ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.58
Committed: Thu May 14 19:20:13 2020 UTC (3 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R3
Changes since 2.57: +5 -2 lines
Log Message:
Added cumulative cache size limit (per loaded BSDF)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.57 2019/03/08 03:42:12 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Pointer to error list in preferred language */
39 const char **SDerrorList = SDerrorEnglish;
40
41 /* Additional information on last error (ASCII English) */
42 char SDerrorDetail[256];
43
44 /* Empty distribution for getCDist() calls that fail for some reason */
45 const SDCDst SDemptyCD;
46
47 /* Cache of loaded BSDFs */
48 struct SDCache_s *SDcacheList = NULL;
49
50 /* Retain BSDFs in cache list? */
51 int SDretainSet = SDretainNone;
52
53 /* Maximum cache size for any given BSDF? */
54 unsigned long SDmaxCache = 0; /* 0 == unlimited */
55
56 /* Report any error to the indicated stream */
57 SDError
58 SDreportError(SDError ec, FILE *fp)
59 {
60 if (!ec)
61 return SDEnone;
62 if ((ec < SDEnone) | (ec > SDEunknown)) {
63 SDerrorDetail[0] = '\0';
64 ec = SDEunknown;
65 }
66 if (fp == NULL)
67 return ec;
68 fputs(SDerrorList[ec], fp);
69 if (SDerrorDetail[0]) {
70 fputs(": ", fp);
71 fputs(SDerrorDetail, fp);
72 }
73 fputc('\n', fp);
74 if (fp != stderr)
75 fflush(fp);
76 return ec;
77 }
78
79 static double
80 to_meters( /* return factor to convert given unit to meters */
81 const char *unit
82 )
83 {
84 if (unit == NULL) return(1.); /* safe assumption? */
85 if (!strcasecmp(unit, "Meter")) return(1.);
86 if (!strcasecmp(unit, "Foot")) return(.3048);
87 if (!strcasecmp(unit, "Inch")) return(.0254);
88 if (!strcasecmp(unit, "Centimeter")) return(.01);
89 if (!strcasecmp(unit, "Millimeter")) return(.001);
90 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
91 return(-1.);
92 }
93
94 /* Load geometric dimensions and description (if any) */
95 static SDError
96 SDloadGeometry(SDData *sd, ezxml_t wtl)
97 {
98 ezxml_t node, matl, geom;
99 double cfact;
100 const char *fmt = NULL, *mgfstr;
101
102 SDerrorDetail[0] = '\0';
103 sd->matn[0] = '\0'; sd->makr[0] = '\0';
104 sd->dim[0] = sd->dim[1] = sd->dim[2] = 0;
105 matl = ezxml_child(wtl, "Material");
106 if (matl != NULL) { /* get material info. */
107 if ((node = ezxml_child(matl, "Name")) != NULL) {
108 strncpy(sd->matn, ezxml_txt(node), SDnameLn);
109 if (sd->matn[SDnameLn-1])
110 strcpy(sd->matn+(SDnameLn-4), "...");
111 }
112 if ((node = ezxml_child(matl, "Manufacturer")) != NULL) {
113 strncpy(sd->makr, ezxml_txt(node), SDnameLn);
114 if (sd->makr[SDnameLn-1])
115 strcpy(sd->makr+(SDnameLn-4), "...");
116 }
117 if ((node = ezxml_child(matl, "Width")) != NULL)
118 sd->dim[0] = atof(ezxml_txt(node)) *
119 to_meters(ezxml_attr(node, "unit"));
120 if ((node = ezxml_child(matl, "Height")) != NULL)
121 sd->dim[1] = atof(ezxml_txt(node)) *
122 to_meters(ezxml_attr(node, "unit"));
123 if ((node = ezxml_child(matl, "Thickness")) != NULL)
124 sd->dim[2] = atof(ezxml_txt(node)) *
125 to_meters(ezxml_attr(node, "unit"));
126 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
127 if (!SDerrorDetail[0])
128 sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
129 sd->name);
130 return SDEdata;
131 }
132 }
133 sd->mgf = NULL;
134 geom = ezxml_child(wtl, "Geometry");
135 if (geom == NULL) /* no actual geometry? */
136 return SDEnone;
137 fmt = ezxml_attr(geom, "format");
138 if (fmt != NULL && strcasecmp(fmt, "MGF")) {
139 sprintf(SDerrorDetail,
140 "Unrecognized geometry format '%s' in \"%s\"",
141 fmt, sd->name);
142 return SDEsupport;
143 }
144 if ((node = ezxml_child(geom, "MGFblock")) == NULL ||
145 (mgfstr = ezxml_txt(node)) == NULL)
146 return SDEnone;
147 while (isspace(*mgfstr))
148 ++mgfstr;
149 if (!*mgfstr)
150 return SDEnone;
151 cfact = to_meters(ezxml_attr(node, "unit"));
152 if (cfact <= 0)
153 return SDEformat;
154 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
155 if (sd->mgf == NULL) {
156 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
157 return SDEmemory;
158 }
159 if (cfact < 0.99 || cfact > 1.01)
160 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
161 else
162 strcpy(sd->mgf, mgfstr);
163 return SDEnone;
164 }
165
166 /* Load a BSDF struct from the given file (free first and keep name) */
167 SDError
168 SDloadFile(SDData *sd, const char *fname)
169 {
170 SDError lastErr;
171 ezxml_t fl, wtl;
172
173 if ((sd == NULL) | (fname == NULL || !*fname))
174 return SDEargument;
175 /* free old data, keeping name */
176 SDfreeBSDF(sd);
177 /* parse XML file */
178 fl = ezxml_parse_file(fname);
179 if (fl == NULL) {
180 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
181 return SDEfile;
182 }
183 if (ezxml_error(fl)[0]) {
184 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
185 ezxml_free(fl);
186 return SDEformat;
187 }
188 if (strcmp(ezxml_name(fl), "WindowElement")) {
189 sprintf(SDerrorDetail,
190 "BSDF \"%s\": top level node not 'WindowElement'",
191 sd->name);
192 ezxml_free(fl);
193 return SDEformat;
194 }
195 wtl = ezxml_child(fl, "FileType");
196 if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) {
197 sprintf(SDerrorDetail,
198 "XML \"%s\": wrong FileType (must be 'BSDF')",
199 sd->name);
200 ezxml_free(fl);
201 return SDEformat;
202 }
203 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
204 if (wtl == NULL) {
205 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers",
206 sd->name);
207 ezxml_free(fl);
208 return SDEformat;
209 }
210 /* load geometry if present */
211 lastErr = SDloadGeometry(sd, wtl);
212 if (lastErr) {
213 ezxml_free(fl);
214 return lastErr;
215 }
216 /* try loading variable resolution data */
217 lastErr = SDloadTre(sd, wtl);
218 /* check our result */
219 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
220 lastErr = SDloadMtx(sd, wtl);
221
222 /* done with XML file */
223 ezxml_free(fl);
224
225 if (lastErr) { /* was there a load error? */
226 SDfreeBSDF(sd);
227 return lastErr;
228 }
229 /* remove any insignificant components */
230 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
231 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
232 }
233 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
234 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
235 }
236 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
237 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
238 }
239 if (sd->tb != NULL && sd->tb->maxHemi <= .001) {
240 SDfreeSpectralDF(sd->tb); sd->tb = NULL;
241 }
242 /* return success */
243 return SDEnone;
244 }
245
246 /* Allocate new spectral distribution function */
247 SDSpectralDF *
248 SDnewSpectralDF(int nc)
249 {
250 SDSpectralDF *df;
251
252 if (nc <= 0) {
253 strcpy(SDerrorDetail, "Zero component spectral DF request");
254 return NULL;
255 }
256 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
257 (nc-1)*sizeof(SDComponent));
258 if (df == NULL) {
259 sprintf(SDerrorDetail,
260 "Cannot allocate %d component spectral DF", nc);
261 return NULL;
262 }
263 df->minProjSA = .0;
264 df->maxHemi = .0;
265 df->ncomp = nc;
266 memset(df->comp, 0, nc*sizeof(SDComponent));
267 return df;
268 }
269
270 /* Add component(s) to spectral distribution function */
271 SDSpectralDF *
272 SDaddComponent(SDSpectralDF *odf, int nadd)
273 {
274 SDSpectralDF *df;
275
276 if (odf == NULL)
277 return SDnewSpectralDF(nadd);
278 if (nadd <= 0)
279 return odf;
280 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
281 (odf->ncomp+nadd-1)*sizeof(SDComponent));
282 if (df == NULL) {
283 sprintf(SDerrorDetail,
284 "Cannot add %d component(s) to spectral DF", nadd);
285 SDfreeSpectralDF(odf);
286 return NULL;
287 }
288 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
289 df->ncomp += nadd;
290 return df;
291 }
292
293 /* Free cached cumulative distributions for BSDF component */
294 void
295 SDfreeCumulativeCache(SDSpectralDF *df)
296 {
297 int n;
298 SDCDst *cdp;
299
300 if (df == NULL)
301 return;
302 for (n = df->ncomp; n-- > 0; )
303 while ((cdp = df->comp[n].cdList) != NULL) {
304 df->comp[n].cdList = cdp->next;
305 free(cdp);
306 }
307 }
308
309 /* Free a spectral distribution function */
310 void
311 SDfreeSpectralDF(SDSpectralDF *df)
312 {
313 int n;
314
315 if (df == NULL)
316 return;
317 SDfreeCumulativeCache(df);
318 for (n = df->ncomp; n-- > 0; )
319 if (df->comp[n].dist != NULL)
320 (*df->comp[n].func->freeSC)(df->comp[n].dist);
321 free(df);
322 }
323
324 /* Shorten file path to useable BSDF name, removing suffix */
325 void
326 SDclipName(char *res, const char *fname)
327 {
328 const char *cp, *dot = NULL;
329
330 for (cp = fname; *cp; cp++)
331 if (*cp == '.')
332 dot = cp;
333 if ((dot == NULL) | (dot < fname+2))
334 dot = cp;
335 if (dot - fname >= SDnameLn)
336 fname = dot - SDnameLn + 1;
337 while (fname < dot)
338 *res++ = *fname++;
339 *res = '\0';
340 }
341
342 /* Initialize an unused BSDF struct (simply clears to zeroes) */
343 void
344 SDclearBSDF(SDData *sd, const char *fname)
345 {
346 if (sd == NULL)
347 return;
348 memset(sd, 0, sizeof(SDData));
349 if (fname == NULL)
350 return;
351 SDclipName(sd->name, fname);
352 }
353
354 /* Free data associated with BSDF struct */
355 void
356 SDfreeBSDF(SDData *sd)
357 {
358 if (sd == NULL)
359 return;
360 if (sd->mgf != NULL) {
361 free(sd->mgf);
362 sd->mgf = NULL;
363 }
364 if (sd->rf != NULL) {
365 SDfreeSpectralDF(sd->rf);
366 sd->rf = NULL;
367 }
368 if (sd->rb != NULL) {
369 SDfreeSpectralDF(sd->rb);
370 sd->rb = NULL;
371 }
372 if (sd->tf != NULL) {
373 SDfreeSpectralDF(sd->tf);
374 sd->tf = NULL;
375 }
376 if (sd->tb != NULL) {
377 SDfreeSpectralDF(sd->tb);
378 sd->tb = NULL;
379 }
380 sd->rLambFront.cieY = .0;
381 sd->rLambFront.spec.flags = 0;
382 sd->rLambBack.cieY = .0;
383 sd->rLambBack.spec.flags = 0;
384 sd->tLamb.cieY = .0;
385 sd->tLamb.spec.flags = 0;
386 }
387
388 /* Find writeable BSDF by name, or allocate new cache entry if absent */
389 SDData *
390 SDgetCache(const char *bname)
391 {
392 struct SDCache_s *sdl;
393 char sdnam[SDnameLn];
394
395 if (bname == NULL)
396 return NULL;
397
398 SDclipName(sdnam, bname);
399 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
400 if (!strcmp(sdl->bsdf.name, sdnam)) {
401 sdl->refcnt++;
402 return &sdl->bsdf;
403 }
404
405 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
406 if (sdl == NULL)
407 return NULL;
408
409 strcpy(sdl->bsdf.name, sdnam);
410 sdl->next = SDcacheList;
411 SDcacheList = sdl;
412
413 sdl->refcnt = 1;
414 return &sdl->bsdf;
415 }
416
417 /* Get loaded BSDF from cache (or load and cache it on first call) */
418 /* Report any problem to stderr and return NULL on failure */
419 const SDData *
420 SDcacheFile(const char *fname)
421 {
422 SDData *sd;
423 SDError ec;
424
425 if (fname == NULL || !*fname)
426 return NULL;
427 SDerrorDetail[0] = '\0';
428 /* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */
429 if ((sd = SDgetCache(fname)) == NULL) {
430 SDreportError(SDEmemory, stderr);
431 return NULL;
432 }
433 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
434 SDreportError(ec, stderr);
435 SDfreeCache(sd);
436 sd = NULL;
437 }
438 /* END MUTEX LOCK */
439 return sd;
440 }
441
442 /* Free a BSDF from our cache (clear all if NULL) */
443 void
444 SDfreeCache(const SDData *sd)
445 {
446 struct SDCache_s *sdl, *sdLast = NULL;
447
448 if (sd == NULL) { /* free entire list */
449 while ((sdl = SDcacheList) != NULL) {
450 SDcacheList = sdl->next;
451 SDfreeBSDF(&sdl->bsdf);
452 free(sdl);
453 }
454 return;
455 }
456 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
457 if (&sdl->bsdf == sd)
458 break;
459 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
460 return; /* missing or still in use */
461 /* keep unreferenced data? */
462 if (SDisLoaded(sd) && SDretainSet) {
463 if (SDretainSet == SDretainAll)
464 return; /* keep everything */
465 /* else free cumulative data */
466 SDfreeCumulativeCache(sd->rf);
467 SDfreeCumulativeCache(sd->rb);
468 SDfreeCumulativeCache(sd->tf);
469 SDfreeCumulativeCache(sd->tb);
470 return;
471 }
472 /* remove from list and free */
473 if (sdLast == NULL)
474 SDcacheList = sdl->next;
475 else
476 sdLast->next = sdl->next;
477 SDfreeBSDF(&sdl->bsdf);
478 free(sdl);
479 }
480
481 /* Sample an individual BSDF component */
482 SDError
483 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
484 {
485 float coef[SDmaxCh];
486 SDError ec;
487 FVECT inVec;
488 const SDCDst *cd;
489 double d;
490 int n;
491 /* check arguments */
492 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
493 return SDEargument;
494 /* get cumulative distribution */
495 VCOPY(inVec, ioVec);
496 sv->cieY = 0;
497 cd = (*sdc->func->getCDist)(inVec, sdc);
498 if (cd != NULL)
499 sv->cieY = cd->cTotal;
500 if (sv->cieY <= 1e-6) { /* nothing to sample? */
501 sv->spec = c_dfcolor;
502 memset(ioVec, 0, sizeof(FVECT));
503 return SDEnone;
504 }
505 /* compute sample direction */
506 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
507 if (ec)
508 return ec;
509 /* get BSDF color */
510 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
511 if (n <= 0) {
512 strcpy(SDerrorDetail, "BSDF sample value error");
513 return SDEinternal;
514 }
515 sv->spec = sdc->cspec[0];
516 d = coef[0];
517 while (--n) {
518 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
519 d += coef[n];
520 }
521 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
522 return SDEnone;
523 }
524
525 #define MS_MAXDIM 15
526
527 /* Convert 1-dimensional random variable to N-dimensional */
528 void
529 SDmultiSamp(double t[], int n, double randX)
530 {
531 unsigned nBits;
532 double scale;
533 bitmask_t ndx, coord[MS_MAXDIM];
534
535 if (n <= 0) /* check corner cases */
536 return;
537 if (randX < 0) randX = 0;
538 else if (randX >= 1.) randX = 0.999999999999999;
539 if (n == 1) {
540 t[0] = randX;
541 return;
542 }
543 while (n > MS_MAXDIM) /* punt for higher dimensions */
544 t[--n] = rand()*(1./(RAND_MAX+.5));
545 nBits = (8*sizeof(bitmask_t) - 1) / n;
546 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
547 /* get coordinate on Hilbert curve */
548 hilbert_i2c(n, nBits, ndx, coord);
549 /* convert back to [0,1) range */
550 scale = 1. / (double)((bitmask_t)1 << nBits);
551 while (n--)
552 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
553 }
554
555 #undef MS_MAXDIM
556
557 /* Generate diffuse hemispherical sample */
558 static void
559 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
560 {
561 /* convert to position on hemisphere */
562 SDmultiSamp(outVec, 2, randX);
563 SDsquare2disk(outVec, outVec[0], outVec[1]);
564 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
565 outVec[2] = sqrt(outVec[2]*(outVec[2]>0));
566 if (!outFront) /* going out back? */
567 outVec[2] = -outVec[2];
568 }
569
570 /* Query projected solid angle coverage for non-diffuse BSDF direction */
571 SDError
572 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
573 int qflags, const SDData *sd)
574 {
575 SDSpectralDF *rdf, *tdf;
576 SDError ec;
577 int i;
578 /* check arguments */
579 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
580 return SDEargument;
581 /* initialize extrema */
582 switch (qflags) {
583 case SDqueryMax:
584 projSA[0] = .0;
585 break;
586 case SDqueryMin+SDqueryMax:
587 projSA[1] = .0;
588 /* fall through */
589 case SDqueryMin:
590 projSA[0] = 10.;
591 break;
592 case 0:
593 return SDEargument;
594 }
595 if (v1[2] > 0) { /* front surface query? */
596 rdf = sd->rf;
597 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
598 } else {
599 rdf = sd->rb;
600 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
601 }
602 if (v2 != NULL) { /* bidirectional? */
603 if (v1[2] > 0 ^ v2[2] > 0)
604 rdf = NULL;
605 else
606 tdf = NULL;
607 }
608 ec = SDEdata; /* run through components */
609 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
610 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
611 qflags, &rdf->comp[i]);
612 if (ec)
613 return ec;
614 }
615 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
616 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
617 qflags, &tdf->comp[i]);
618 if (ec)
619 return ec;
620 }
621 if (ec) { /* all diffuse? */
622 projSA[0] = M_PI;
623 if (qflags == SDqueryMin+SDqueryMax)
624 projSA[1] = M_PI;
625 } else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1])
626 projSA[0] = projSA[1];
627 return SDEnone;
628 }
629
630 /* Return BSDF for the given incident and scattered ray vectors */
631 SDError
632 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
633 {
634 int inFront, outFront;
635 SDSpectralDF *sdf;
636 float coef[SDmaxCh];
637 int nch, i;
638 /* check arguments */
639 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
640 return SDEargument;
641 /* whose side are we on? */
642 inFront = (inVec[2] > 0);
643 outFront = (outVec[2] > 0);
644 /* start with diffuse portion */
645 if (inFront & outFront) {
646 *sv = sd->rLambFront;
647 sdf = sd->rf;
648 } else if (!(inFront | outFront)) {
649 *sv = sd->rLambBack;
650 sdf = sd->rb;
651 } else if (inFront) {
652 *sv = sd->tLamb;
653 sdf = (sd->tf != NULL) ? sd->tf : sd->tb;
654 } else /* outFront & !inFront */ {
655 *sv = sd->tLamb;
656 sdf = (sd->tb != NULL) ? sd->tb : sd->tf;
657 }
658 sv->cieY *= 1./M_PI;
659 /* add non-diffuse components */
660 i = (sdf != NULL) ? sdf->ncomp : 0;
661 while (i-- > 0) {
662 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
663 &sdf->comp[i]);
664 while (nch-- > 0) {
665 c_cmix(&sv->spec, sv->cieY, &sv->spec,
666 coef[nch], &sdf->comp[i].cspec[nch]);
667 sv->cieY += coef[nch];
668 }
669 }
670 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
671 return SDEnone;
672 }
673
674 /* Compute directional hemispherical scattering at this incident angle */
675 double
676 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
677 {
678 double hsum;
679 SDSpectralDF *rdf, *tdf;
680 const SDCDst *cd;
681 int i;
682 /* check arguments */
683 if ((inVec == NULL) | (sd == NULL))
684 return .0;
685 /* gather diffuse components */
686 if (inVec[2] > 0) {
687 hsum = sd->rLambFront.cieY;
688 rdf = sd->rf;
689 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
690 } else /* !inFront */ {
691 hsum = sd->rLambBack.cieY;
692 rdf = sd->rb;
693 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
694 }
695 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
696 hsum = .0;
697 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
698 hsum += sd->tLamb.cieY;
699 /* gather non-diffuse components */
700 i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
701 (rdf != NULL)) ? rdf->ncomp : 0;
702 while (i-- > 0) { /* non-diffuse reflection */
703 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
704 if (cd != NULL)
705 hsum += cd->cTotal;
706 }
707 i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
708 (tdf != NULL)) ? tdf->ncomp : 0;
709 while (i-- > 0) { /* non-diffuse transmission */
710 cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]);
711 if (cd != NULL)
712 hsum += cd->cTotal;
713 }
714 return hsum;
715 }
716
717 /* Sample BSDF direction based on the given random variable */
718 SDError
719 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
720 {
721 SDError ec;
722 FVECT inVec;
723 int inFront;
724 SDSpectralDF *rdf, *tdf;
725 double rdiff;
726 float coef[SDmaxCh];
727 int i, j, n, nr;
728 SDComponent *sdc;
729 const SDCDst **cdarr = NULL;
730 /* check arguments */
731 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
732 (randX < 0) | (randX >= 1.))
733 return SDEargument;
734 /* whose side are we on? */
735 VCOPY(inVec, ioVec);
736 inFront = (inVec[2] > 0);
737 /* remember diffuse portions */
738 if (inFront) {
739 *sv = sd->rLambFront;
740 rdf = sd->rf;
741 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
742 } else /* !inFront */ {
743 *sv = sd->rLambBack;
744 rdf = sd->rb;
745 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
746 }
747 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
748 sv->cieY = .0;
749 rdiff = sv->cieY;
750 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
751 sv->cieY += sd->tLamb.cieY;
752 /* gather non-diffuse components */
753 i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
754 (rdf != NULL)) ? rdf->ncomp : 0;
755 j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
756 (tdf != NULL)) ? tdf->ncomp : 0;
757 n = i + j;
758 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
759 return SDEmemory;
760 while (j-- > 0) { /* non-diffuse transmission */
761 cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]);
762 if (cdarr[i+j] == NULL)
763 cdarr[i+j] = &SDemptyCD;
764 sv->cieY += cdarr[i+j]->cTotal;
765 }
766 while (i-- > 0) { /* non-diffuse reflection */
767 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
768 if (cdarr[i] == NULL)
769 cdarr[i] = &SDemptyCD;
770 sv->cieY += cdarr[i]->cTotal;
771 }
772 if (sv->cieY <= 1e-6) { /* anything to sample? */
773 sv->cieY = .0;
774 memset(ioVec, 0, sizeof(FVECT));
775 return SDEnone;
776 }
777 /* scale random variable */
778 randX *= sv->cieY;
779 /* diffuse reflection? */
780 if (randX < rdiff) {
781 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
782 goto done;
783 }
784 randX -= rdiff;
785 /* diffuse transmission? */
786 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
787 if (randX < sd->tLamb.cieY) {
788 sv->spec = sd->tLamb.spec;
789 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
790 goto done;
791 }
792 randX -= sd->tLamb.cieY;
793 }
794 /* else one of cumulative dist. */
795 for (i = 0; i < n && randX >= cdarr[i]->cTotal; i++)
796 randX -= cdarr[i]->cTotal;
797 if (i >= n)
798 return SDEinternal;
799 /* compute sample direction */
800 sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr];
801 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
802 if (ec)
803 return ec;
804 /* compute color */
805 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
806 if (j <= 0) {
807 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
808 sd->name);
809 return SDEinternal;
810 }
811 sv->spec = sdc->cspec[0];
812 rdiff = coef[0];
813 while (--j) {
814 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
815 rdiff += coef[j];
816 }
817 done:
818 if (cdarr != NULL)
819 free(cdarr);
820 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
821 return SDEnone;
822 }
823
824 /* Compute World->BSDF transform from surface normal and up (Y) vector */
825 SDError
826 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
827 {
828 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
829 return SDEargument;
830 VCOPY(vMtx[2], sNrm);
831 if (normalize(vMtx[2]) == 0)
832 return SDEargument;
833 fcross(vMtx[0], uVec, vMtx[2]);
834 if (normalize(vMtx[0]) == 0)
835 return SDEargument;
836 fcross(vMtx[1], vMtx[2], vMtx[0]);
837 return SDEnone;
838 }
839
840 /* Compute inverse transform */
841 SDError
842 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
843 {
844 RREAL mTmp[3][3];
845 double d;
846
847 if ((iMtx == NULL) | (vMtx == NULL))
848 return SDEargument;
849 /* compute determinant */
850 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
851 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
852 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
853 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
854 if (d == 0) {
855 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
856 return SDEargument;
857 }
858 d = 1./d; /* invert matrix */
859 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
860 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
861 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
862 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
863 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
864 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
865 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
866 memcpy(iMtx, mTmp, sizeof(mTmp));
867 return SDEnone;
868 }
869
870 /* Transform and normalize direction (column) vector */
871 SDError
872 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
873 {
874 FVECT vTmp;
875
876 if ((resVec == NULL) | (inpVec == NULL))
877 return SDEargument;
878 if (vMtx == NULL) { /* assume they just want to normalize */
879 if (resVec != inpVec)
880 VCOPY(resVec, inpVec);
881 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
882 }
883 vTmp[0] = DOT(vMtx[0], inpVec);
884 vTmp[1] = DOT(vMtx[1], inpVec);
885 vTmp[2] = DOT(vMtx[2], inpVec);
886 if (normalize(vTmp) == 0)
887 return SDEargument;
888 VCOPY(resVec, vTmp);
889 return SDEnone;
890 }