |
c_ccvt(&dv->spec, C_CSXY+C_CSSPEC); |
652 |
> |
|
653 |
> |
c_ccvt(&dv->spec, C_CSXY); /* make sure (x,y) is set */ |
654 |
|
return df; |
655 |
|
} |
656 |
|
|
709 |
|
/* separate diffuse components */ |
710 |
|
sd->rf = extract_diffuse(&sd->rLambFront, sd->rf); |
711 |
|
sd->rb = extract_diffuse(&sd->rLambBack, sd->rb); |
712 |
< |
if (sd->tf != NULL) |
713 |
< |
sd->tf = extract_diffuse(&sd->tLamb, sd->tf); |
714 |
< |
if (sd->tb != NULL) |
715 |
< |
sd->tb = extract_diffuse(&sd->tLamb, sd->tb); |
712 |
> |
sd->tf = extract_diffuse(&sd->tLambFront, sd->tf); |
713 |
> |
if (sd->tb != NULL) { |
714 |
> |
sd->tb = extract_diffuse(&sd->tLambBack, sd->tb); |
715 |
> |
if (sd->tf == NULL) |
716 |
> |
sd->tLambFront = sd->tLambBack; |
717 |
> |
} else if (sd->tf != NULL) |
718 |
> |
sd->tLambBack = sd->tLambFront; |
719 |
|
/* return success */ |
720 |
|
return SDEnone; |
721 |
|
} |
808 |
|
cmtab[0] = .0; |
809 |
|
for (o = 0; o < cd->calen; o++) { |
810 |
|
if (rev) |
811 |
< |
cmtab[o+1] = mBSDF_value(dp, o, cd->indx) * |
811 |
> |
cmtab[o+1] = mBSDF_value(dp, cd->indx, o) * |
812 |
|
(*dp->ib_ohm)(o, dp->ib_priv); |
813 |
|
else |
814 |
< |
cmtab[o+1] = mBSDF_value(dp, cd->indx, o) * |
814 |
> |
cmtab[o+1] = mBSDF_value(dp, o, cd->indx) * |
815 |
|
(*dp->ob_ohm)(o, dp->ob_priv); |
816 |
|
cmtab[o+1] += cmtab[o]; |
817 |
|
} |
854 |
|
reverse = 1; |
855 |
|
} |
856 |
|
cdlast = NULL; /* check for it in cache list */ |
857 |
+ |
/* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */ |
858 |
|
for (cd = (SDMatCDst *)sdc->cdList; cd != NULL; |
859 |
|
cdlast = cd, cd = cd->next) |
860 |
|
if (cd->indx == myCD.indx && (cd->calen == myCD.calen) & |
878 |
|
cd->next = (SDMatCDst *)sdc->cdList; |
879 |
|
sdc->cdList = (SDCDst *)cd; |
880 |
|
} |
881 |
+ |
/* END MUTEX LOCK */ |
882 |
|
return (SDCDst *)cd; /* ready to go */ |
883 |
|
} |
884 |
|
|
911 |
|
} |
912 |
|
|
913 |
|
/* Fixed resolution BSDF methods */ |
914 |
< |
SDFunc SDhandleMtx = { |
914 |
> |
const SDFunc SDhandleMtx = { |
915 |
|
&SDgetMtxBSDF, |
916 |
|
&SDqueryMtxProjSA, |
917 |
|
&SDgetMtxCDist, |