ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.55
Committed: Thu May 10 22:55:35 2018 UTC (5 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2
Changes since 2.54: +4 -7 lines
Log Message:
Eliminated expensive and unnecessary spectral curve hallucination

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.54 2017/05/15 22:44:10 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Pointer to error list in preferred language */
39 const char **SDerrorList = SDerrorEnglish;
40
41 /* Additional information on last error (ASCII English) */
42 char SDerrorDetail[256];
43
44 /* Empty distribution for getCDist() calls that fail for some reason */
45 const SDCDst SDemptyCD;
46
47 /* Cache of loaded BSDFs */
48 struct SDCache_s *SDcacheList = NULL;
49
50 /* Retain BSDFs in cache list */
51 int SDretainSet = SDretainNone;
52
53 /* Report any error to the indicated stream */
54 SDError
55 SDreportError(SDError ec, FILE *fp)
56 {
57 if (!ec)
58 return SDEnone;
59 if ((ec < SDEnone) | (ec > SDEunknown)) {
60 SDerrorDetail[0] = '\0';
61 ec = SDEunknown;
62 }
63 if (fp == NULL)
64 return ec;
65 fputs(SDerrorList[ec], fp);
66 if (SDerrorDetail[0]) {
67 fputs(": ", fp);
68 fputs(SDerrorDetail, fp);
69 }
70 fputc('\n', fp);
71 if (fp != stderr)
72 fflush(fp);
73 return ec;
74 }
75
76 static double
77 to_meters( /* return factor to convert given unit to meters */
78 const char *unit
79 )
80 {
81 if (unit == NULL) return(1.); /* safe assumption? */
82 if (!strcasecmp(unit, "Meter")) return(1.);
83 if (!strcasecmp(unit, "Foot")) return(.3048);
84 if (!strcasecmp(unit, "Inch")) return(.0254);
85 if (!strcasecmp(unit, "Centimeter")) return(.01);
86 if (!strcasecmp(unit, "Millimeter")) return(.001);
87 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
88 return(-1.);
89 }
90
91 /* Load geometric dimensions and description (if any) */
92 static SDError
93 SDloadGeometry(SDData *sd, ezxml_t wtl)
94 {
95 ezxml_t node, matl, geom;
96 double cfact;
97 const char *fmt = NULL, *mgfstr;
98
99 SDerrorDetail[0] = '\0';
100 sd->matn[0] = '\0'; sd->makr[0] = '\0';
101 sd->dim[0] = sd->dim[1] = sd->dim[2] = 0;
102 matl = ezxml_child(wtl, "Material");
103 if (matl != NULL) { /* get material info. */
104 if ((node = ezxml_child(matl, "Name")) != NULL) {
105 strncpy(sd->matn, ezxml_txt(node), SDnameLn);
106 if (sd->matn[SDnameLn-1])
107 strcpy(sd->matn+(SDnameLn-4), "...");
108 }
109 if ((node = ezxml_child(matl, "Manufacturer")) != NULL) {
110 strncpy(sd->makr, ezxml_txt(node), SDnameLn);
111 if (sd->makr[SDnameLn-1])
112 strcpy(sd->makr+(SDnameLn-4), "...");
113 }
114 if ((node = ezxml_child(matl, "Width")) != NULL)
115 sd->dim[0] = atof(ezxml_txt(node)) *
116 to_meters(ezxml_attr(node, "unit"));
117 if ((node = ezxml_child(matl, "Height")) != NULL)
118 sd->dim[1] = atof(ezxml_txt(node)) *
119 to_meters(ezxml_attr(node, "unit"));
120 if ((node = ezxml_child(matl, "Thickness")) != NULL)
121 sd->dim[2] = atof(ezxml_txt(node)) *
122 to_meters(ezxml_attr(node, "unit"));
123 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
124 if (!SDerrorDetail[0])
125 sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
126 sd->name);
127 return SDEdata;
128 }
129 }
130 sd->mgf = NULL;
131 geom = ezxml_child(wtl, "Geometry");
132 if (geom == NULL) /* no actual geometry? */
133 return SDEnone;
134 fmt = ezxml_attr(geom, "format");
135 if (fmt != NULL && strcasecmp(fmt, "MGF")) {
136 sprintf(SDerrorDetail,
137 "Unrecognized geometry format '%s' in \"%s\"",
138 fmt, sd->name);
139 return SDEsupport;
140 }
141 if ((node = ezxml_child(geom, "MGFblock")) == NULL ||
142 (mgfstr = ezxml_txt(node)) == NULL)
143 return SDEnone;
144 while (isspace(*mgfstr))
145 ++mgfstr;
146 if (!*mgfstr)
147 return SDEnone;
148 cfact = to_meters(ezxml_attr(node, "unit"));
149 if (cfact <= 0)
150 return SDEformat;
151 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
152 if (sd->mgf == NULL) {
153 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
154 return SDEmemory;
155 }
156 if (cfact < 0.99 || cfact > 1.01)
157 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
158 else
159 strcpy(sd->mgf, mgfstr);
160 return SDEnone;
161 }
162
163 /* Load a BSDF struct from the given file (free first and keep name) */
164 SDError
165 SDloadFile(SDData *sd, const char *fname)
166 {
167 SDError lastErr;
168 ezxml_t fl, wtl;
169
170 if ((sd == NULL) | (fname == NULL || !*fname))
171 return SDEargument;
172 /* free old data, keeping name */
173 SDfreeBSDF(sd);
174 /* parse XML file */
175 fl = ezxml_parse_file(fname);
176 if (fl == NULL) {
177 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
178 return SDEfile;
179 }
180 if (ezxml_error(fl)[0]) {
181 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
182 ezxml_free(fl);
183 return SDEformat;
184 }
185 if (strcmp(ezxml_name(fl), "WindowElement")) {
186 sprintf(SDerrorDetail,
187 "BSDF \"%s\": top level node not 'WindowElement'",
188 sd->name);
189 ezxml_free(fl);
190 return SDEformat;
191 }
192 wtl = ezxml_child(fl, "FileType");
193 if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) {
194 sprintf(SDerrorDetail,
195 "XML \"%s\": wrong FileType (must be 'BSDF')",
196 sd->name);
197 ezxml_free(fl);
198 return SDEformat;
199 }
200 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
201 if (wtl == NULL) {
202 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers",
203 sd->name);
204 ezxml_free(fl);
205 return SDEformat;
206 }
207 /* load geometry if present */
208 lastErr = SDloadGeometry(sd, wtl);
209 if (lastErr) {
210 ezxml_free(fl);
211 return lastErr;
212 }
213 /* try loading variable resolution data */
214 lastErr = SDloadTre(sd, wtl);
215 /* check our result */
216 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
217 lastErr = SDloadMtx(sd, wtl);
218
219 /* done with XML file */
220 ezxml_free(fl);
221
222 if (lastErr) { /* was there a load error? */
223 SDfreeBSDF(sd);
224 return lastErr;
225 }
226 /* remove any insignificant components */
227 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
228 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
229 }
230 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
231 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
232 }
233 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
234 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
235 }
236 if (sd->tb != NULL && sd->tb->maxHemi <= .001) {
237 SDfreeSpectralDF(sd->tb); sd->tb = NULL;
238 }
239 /* return success */
240 return SDEnone;
241 }
242
243 /* Allocate new spectral distribution function */
244 SDSpectralDF *
245 SDnewSpectralDF(int nc)
246 {
247 SDSpectralDF *df;
248
249 if (nc <= 0) {
250 strcpy(SDerrorDetail, "Zero component spectral DF request");
251 return NULL;
252 }
253 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
254 (nc-1)*sizeof(SDComponent));
255 if (df == NULL) {
256 sprintf(SDerrorDetail,
257 "Cannot allocate %d component spectral DF", nc);
258 return NULL;
259 }
260 df->minProjSA = .0;
261 df->maxHemi = .0;
262 df->ncomp = nc;
263 memset(df->comp, 0, nc*sizeof(SDComponent));
264 return df;
265 }
266
267 /* Add component(s) to spectral distribution function */
268 SDSpectralDF *
269 SDaddComponent(SDSpectralDF *odf, int nadd)
270 {
271 SDSpectralDF *df;
272
273 if (odf == NULL)
274 return SDnewSpectralDF(nadd);
275 if (nadd <= 0)
276 return odf;
277 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
278 (odf->ncomp+nadd-1)*sizeof(SDComponent));
279 if (df == NULL) {
280 sprintf(SDerrorDetail,
281 "Cannot add %d component(s) to spectral DF", nadd);
282 SDfreeSpectralDF(odf);
283 return NULL;
284 }
285 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
286 df->ncomp += nadd;
287 return df;
288 }
289
290 /* Free cached cumulative distributions for BSDF component */
291 void
292 SDfreeCumulativeCache(SDSpectralDF *df)
293 {
294 int n;
295 SDCDst *cdp;
296
297 if (df == NULL)
298 return;
299 for (n = df->ncomp; n-- > 0; )
300 while ((cdp = df->comp[n].cdList) != NULL) {
301 df->comp[n].cdList = cdp->next;
302 free(cdp);
303 }
304 }
305
306 /* Free a spectral distribution function */
307 void
308 SDfreeSpectralDF(SDSpectralDF *df)
309 {
310 int n;
311
312 if (df == NULL)
313 return;
314 SDfreeCumulativeCache(df);
315 for (n = df->ncomp; n-- > 0; )
316 if (df->comp[n].dist != NULL)
317 (*df->comp[n].func->freeSC)(df->comp[n].dist);
318 free(df);
319 }
320
321 /* Shorten file path to useable BSDF name, removing suffix */
322 void
323 SDclipName(char *res, const char *fname)
324 {
325 const char *cp, *dot = NULL;
326
327 for (cp = fname; *cp; cp++)
328 if (*cp == '.')
329 dot = cp;
330 if ((dot == NULL) | (dot < fname+2))
331 dot = cp;
332 if (dot - fname >= SDnameLn)
333 fname = dot - SDnameLn + 1;
334 while (fname < dot)
335 *res++ = *fname++;
336 *res = '\0';
337 }
338
339 /* Initialize an unused BSDF struct (simply clears to zeroes) */
340 void
341 SDclearBSDF(SDData *sd, const char *fname)
342 {
343 if (sd == NULL)
344 return;
345 memset(sd, 0, sizeof(SDData));
346 if (fname == NULL)
347 return;
348 SDclipName(sd->name, fname);
349 }
350
351 /* Free data associated with BSDF struct */
352 void
353 SDfreeBSDF(SDData *sd)
354 {
355 if (sd == NULL)
356 return;
357 if (sd->mgf != NULL) {
358 free(sd->mgf);
359 sd->mgf = NULL;
360 }
361 if (sd->rf != NULL) {
362 SDfreeSpectralDF(sd->rf);
363 sd->rf = NULL;
364 }
365 if (sd->rb != NULL) {
366 SDfreeSpectralDF(sd->rb);
367 sd->rb = NULL;
368 }
369 if (sd->tf != NULL) {
370 SDfreeSpectralDF(sd->tf);
371 sd->tf = NULL;
372 }
373 if (sd->tb != NULL) {
374 SDfreeSpectralDF(sd->tb);
375 sd->tb = NULL;
376 }
377 sd->rLambFront.cieY = .0;
378 sd->rLambFront.spec.flags = 0;
379 sd->rLambBack.cieY = .0;
380 sd->rLambBack.spec.flags = 0;
381 sd->tLamb.cieY = .0;
382 sd->tLamb.spec.flags = 0;
383 }
384
385 /* Find writeable BSDF by name, or allocate new cache entry if absent */
386 SDData *
387 SDgetCache(const char *bname)
388 {
389 struct SDCache_s *sdl;
390 char sdnam[SDnameLn];
391
392 if (bname == NULL)
393 return NULL;
394
395 SDclipName(sdnam, bname);
396 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
397 if (!strcmp(sdl->bsdf.name, sdnam)) {
398 sdl->refcnt++;
399 return &sdl->bsdf;
400 }
401
402 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
403 if (sdl == NULL)
404 return NULL;
405
406 strcpy(sdl->bsdf.name, sdnam);
407 sdl->next = SDcacheList;
408 SDcacheList = sdl;
409
410 sdl->refcnt = 1;
411 return &sdl->bsdf;
412 }
413
414 /* Get loaded BSDF from cache (or load and cache it on first call) */
415 /* Report any problem to stderr and return NULL on failure */
416 const SDData *
417 SDcacheFile(const char *fname)
418 {
419 SDData *sd;
420 SDError ec;
421
422 if (fname == NULL || !*fname)
423 return NULL;
424 SDerrorDetail[0] = '\0';
425 /* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */
426 if ((sd = SDgetCache(fname)) == NULL) {
427 SDreportError(SDEmemory, stderr);
428 return NULL;
429 }
430 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
431 SDreportError(ec, stderr);
432 SDfreeCache(sd);
433 sd = NULL;
434 }
435 /* END MUTEX LOCK */
436 return sd;
437 }
438
439 /* Free a BSDF from our cache (clear all if NULL) */
440 void
441 SDfreeCache(const SDData *sd)
442 {
443 struct SDCache_s *sdl, *sdLast = NULL;
444
445 if (sd == NULL) { /* free entire list */
446 while ((sdl = SDcacheList) != NULL) {
447 SDcacheList = sdl->next;
448 SDfreeBSDF(&sdl->bsdf);
449 free(sdl);
450 }
451 return;
452 }
453 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
454 if (&sdl->bsdf == sd)
455 break;
456 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
457 return; /* missing or still in use */
458 /* keep unreferenced data? */
459 if (SDisLoaded(sd) && SDretainSet) {
460 if (SDretainSet == SDretainAll)
461 return; /* keep everything */
462 /* else free cumulative data */
463 SDfreeCumulativeCache(sd->rf);
464 SDfreeCumulativeCache(sd->rb);
465 SDfreeCumulativeCache(sd->tf);
466 SDfreeCumulativeCache(sd->tb);
467 return;
468 }
469 /* remove from list and free */
470 if (sdLast == NULL)
471 SDcacheList = sdl->next;
472 else
473 sdLast->next = sdl->next;
474 SDfreeBSDF(&sdl->bsdf);
475 free(sdl);
476 }
477
478 /* Sample an individual BSDF component */
479 SDError
480 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
481 {
482 float coef[SDmaxCh];
483 SDError ec;
484 FVECT inVec;
485 const SDCDst *cd;
486 double d;
487 int n;
488 /* check arguments */
489 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
490 return SDEargument;
491 /* get cumulative distribution */
492 VCOPY(inVec, ioVec);
493 sv->cieY = 0;
494 cd = (*sdc->func->getCDist)(inVec, sdc);
495 if (cd != NULL)
496 sv->cieY = cd->cTotal;
497 if (sv->cieY <= 1e-6) { /* nothing to sample? */
498 sv->spec = c_dfcolor;
499 memset(ioVec, 0, sizeof(FVECT));
500 return SDEnone;
501 }
502 /* compute sample direction */
503 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
504 if (ec)
505 return ec;
506 /* get BSDF color */
507 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
508 if (n <= 0) {
509 strcpy(SDerrorDetail, "BSDF sample value error");
510 return SDEinternal;
511 }
512 sv->spec = sdc->cspec[0];
513 d = coef[0];
514 while (--n) {
515 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
516 d += coef[n];
517 }
518 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
519 return SDEnone;
520 }
521
522 #define MS_MAXDIM 15
523
524 /* Convert 1-dimensional random variable to N-dimensional */
525 void
526 SDmultiSamp(double t[], int n, double randX)
527 {
528 unsigned nBits;
529 double scale;
530 bitmask_t ndx, coord[MS_MAXDIM];
531
532 if (n <= 0) /* check corner cases */
533 return;
534 if (randX < 0) randX = 0;
535 else if (randX >= 1.) randX = 0.999999999999999;
536 if (n == 1) {
537 t[0] = randX;
538 return;
539 }
540 while (n > MS_MAXDIM) /* punt for higher dimensions */
541 t[--n] = rand()*(1./(RAND_MAX+.5));
542 nBits = (8*sizeof(bitmask_t) - 1) / n;
543 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
544 /* get coordinate on Hilbert curve */
545 hilbert_i2c(n, nBits, ndx, coord);
546 /* convert back to [0,1) range */
547 scale = 1. / (double)((bitmask_t)1 << nBits);
548 while (n--)
549 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
550 }
551
552 #undef MS_MAXDIM
553
554 /* Generate diffuse hemispherical sample */
555 static void
556 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
557 {
558 /* convert to position on hemisphere */
559 SDmultiSamp(outVec, 2, randX);
560 SDsquare2disk(outVec, outVec[0], outVec[1]);
561 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
562 outVec[2] = sqrt(outVec[2]*(outVec[2]>0));
563 if (!outFront) /* going out back? */
564 outVec[2] = -outVec[2];
565 }
566
567 /* Query projected solid angle coverage for non-diffuse BSDF direction */
568 SDError
569 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
570 int qflags, const SDData *sd)
571 {
572 SDSpectralDF *rdf, *tdf;
573 SDError ec;
574 int i;
575 /* check arguments */
576 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
577 return SDEargument;
578 /* initialize extrema */
579 switch (qflags) {
580 case SDqueryMax:
581 projSA[0] = .0;
582 break;
583 case SDqueryMin+SDqueryMax:
584 projSA[1] = .0;
585 /* fall through */
586 case SDqueryMin:
587 projSA[0] = 10.;
588 break;
589 case 0:
590 return SDEargument;
591 }
592 if (v1[2] > 0) { /* front surface query? */
593 rdf = sd->rf;
594 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
595 } else {
596 rdf = sd->rb;
597 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
598 }
599 if (v2 != NULL) { /* bidirectional? */
600 if (v1[2] > 0 ^ v2[2] > 0)
601 rdf = NULL;
602 else
603 tdf = NULL;
604 }
605 ec = SDEdata; /* run through components */
606 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
607 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
608 qflags, &rdf->comp[i]);
609 if (ec)
610 return ec;
611 }
612 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
613 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
614 qflags, &tdf->comp[i]);
615 if (ec)
616 return ec;
617 }
618 if (ec) { /* all diffuse? */
619 projSA[0] = M_PI;
620 if (qflags == SDqueryMin+SDqueryMax)
621 projSA[1] = M_PI;
622 } else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1])
623 projSA[0] = projSA[1];
624 return SDEnone;
625 }
626
627 /* Return BSDF for the given incident and scattered ray vectors */
628 SDError
629 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
630 {
631 int inFront, outFront;
632 SDSpectralDF *sdf;
633 float coef[SDmaxCh];
634 int nch, i;
635 /* check arguments */
636 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
637 return SDEargument;
638 /* whose side are we on? */
639 inFront = (inVec[2] > 0);
640 outFront = (outVec[2] > 0);
641 /* start with diffuse portion */
642 if (inFront & outFront) {
643 *sv = sd->rLambFront;
644 sdf = sd->rf;
645 } else if (!(inFront | outFront)) {
646 *sv = sd->rLambBack;
647 sdf = sd->rb;
648 } else if (outFront) {
649 *sv = sd->tLamb;
650 sdf = (sd->tf != NULL) ? sd->tf : sd->tb;
651 } else /* inFront & !outFront */ {
652 *sv = sd->tLamb;
653 sdf = (sd->tb != NULL) ? sd->tb : sd->tf;
654 }
655 sv->cieY *= 1./M_PI;
656 /* add non-diffuse components */
657 i = (sdf != NULL) ? sdf->ncomp : 0;
658 while (i-- > 0) {
659 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
660 &sdf->comp[i]);
661 while (nch-- > 0) {
662 c_cmix(&sv->spec, sv->cieY, &sv->spec,
663 coef[nch], &sdf->comp[i].cspec[nch]);
664 sv->cieY += coef[nch];
665 }
666 }
667 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
668 return SDEnone;
669 }
670
671 /* Compute directional hemispherical scattering at this incident angle */
672 double
673 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
674 {
675 double hsum;
676 SDSpectralDF *rdf, *tdf;
677 const SDCDst *cd;
678 int i;
679 /* check arguments */
680 if ((inVec == NULL) | (sd == NULL))
681 return .0;
682 /* gather diffuse components */
683 if (inVec[2] > 0) {
684 hsum = sd->rLambFront.cieY;
685 rdf = sd->rf;
686 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
687 } else /* !inFront */ {
688 hsum = sd->rLambBack.cieY;
689 rdf = sd->rb;
690 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
691 }
692 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
693 hsum = .0;
694 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
695 hsum += sd->tLamb.cieY;
696 /* gather non-diffuse components */
697 i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
698 (rdf != NULL)) ? rdf->ncomp : 0;
699 while (i-- > 0) { /* non-diffuse reflection */
700 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
701 if (cd != NULL)
702 hsum += cd->cTotal;
703 }
704 i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
705 (tdf != NULL)) ? tdf->ncomp : 0;
706 while (i-- > 0) { /* non-diffuse transmission */
707 cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]);
708 if (cd != NULL)
709 hsum += cd->cTotal;
710 }
711 return hsum;
712 }
713
714 /* Sample BSDF direction based on the given random variable */
715 SDError
716 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
717 {
718 SDError ec;
719 FVECT inVec;
720 int inFront;
721 SDSpectralDF *rdf, *tdf;
722 double rdiff;
723 float coef[SDmaxCh];
724 int i, j, n, nr;
725 SDComponent *sdc;
726 const SDCDst **cdarr = NULL;
727 /* check arguments */
728 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
729 (randX < 0) | (randX >= 1.))
730 return SDEargument;
731 /* whose side are we on? */
732 VCOPY(inVec, ioVec);
733 inFront = (inVec[2] > 0);
734 /* remember diffuse portions */
735 if (inFront) {
736 *sv = sd->rLambFront;
737 rdf = sd->rf;
738 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
739 } else /* !inFront */ {
740 *sv = sd->rLambBack;
741 rdf = sd->rb;
742 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
743 }
744 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
745 sv->cieY = .0;
746 rdiff = sv->cieY;
747 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
748 sv->cieY += sd->tLamb.cieY;
749 /* gather non-diffuse components */
750 i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
751 (rdf != NULL)) ? rdf->ncomp : 0;
752 j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
753 (tdf != NULL)) ? tdf->ncomp : 0;
754 n = i + j;
755 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
756 return SDEmemory;
757 while (j-- > 0) { /* non-diffuse transmission */
758 cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]);
759 if (cdarr[i+j] == NULL)
760 cdarr[i+j] = &SDemptyCD;
761 sv->cieY += cdarr[i+j]->cTotal;
762 }
763 while (i-- > 0) { /* non-diffuse reflection */
764 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
765 if (cdarr[i] == NULL)
766 cdarr[i] = &SDemptyCD;
767 sv->cieY += cdarr[i]->cTotal;
768 }
769 if (sv->cieY <= 1e-6) { /* anything to sample? */
770 sv->cieY = .0;
771 memset(ioVec, 0, sizeof(FVECT));
772 return SDEnone;
773 }
774 /* scale random variable */
775 randX *= sv->cieY;
776 /* diffuse reflection? */
777 if (randX < rdiff) {
778 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
779 goto done;
780 }
781 randX -= rdiff;
782 /* diffuse transmission? */
783 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
784 if (randX < sd->tLamb.cieY) {
785 sv->spec = sd->tLamb.spec;
786 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
787 goto done;
788 }
789 randX -= sd->tLamb.cieY;
790 }
791 /* else one of cumulative dist. */
792 for (i = 0; i < n && randX > cdarr[i]->cTotal; i++)
793 randX -= cdarr[i]->cTotal;
794 if (i >= n)
795 return SDEinternal;
796 /* compute sample direction */
797 sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr];
798 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
799 if (ec)
800 return ec;
801 /* compute color */
802 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
803 if (j <= 0) {
804 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
805 sd->name);
806 return SDEinternal;
807 }
808 sv->spec = sdc->cspec[0];
809 rdiff = coef[0];
810 while (--j) {
811 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
812 rdiff += coef[j];
813 }
814 done:
815 if (cdarr != NULL)
816 free(cdarr);
817 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
818 return SDEnone;
819 }
820
821 /* Compute World->BSDF transform from surface normal and up (Y) vector */
822 SDError
823 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
824 {
825 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
826 return SDEargument;
827 VCOPY(vMtx[2], sNrm);
828 if (normalize(vMtx[2]) == 0)
829 return SDEargument;
830 fcross(vMtx[0], uVec, vMtx[2]);
831 if (normalize(vMtx[0]) == 0)
832 return SDEargument;
833 fcross(vMtx[1], vMtx[2], vMtx[0]);
834 return SDEnone;
835 }
836
837 /* Compute inverse transform */
838 SDError
839 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
840 {
841 RREAL mTmp[3][3];
842 double d;
843
844 if ((iMtx == NULL) | (vMtx == NULL))
845 return SDEargument;
846 /* compute determinant */
847 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
848 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
849 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
850 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
851 if (d == 0) {
852 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
853 return SDEargument;
854 }
855 d = 1./d; /* invert matrix */
856 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
857 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
858 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
859 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
860 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
861 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
862 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
863 memcpy(iMtx, mTmp, sizeof(mTmp));
864 return SDEnone;
865 }
866
867 /* Transform and normalize direction (column) vector */
868 SDError
869 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
870 {
871 FVECT vTmp;
872
873 if ((resVec == NULL) | (inpVec == NULL))
874 return SDEargument;
875 if (vMtx == NULL) { /* assume they just want to normalize */
876 if (resVec != inpVec)
877 VCOPY(resVec, inpVec);
878 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
879 }
880 vTmp[0] = DOT(vMtx[0], inpVec);
881 vTmp[1] = DOT(vMtx[1], inpVec);
882 vTmp[2] = DOT(vMtx[2], inpVec);
883 if (normalize(vTmp) == 0)
884 return SDEargument;
885 VCOPY(resVec, vTmp);
886 return SDEnone;
887 }