ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf_m.c
Revision: 3.12
Committed: Sun Apr 24 19:39:21 2011 UTC (13 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 3.11: +25 -19 lines
Log Message:
Partial implementation of variable-resolution BSDFs

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf_m.c,v 3.11 2011/04/20 14:44:05 greg Exp $";
3 #endif
4 /*
5 * bsdf_m.c
6 *
7 * Definitions supporting BSDF matrices
8 *
9 * Created by Greg Ward on 2/2/11.
10 * Copyright 2011 Anyhere Software. All rights reserved.
11 *
12 */
13
14 #include "rtio.h"
15 #include <stdlib.h>
16 #include <math.h>
17 #include <ctype.h>
18 #include "ezxml.h"
19 #include "bsdf.h"
20 #include "bsdf_m.h"
21
22 /* Function return codes */
23 #define RC_GOOD 1
24 #define RC_FAIL 0
25 #define RC_FORMERR (-1)
26 #define RC_DATERR (-2)
27 #define RC_UNSUPP (-3)
28 #define RC_INTERR (-4)
29 #define RC_MEMERR (-5)
30
31 #define MAXLATS 46 /* maximum number of latitudes */
32
33 /* BSDF angle specification */
34 typedef struct {
35 char name[64]; /* basis name */
36 int nangles; /* total number of directions */
37 struct {
38 float tmin; /* starting theta */
39 int nphis; /* number of phis (0 term) */
40 } lat[MAXLATS+1]; /* latitudes */
41 } ANGLE_BASIS;
42
43 #define MAXABASES 7 /* limit on defined bases */
44
45 static ANGLE_BASIS abase_list[MAXABASES] = {
46 {
47 "LBNL/Klems Full", 145,
48 { {-5., 1},
49 {5., 8},
50 {15., 16},
51 {25., 20},
52 {35., 24},
53 {45., 24},
54 {55., 24},
55 {65., 16},
56 {75., 12},
57 {90., 0} }
58 }, {
59 "LBNL/Klems Half", 73,
60 { {-6.5, 1},
61 {6.5, 8},
62 {19.5, 12},
63 {32.5, 16},
64 {46.5, 20},
65 {61.5, 12},
66 {76.5, 4},
67 {90., 0} }
68 }, {
69 "LBNL/Klems Quarter", 41,
70 { {-9., 1},
71 {9., 8},
72 {27., 12},
73 {46., 12},
74 {66., 8},
75 {90., 0} }
76 }
77 };
78
79 static int nabases = 3; /* current number of defined bases */
80
81 static int
82 fequal(double a, double b)
83 {
84 if (b != 0)
85 a = a/b - 1.;
86 return (a <= 1e-6) & (a >= -1e-6);
87 }
88
89 /* Returns the name of the given tag */
90 #ifdef ezxml_name
91 #undef ezxml_name
92 static char *
93 ezxml_name(ezxml_t xml)
94 {
95 if (xml == NULL)
96 return NULL;
97 return xml->name;
98 }
99 #endif
100
101 /* Returns the given tag's character content or empty string if none */
102 #ifdef ezxml_txt
103 #undef ezxml_txt
104 static char *
105 ezxml_txt(ezxml_t xml)
106 {
107 if (xml == NULL)
108 return "";
109 return xml->txt;
110 }
111 #endif
112
113 /* Convert error to standard BSDF code */
114 static SDError
115 convert_errcode(int ec)
116 {
117 switch (ec) {
118 case RC_GOOD:
119 return SDEnone;
120 case RC_FORMERR:
121 return SDEformat;
122 case RC_DATERR:
123 return SDEdata;
124 case RC_UNSUPP:
125 return SDEsupport;
126 case RC_INTERR:
127 return SDEinternal;
128 case RC_MEMERR:
129 return SDEmemory;
130 }
131 return SDEunknown;
132 }
133
134 /* Allocate a BSDF matrix of the given size */
135 static SDMat *
136 SDnewMatrix(int ni, int no)
137 {
138 SDMat *sm;
139
140 if ((ni <= 0) | (no <= 0)) {
141 strcpy(SDerrorDetail, "Empty BSDF matrix request");
142 return NULL;
143 }
144 sm = (SDMat *)malloc(sizeof(SDMat) + (ni*no - 1)*sizeof(float));
145 if (sm == NULL) {
146 sprintf(SDerrorDetail, "Cannot allocate %dx%d BSDF matrix",
147 ni, no);
148 return NULL;
149 }
150 memset(sm, 0, sizeof(SDMat)-sizeof(float));
151 sm->ninc = ni;
152 sm->nout = no;
153
154 return sm;
155 }
156
157 /* Free a BSDF matrix */
158 #define SDfreeMatrix free
159
160 /* get vector for this angle basis index (front exiting) */
161 static int
162 fo_getvec(FVECT v, double ndxr, void *p)
163 {
164 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
165 int ndx = (int)ndxr;
166 double randX = ndxr - ndx;
167 double rx[2];
168 int li;
169 double pol, azi, d;
170
171 if ((ndxr < 0) | (ndx >= ab->nangles))
172 return RC_FAIL;
173 for (li = 0; ndx >= ab->lat[li].nphis; li++)
174 ndx -= ab->lat[li].nphis;
175 SDmultiSamp(rx, 2, randX);
176 pol = M_PI/180.*( (1.-rx[0])*ab->lat[li].tmin +
177 rx[0]*ab->lat[li+1].tmin );
178 azi = 2.*M_PI*(ndx + rx[1] - .5)/ab->lat[li].nphis;
179 v[2] = d = cos(pol);
180 d = sqrt(1. - d*d); /* sin(pol) */
181 v[0] = cos(azi)*d;
182 v[1] = sin(azi)*d;
183 return RC_GOOD;
184 }
185
186 /* get index corresponding to the given vector (front exiting) */
187 static int
188 fo_getndx(const FVECT v, void *p)
189 {
190 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
191 int li, ndx;
192 double pol, azi, d;
193
194 if (v == NULL)
195 return -1;
196 if ((v[2] < 0) | (v[2] > 1.))
197 return -1;
198 pol = 180.0/M_PI*acos(v[2]);
199 azi = 180.0/M_PI*atan2(v[1], v[0]);
200 if (azi < 0.0) azi += 360.0;
201 for (li = 1; ab->lat[li].tmin <= pol; li++)
202 if (!ab->lat[li].nphis)
203 return -1;
204 --li;
205 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
206 if (ndx >= ab->lat[li].nphis) ndx = 0;
207 while (li--)
208 ndx += ab->lat[li].nphis;
209 return ndx;
210 }
211
212 /* compute square of real value */
213 static double sq(double x) { return x*x; }
214
215 /* get projected solid angle for this angle basis index (universal) */
216 static double
217 io_getohm(int ndx, void *p)
218 {
219 static int last_li = -1;
220 static double last_ohm;
221 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
222 int li;
223 double theta, theta1;
224
225 if ((ndx < 0) | (ndx >= ab->nangles))
226 return -1.;
227 for (li = 0; ndx >= ab->lat[li].nphis; li++)
228 ndx -= ab->lat[li].nphis;
229 if (li == last_li) /* cached latitude? */
230 return last_ohm;
231 last_li = li;
232 theta1 = M_PI/180. * ab->lat[li+1].tmin;
233 if (ab->lat[li].nphis == 1) /* special case */
234 return last_ohm = M_PI*(1. - sq(cos(theta1)));
235 theta = M_PI/180. * ab->lat[li].tmin;
236 return last_ohm = M_PI*(sq(cos(theta)) - sq(cos(theta1))) /
237 (double)ab->lat[li].nphis;
238 }
239
240 /* get vector for this angle basis index (back incident) */
241 static int
242 bi_getvec(FVECT v, double ndxr, void *p)
243 {
244 if (!fo_getvec(v, ndxr, p))
245 return RC_FAIL;
246
247 v[0] = -v[0];
248 v[1] = -v[1];
249 v[2] = -v[2];
250
251 return RC_GOOD;
252 }
253
254 /* get index corresponding to the vector (back incident) */
255 static int
256 bi_getndx(const FVECT v, void *p)
257 {
258 FVECT v2;
259
260 v2[0] = -v[0];
261 v2[1] = -v[1];
262 v2[2] = -v[2];
263
264 return fo_getndx(v2, p);
265 }
266
267 /* get vector for this angle basis index (back exiting) */
268 static int
269 bo_getvec(FVECT v, double ndxr, void *p)
270 {
271 if (!fo_getvec(v, ndxr, p))
272 return RC_FAIL;
273
274 v[2] = -v[2];
275
276 return RC_GOOD;
277 }
278
279 /* get index corresponding to the vector (back exiting) */
280 static int
281 bo_getndx(const FVECT v, void *p)
282 {
283 FVECT v2;
284
285 v2[0] = v[0];
286 v2[1] = v[1];
287 v2[2] = -v[2];
288
289 return fo_getndx(v2, p);
290 }
291
292 /* get vector for this angle basis index (front incident) */
293 static int
294 fi_getvec(FVECT v, double ndxr, void *p)
295 {
296 if (!fo_getvec(v, ndxr, p))
297 return RC_FAIL;
298
299 v[0] = -v[0];
300 v[1] = -v[1];
301
302 return RC_GOOD;
303 }
304
305 /* get index corresponding to the vector (front incident) */
306 static int
307 fi_getndx(const FVECT v, void *p)
308 {
309 FVECT v2;
310
311 v2[0] = -v[0];
312 v2[1] = -v[1];
313 v2[2] = v[2];
314
315 return fo_getndx(v2, p);
316 }
317
318 /* load custom BSDF angle basis */
319 static int
320 load_angle_basis(ezxml_t wab)
321 {
322 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
323 ezxml_t wbb;
324 int i;
325
326 if (!abname || !*abname)
327 return RC_FAIL;
328 for (i = nabases; i--; )
329 if (!strcasecmp(abname, abase_list[i].name))
330 return RC_GOOD; /* assume it's the same */
331 if (nabases >= MAXABASES) {
332 sprintf(SDerrorDetail, "Out of angle bases reading '%s'",
333 abname);
334 return RC_INTERR;
335 }
336 strcpy(abase_list[nabases].name, abname);
337 abase_list[nabases].nangles = 0;
338 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
339 wbb != NULL; i++, wbb = wbb->next) {
340 if (i >= MAXLATS) {
341 sprintf(SDerrorDetail, "Too many latitudes for '%s'",
342 abname);
343 return RC_INTERR;
344 }
345 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
346 ezxml_child(ezxml_child(wbb,
347 "ThetaBounds"), "UpperTheta")));
348 if (!i)
349 abase_list[nabases].lat[i].tmin =
350 -abase_list[nabases].lat[i+1].tmin;
351 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
352 "ThetaBounds"), "LowerTheta"))),
353 abase_list[nabases].lat[i].tmin)) {
354 sprintf(SDerrorDetail, "Theta values disagree in '%s'",
355 abname);
356 return RC_DATERR;
357 }
358 abase_list[nabases].nangles +=
359 abase_list[nabases].lat[i].nphis =
360 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
361 if (abase_list[nabases].lat[i].nphis <= 0 ||
362 (abase_list[nabases].lat[i].nphis == 1 &&
363 abase_list[nabases].lat[i].tmin > FTINY)) {
364 sprintf(SDerrorDetail, "Illegal phi count in '%s'",
365 abname);
366 return RC_DATERR;
367 }
368 }
369 abase_list[nabases++].lat[i].nphis = 0;
370 return RC_GOOD;
371 }
372
373 /* compute min. proj. solid angle and max. direct hemispherical scattering */
374 static int
375 get_extrema(SDSpectralDF *df)
376 {
377 SDMat *dp = (SDMat *)df->comp[0].dist;
378 double *ohma;
379 int i, o;
380 /* initialize extrema */
381 df->minProjSA = M_PI;
382 df->maxHemi = .0;
383 ohma = (double *)malloc(dp->nout*sizeof(double));
384 if (ohma == NULL)
385 return RC_MEMERR;
386 /* get outgoing solid angles */
387 for (o = dp->nout; o--; )
388 if ((ohma[o] = mBSDF_outohm(dp,o)) < df->minProjSA)
389 df->minProjSA = ohma[o];
390 /* compute hemispherical sums */
391 for (i = dp->ninc; i--; ) {
392 double hemi = .0;
393 for (o = dp->nout; o--; )
394 hemi += ohma[o] * mBSDF_value(dp, i, o);
395 if (hemi > df->maxHemi)
396 df->maxHemi = hemi;
397 }
398 free(ohma);
399 /* need incoming solid angles, too? */
400 if ((dp->ib_ohm != dp->ob_ohm) | (dp->ib_priv != dp->ob_priv)) {
401 double ohm;
402 for (i = dp->ninc; i--; )
403 if ((ohm = mBSDF_incohm(dp,i)) < df->minProjSA)
404 df->minProjSA = ohm;
405 }
406 return (df->maxHemi <= 1.01);
407 }
408
409 /* load BSDF distribution for this wavelength */
410 static int
411 load_bsdf_data(SDData *sd, ezxml_t wdb, int rowinc)
412 {
413 SDSpectralDF *df;
414 SDMat *dp;
415 char *sdata;
416 int tfront;
417 int inbi, outbi;
418 int i;
419 /* allocate BSDF component */
420 sdata = ezxml_txt(ezxml_child(wdb, "WavelengthDataDirection"));
421 /*
422 * Remember that front and back are reversed from WINDOW 6 orientations
423 * Favor their "Front" (incoming light) since that's more often valid
424 */
425 tfront = !strcasecmp(sdata, "Transmission Back");
426 if (!strcasecmp(sdata, "Transmission Front") ||
427 tfront & (sd->tf == NULL)) {
428 if (sd->tf != NULL)
429 SDfreeSpectralDF(sd->tf);
430 if ((sd->tf = SDnewSpectralDF(1)) == NULL)
431 return RC_MEMERR;
432 df = sd->tf;
433 } else if (!strcasecmp(sdata, "Reflection Front")) {
434 if (sd->rb != NULL) /* note back-front reversal */
435 SDfreeSpectralDF(sd->rb);
436 if ((sd->rb = SDnewSpectralDF(1)) == NULL)
437 return RC_MEMERR;
438 df = sd->rb;
439 } else if (!strcasecmp(sdata, "Reflection Back")) {
440 if (sd->rf != NULL) /* note front-back reversal */
441 SDfreeSpectralDF(sd->rf);
442 if ((sd->rf = SDnewSpectralDF(1)) == NULL)
443 return RC_MEMERR;
444 df = sd->rf;
445 } else
446 return RC_FAIL;
447 /* XXX should also check "ScatteringDataType" for consistency? */
448 /* get angle bases */
449 sdata = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
450 if (!sdata || !*sdata) {
451 sprintf(SDerrorDetail, "Missing column basis for BSDF '%s'",
452 sd->name);
453 return RC_FORMERR;
454 }
455 for (inbi = nabases; inbi--; )
456 if (!strcasecmp(sdata, abase_list[inbi].name))
457 break;
458 if (inbi < 0) {
459 sprintf(SDerrorDetail, "Undefined ColumnAngleBasis '%s'", sdata);
460 return RC_FORMERR;
461 }
462 sdata = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
463 if (!sdata || !*sdata) {
464 sprintf(SDerrorDetail, "Missing row basis for BSDF '%s'",
465 sd->name);
466 return RC_FORMERR;
467 }
468 for (outbi = nabases; outbi--; )
469 if (!strcasecmp(sdata, abase_list[outbi].name))
470 break;
471 if (outbi < 0) {
472 sprintf(SDerrorDetail, "Undefined RowAngleBasis '%s'", sdata);
473 return RC_FORMERR;
474 }
475 /* allocate BSDF matrix */
476 dp = SDnewMatrix(abase_list[inbi].nangles, abase_list[outbi].nangles);
477 if (dp == NULL)
478 return RC_MEMERR;
479 dp->ib_priv = &abase_list[inbi];
480 dp->ob_priv = &abase_list[outbi];
481 if (df == sd->tf) {
482 if (tfront) {
483 dp->ib_vec = &fi_getvec;
484 dp->ib_ndx = &fi_getndx;
485 dp->ob_vec = &bo_getvec;
486 dp->ob_ndx = &bo_getndx;
487 } else {
488 dp->ib_vec = &bi_getvec;
489 dp->ib_ndx = &bi_getndx;
490 dp->ob_vec = &fo_getvec;
491 dp->ob_ndx = &fo_getndx;
492 }
493 } else if (df == sd->rf) {
494 dp->ib_vec = &fi_getvec;
495 dp->ib_ndx = &fi_getndx;
496 dp->ob_vec = &fo_getvec;
497 dp->ob_ndx = &fo_getndx;
498 } else /* df == sd->rb */ {
499 dp->ib_vec = &bi_getvec;
500 dp->ib_ndx = &bi_getndx;
501 dp->ob_vec = &bo_getvec;
502 dp->ob_ndx = &bo_getndx;
503 }
504 dp->ib_ohm = &io_getohm;
505 dp->ob_ohm = &io_getohm;
506 df->comp[0].cspec[0] = c_dfcolor; /* XXX monochrome for now */
507 df->comp[0].dist = dp;
508 df->comp[0].func = &SDhandleMtx;
509 /* read BSDF data */
510 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
511 if (!sdata || !*sdata) {
512 sprintf(SDerrorDetail, "Missing BSDF ScatteringData in '%s'",
513 sd->name);
514 return RC_FORMERR;
515 }
516 for (i = 0; i < dp->ninc*dp->nout; i++) {
517 char *sdnext = fskip(sdata);
518 if (sdnext == NULL) {
519 sprintf(SDerrorDetail,
520 "Bad/missing BSDF ScatteringData in '%s'",
521 sd->name);
522 return RC_FORMERR;
523 }
524 while (*sdnext && isspace(*sdnext))
525 sdnext++;
526 if (*sdnext == ',') sdnext++;
527 if (rowinc) {
528 int r = i/dp->nout;
529 int c = i - c*dp->nout;
530 mBSDF_value(dp,r,c) = atof(sdata);
531 } else
532 dp->bsdf[i] = atof(sdata);
533 sdata = sdnext;
534 }
535 return get_extrema(df);
536 }
537
538 /* Subtract minimum (diffuse) scattering amount from BSDF */
539 static double
540 subtract_min(SDMat *sm)
541 {
542 float minv = sm->bsdf[0];
543 int n = sm->ninc*sm->nout;
544 int i;
545
546 for (i = n; --i; )
547 if (sm->bsdf[i] < minv)
548 minv = sm->bsdf[i];
549 for (i = n; i--; )
550 sm->bsdf[i] -= minv;
551
552 return minv*M_PI; /* be sure to include multiplier */
553 }
554
555 /* Extract and separate diffuse portion of BSDF */
556 static void
557 extract_diffuse(SDValue *dv, SDSpectralDF *df)
558 {
559 int n;
560
561 if (df == NULL || df->ncomp <= 0) {
562 dv->spec = c_dfcolor;
563 dv->cieY = .0;
564 return;
565 }
566 dv->spec = df->comp[0].cspec[0];
567 dv->cieY = subtract_min((SDMat *)df->comp[0].dist);
568 /* in case of multiple components */
569 for (n = df->ncomp; --n; ) {
570 double ymin = subtract_min((SDMat *)df->comp[n].dist);
571 c_cmix(&dv->spec, dv->cieY, &dv->spec, ymin, &df->comp[n].cspec[0]);
572 dv->cieY += ymin;
573 }
574 df->maxHemi -= dv->cieY; /* adjust minimum hemispherical */
575 /* make sure everything is set */
576 c_ccvt(&dv->spec, C_CSXY+C_CSSPEC);
577 }
578
579 /* Load a BSDF matrix from an open XML file */
580 SDError
581 SDloadMtx(SDData *sd, ezxml_t wtl)
582 {
583 ezxml_t wld, wdb;
584 int rowIn;
585 struct BSDF_data *dp;
586 char *txt;
587 int rval;
588
589 txt = ezxml_txt(ezxml_child(ezxml_child(wtl,
590 "DataDefinition"), "IncidentDataStructure"));
591 if (txt == NULL || !*txt) {
592 sprintf(SDerrorDetail,
593 "BSDF \"%s\": missing IncidentDataStructure",
594 sd->name);
595 return SDEformat;
596 }
597 if (!strcasecmp(txt, "Rows"))
598 rowIn = 1;
599 else if (!strcasecmp(txt, "Columns"))
600 rowIn = 0;
601 else {
602 sprintf(SDerrorDetail,
603 "BSDF \"%s\": unsupported IncidentDataStructure",
604 sd->name);
605 return SDEsupport;
606 }
607 /* get angle basis */
608 rval = load_angle_basis(ezxml_child(ezxml_child(wtl,
609 "DataDefinition"), "AngleBasis"));
610 if (rval < 0)
611 return convert_errcode(rval);
612 /* load BSDF components */
613 for (wld = ezxml_child(wtl, "WavelengthData");
614 wld != NULL; wld = wld->next) {
615 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
616 "Visible"))
617 continue; /* just visible for now */
618 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
619 wdb != NULL; wdb = wdb->next)
620 if ((rval = load_bsdf_data(sd, wdb, rowIn)) < 0)
621 return convert_errcode(rval);
622 }
623 /* separate diffuse components */
624 extract_diffuse(&sd->rLambFront, sd->rf);
625 extract_diffuse(&sd->rLambBack, sd->rb);
626 extract_diffuse(&sd->tLamb, sd->tf);
627 /* return success */
628 return SDEnone;
629 }
630
631 /* Get Matrix BSDF value */
632 static int
633 SDgetMtxBSDF(float coef[SDmaxCh], const FVECT outVec,
634 const FVECT inVec, SDComponent *sdc)
635 {
636 const SDMat *dp;
637 int i_ndx, o_ndx;
638 /* check arguments */
639 if ((coef == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)
640 || (dp = (SDMat *)sdc->dist) == NULL)
641 return 0;
642 /* get angle indices */
643 i_ndx = mBSDF_incndx(dp, inVec);
644 o_ndx = mBSDF_outndx(dp, outVec);
645 /* try reciprocity if necessary */
646 if ((i_ndx < 0) & (o_ndx < 0)) {
647 i_ndx = mBSDF_incndx(dp, outVec);
648 o_ndx = mBSDF_outndx(dp, inVec);
649 }
650 if ((i_ndx < 0) | (o_ndx < 0))
651 return 0; /* nothing from this component */
652 coef[0] = mBSDF_value(dp, i_ndx, o_ndx);
653 return 1; /* XXX monochrome for now */
654 }
655
656 /* Query solid angle for vector(s) */
657 static SDError
658 SDqueryMtxProjSA(double *psa, const FVECT v1, const RREAL *v2,
659 int qflags, SDComponent *sdc)
660 {
661 const SDMat *dp;
662 double inc_psa, out_psa;
663 /* check arguments */
664 if ((psa == NULL) | (v1 == NULL) | (sdc == NULL) ||
665 (dp = (SDMat *)sdc->dist) == NULL)
666 return SDEargument;
667 if (v2 == NULL)
668 v2 = v1;
669 /* get projected solid angles */
670 out_psa = mBSDF_outohm(dp, mBSDF_outndx(dp, v1));
671 inc_psa = mBSDF_incohm(dp, mBSDF_incndx(dp, v2));
672 if ((v1 != v2) & (out_psa <= 0) & (inc_psa <= 0)) {
673 inc_psa = mBSDF_outohm(dp, mBSDF_outndx(dp, v2));
674 out_psa = mBSDF_incohm(dp, mBSDF_incndx(dp, v1));
675 }
676
677 switch (qflags) { /* record based on flag settings */
678 case SDqueryMax:
679 if (inc_psa > psa[0])
680 psa[0] = inc_psa;
681 if (out_psa > psa[0])
682 psa[0] = out_psa;
683 break;
684 case SDqueryMin+SDqueryMax:
685 if (inc_psa > psa[0])
686 psa[1] = inc_psa;
687 if (out_psa > psa[0])
688 psa[1] = out_psa;
689 /* fall through */
690 case SDqueryMin:
691 case SDqueryVal:
692 if (qflags == SDqueryVal)
693 psa[0] = M_PI;
694 if ((inc_psa > 0) & (inc_psa < psa[0]))
695 psa[0] = inc_psa;
696 if ((out_psa > 0) & (out_psa < psa[0]))
697 psa[0] = out_psa;
698 break;
699 }
700 /* make sure it's legal */
701 return (psa[0] <= 0) ? SDEinternal : SDEnone;
702 }
703
704 /* Compute new cumulative distribution from BSDF */
705 static int
706 make_cdist(SDMatCDst *cd, const FVECT inVec, SDMat *dp, int rev)
707 {
708 const unsigned maxval = ~0;
709 double *cmtab, scale;
710 int o;
711
712 cmtab = (double *)malloc((cd->calen+1)*sizeof(double));
713 if (cmtab == NULL)
714 return 0;
715 cmtab[0] = .0;
716 for (o = 0; o < cd->calen; o++) {
717 if (rev)
718 cmtab[o+1] = mBSDF_value(dp, o, cd->indx) *
719 (*dp->ib_ohm)(o, dp->ib_priv);
720 else
721 cmtab[o+1] = mBSDF_value(dp, cd->indx, o) *
722 (*dp->ob_ohm)(o, dp->ob_priv);
723 cmtab[o+1] += cmtab[o];
724 }
725 cd->cTotal = cmtab[cd->calen];
726 scale = (double)maxval / cd->cTotal;
727 cd->carr[0] = 0;
728 for (o = 1; o < cd->calen; o++)
729 cd->carr[o] = scale*cmtab[o] + .5;
730 cd->carr[cd->calen] = maxval;
731 free(cmtab);
732 return 1;
733 }
734
735 /* Get cumulative distribution for matrix BSDF */
736 static const SDCDst *
737 SDgetMtxCDist(const FVECT inVec, SDComponent *sdc)
738 {
739 SDMat *dp;
740 int reverse;
741 SDMatCDst myCD;
742 SDMatCDst *cd, *cdlast;
743 /* check arguments */
744 if ((inVec == NULL) | (sdc == NULL) ||
745 (dp = (SDMat *)sdc->dist) == NULL)
746 return NULL;
747 memset(&myCD, 0, sizeof(myCD));
748 myCD.indx = mBSDF_incndx(dp, inVec);
749 if (myCD.indx >= 0) {
750 myCD.ob_priv = dp->ob_priv;
751 myCD.ob_vec = dp->ob_vec;
752 myCD.calen = dp->nout;
753 reverse = 0;
754 } else { /* try reciprocity */
755 myCD.indx = mBSDF_outndx(dp, inVec);
756 if (myCD.indx < 0)
757 return NULL;
758 myCD.ob_priv = dp->ib_priv;
759 myCD.ob_vec = dp->ib_vec;
760 myCD.calen = dp->ninc;
761 reverse = 1;
762 }
763 cdlast = NULL; /* check for it in cache list */
764 for (cd = (SDMatCDst *)sdc->cdList;
765 cd != NULL; cd = (SDMatCDst *)cd->next) {
766 if (cd->indx == myCD.indx && (cd->calen == myCD.calen) &
767 (cd->ob_priv == myCD.ob_priv) &
768 (cd->ob_vec == myCD.ob_vec))
769 break;
770 cdlast = cd;
771 }
772 if (cd == NULL) { /* need to allocate new entry */
773 cd = (SDMatCDst *)malloc(sizeof(SDMatCDst) +
774 myCD.calen*sizeof(myCD.carr[0]));
775 if (cd == NULL)
776 return NULL;
777 *cd = myCD; /* compute cumulative distribution */
778 if (!make_cdist(cd, inVec, dp, reverse)) {
779 free(cd);
780 return NULL;
781 }
782 cdlast = cd;
783 }
784 if (cdlast != NULL) { /* move entry to head of cache list */
785 cdlast->next = cd->next;
786 cd->next = sdc->cdList;
787 sdc->cdList = (SDCDst *)cd;
788 }
789 return (SDCDst *)cd; /* ready to go */
790 }
791
792 /* Sample cumulative distribution */
793 static SDError
794 SDsampMtxCDist(FVECT ioVec, double randX, const SDCDst *cdp)
795 {
796 const unsigned maxval = ~0;
797 const SDMatCDst *mcd = (const SDMatCDst *)cdp;
798 const unsigned target = randX*maxval;
799 int i, iupper, ilower;
800 /* check arguments */
801 if ((ioVec == NULL) | (mcd == NULL))
802 return SDEargument;
803 /* binary search to find index */
804 ilower = 0; iupper = mcd->calen;
805 while ((i = (iupper + ilower) >> 1) != ilower)
806 if ((long)target >= (long)mcd->carr[i])
807 ilower = i;
808 else
809 iupper = i;
810 /* localize random position */
811 randX = (randX*maxval - mcd->carr[ilower]) /
812 (double)(mcd->carr[iupper] - mcd->carr[ilower]);
813 /* convert index to vector */
814 if ((*mcd->ob_vec)(ioVec, i+randX, mcd->ob_priv))
815 return SDEnone;
816 strcpy(SDerrorDetail, "Matrix BSDF sampling fault");
817 return SDEinternal;
818 }
819
820 /* Fixed resolution BSDF methods */
821 SDFunc SDhandleMtx = {
822 &SDgetMtxBSDF,
823 &SDqueryMtxProjSA,
824 &SDgetMtxCDist,
825 &SDsampMtxCDist,
826 &SDfreeMatrix,
827 };