ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.54
Committed: Mon May 15 22:44:10 2017 UTC (6 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R1
Changes since 2.53: +3 -3 lines
Log Message:
Fixed inconsistency between evaluation and sizing operations

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.53 2017/02/02 04:46:38 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Pointer to error list in preferred language */
39 const char **SDerrorList = SDerrorEnglish;
40
41 /* Additional information on last error (ASCII English) */
42 char SDerrorDetail[256];
43
44 /* Empty distribution for getCDist() calls that fail for some reason */
45 const SDCDst SDemptyCD;
46
47 /* Cache of loaded BSDFs */
48 struct SDCache_s *SDcacheList = NULL;
49
50 /* Retain BSDFs in cache list */
51 int SDretainSet = SDretainNone;
52
53 /* Report any error to the indicated stream */
54 SDError
55 SDreportError(SDError ec, FILE *fp)
56 {
57 if (!ec)
58 return SDEnone;
59 if ((ec < SDEnone) | (ec > SDEunknown)) {
60 SDerrorDetail[0] = '\0';
61 ec = SDEunknown;
62 }
63 if (fp == NULL)
64 return ec;
65 fputs(SDerrorList[ec], fp);
66 if (SDerrorDetail[0]) {
67 fputs(": ", fp);
68 fputs(SDerrorDetail, fp);
69 }
70 fputc('\n', fp);
71 if (fp != stderr)
72 fflush(fp);
73 return ec;
74 }
75
76 static double
77 to_meters( /* return factor to convert given unit to meters */
78 const char *unit
79 )
80 {
81 if (unit == NULL) return(1.); /* safe assumption? */
82 if (!strcasecmp(unit, "Meter")) return(1.);
83 if (!strcasecmp(unit, "Foot")) return(.3048);
84 if (!strcasecmp(unit, "Inch")) return(.0254);
85 if (!strcasecmp(unit, "Centimeter")) return(.01);
86 if (!strcasecmp(unit, "Millimeter")) return(.001);
87 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
88 return(-1.);
89 }
90
91 /* Load geometric dimensions and description (if any) */
92 static SDError
93 SDloadGeometry(SDData *sd, ezxml_t wtl)
94 {
95 ezxml_t node, matl, geom;
96 double cfact;
97 const char *fmt = NULL, *mgfstr;
98
99 SDerrorDetail[0] = '\0';
100 sd->matn[0] = '\0'; sd->makr[0] = '\0';
101 sd->dim[0] = sd->dim[1] = sd->dim[2] = 0;
102 matl = ezxml_child(wtl, "Material");
103 if (matl != NULL) { /* get material info. */
104 if ((node = ezxml_child(matl, "Name")) != NULL) {
105 strncpy(sd->matn, ezxml_txt(node), SDnameLn);
106 if (sd->matn[SDnameLn-1])
107 strcpy(sd->matn+(SDnameLn-4), "...");
108 }
109 if ((node = ezxml_child(matl, "Manufacturer")) != NULL) {
110 strncpy(sd->makr, ezxml_txt(node), SDnameLn);
111 if (sd->makr[SDnameLn-1])
112 strcpy(sd->makr+(SDnameLn-4), "...");
113 }
114 if ((node = ezxml_child(matl, "Width")) != NULL)
115 sd->dim[0] = atof(ezxml_txt(node)) *
116 to_meters(ezxml_attr(node, "unit"));
117 if ((node = ezxml_child(matl, "Height")) != NULL)
118 sd->dim[1] = atof(ezxml_txt(node)) *
119 to_meters(ezxml_attr(node, "unit"));
120 if ((node = ezxml_child(matl, "Thickness")) != NULL)
121 sd->dim[2] = atof(ezxml_txt(node)) *
122 to_meters(ezxml_attr(node, "unit"));
123 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
124 if (!SDerrorDetail[0])
125 sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
126 sd->name);
127 return SDEdata;
128 }
129 }
130 sd->mgf = NULL;
131 geom = ezxml_child(wtl, "Geometry");
132 if (geom == NULL) /* no actual geometry? */
133 return SDEnone;
134 fmt = ezxml_attr(geom, "format");
135 if (fmt != NULL && strcasecmp(fmt, "MGF")) {
136 sprintf(SDerrorDetail,
137 "Unrecognized geometry format '%s' in \"%s\"",
138 fmt, sd->name);
139 return SDEsupport;
140 }
141 if ((node = ezxml_child(geom, "MGFblock")) == NULL ||
142 (mgfstr = ezxml_txt(node)) == NULL)
143 return SDEnone;
144 while (isspace(*mgfstr))
145 ++mgfstr;
146 if (!*mgfstr)
147 return SDEnone;
148 cfact = to_meters(ezxml_attr(node, "unit"));
149 if (cfact <= 0)
150 return SDEformat;
151 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
152 if (sd->mgf == NULL) {
153 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
154 return SDEmemory;
155 }
156 if (cfact < 0.99 || cfact > 1.01)
157 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
158 else
159 strcpy(sd->mgf, mgfstr);
160 return SDEnone;
161 }
162
163 /* Load a BSDF struct from the given file (free first and keep name) */
164 SDError
165 SDloadFile(SDData *sd, const char *fname)
166 {
167 SDError lastErr;
168 ezxml_t fl, wtl;
169
170 if ((sd == NULL) | (fname == NULL || !*fname))
171 return SDEargument;
172 /* free old data, keeping name */
173 SDfreeBSDF(sd);
174 /* parse XML file */
175 fl = ezxml_parse_file(fname);
176 if (fl == NULL) {
177 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
178 return SDEfile;
179 }
180 if (ezxml_error(fl)[0]) {
181 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
182 ezxml_free(fl);
183 return SDEformat;
184 }
185 if (strcmp(ezxml_name(fl), "WindowElement")) {
186 sprintf(SDerrorDetail,
187 "BSDF \"%s\": top level node not 'WindowElement'",
188 sd->name);
189 ezxml_free(fl);
190 return SDEformat;
191 }
192 wtl = ezxml_child(fl, "FileType");
193 if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) {
194 sprintf(SDerrorDetail,
195 "XML \"%s\": wrong FileType (must be 'BSDF')",
196 sd->name);
197 ezxml_free(fl);
198 return SDEformat;
199 }
200 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
201 if (wtl == NULL) {
202 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers",
203 sd->name);
204 ezxml_free(fl);
205 return SDEformat;
206 }
207 /* load geometry if present */
208 lastErr = SDloadGeometry(sd, wtl);
209 if (lastErr) {
210 ezxml_free(fl);
211 return lastErr;
212 }
213 /* try loading variable resolution data */
214 lastErr = SDloadTre(sd, wtl);
215 /* check our result */
216 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
217 lastErr = SDloadMtx(sd, wtl);
218
219 /* done with XML file */
220 ezxml_free(fl);
221
222 if (lastErr) { /* was there a load error? */
223 SDfreeBSDF(sd);
224 return lastErr;
225 }
226 /* remove any insignificant components */
227 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
228 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
229 }
230 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
231 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
232 }
233 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
234 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
235 }
236 if (sd->tb != NULL && sd->tb->maxHemi <= .001) {
237 SDfreeSpectralDF(sd->tb); sd->tb = NULL;
238 }
239 /* return success */
240 return SDEnone;
241 }
242
243 /* Allocate new spectral distribution function */
244 SDSpectralDF *
245 SDnewSpectralDF(int nc)
246 {
247 SDSpectralDF *df;
248
249 if (nc <= 0) {
250 strcpy(SDerrorDetail, "Zero component spectral DF request");
251 return NULL;
252 }
253 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
254 (nc-1)*sizeof(SDComponent));
255 if (df == NULL) {
256 sprintf(SDerrorDetail,
257 "Cannot allocate %d component spectral DF", nc);
258 return NULL;
259 }
260 df->minProjSA = .0;
261 df->maxHemi = .0;
262 df->ncomp = nc;
263 memset(df->comp, 0, nc*sizeof(SDComponent));
264 return df;
265 }
266
267 /* Add component(s) to spectral distribution function */
268 SDSpectralDF *
269 SDaddComponent(SDSpectralDF *odf, int nadd)
270 {
271 SDSpectralDF *df;
272
273 if (odf == NULL)
274 return SDnewSpectralDF(nadd);
275 if (nadd <= 0)
276 return odf;
277 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
278 (odf->ncomp+nadd-1)*sizeof(SDComponent));
279 if (df == NULL) {
280 sprintf(SDerrorDetail,
281 "Cannot add %d component(s) to spectral DF", nadd);
282 SDfreeSpectralDF(odf);
283 return NULL;
284 }
285 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
286 df->ncomp += nadd;
287 return df;
288 }
289
290 /* Free cached cumulative distributions for BSDF component */
291 void
292 SDfreeCumulativeCache(SDSpectralDF *df)
293 {
294 int n;
295 SDCDst *cdp;
296
297 if (df == NULL)
298 return;
299 for (n = df->ncomp; n-- > 0; )
300 while ((cdp = df->comp[n].cdList) != NULL) {
301 df->comp[n].cdList = cdp->next;
302 free(cdp);
303 }
304 }
305
306 /* Free a spectral distribution function */
307 void
308 SDfreeSpectralDF(SDSpectralDF *df)
309 {
310 int n;
311
312 if (df == NULL)
313 return;
314 SDfreeCumulativeCache(df);
315 for (n = df->ncomp; n-- > 0; )
316 if (df->comp[n].dist != NULL)
317 (*df->comp[n].func->freeSC)(df->comp[n].dist);
318 free(df);
319 }
320
321 /* Shorten file path to useable BSDF name, removing suffix */
322 void
323 SDclipName(char *res, const char *fname)
324 {
325 const char *cp, *dot = NULL;
326
327 for (cp = fname; *cp; cp++)
328 if (*cp == '.')
329 dot = cp;
330 if ((dot == NULL) | (dot < fname+2))
331 dot = cp;
332 if (dot - fname >= SDnameLn)
333 fname = dot - SDnameLn + 1;
334 while (fname < dot)
335 *res++ = *fname++;
336 *res = '\0';
337 }
338
339 /* Initialize an unused BSDF struct (simply clears to zeroes) */
340 void
341 SDclearBSDF(SDData *sd, const char *fname)
342 {
343 if (sd == NULL)
344 return;
345 memset(sd, 0, sizeof(SDData));
346 if (fname == NULL)
347 return;
348 SDclipName(sd->name, fname);
349 }
350
351 /* Free data associated with BSDF struct */
352 void
353 SDfreeBSDF(SDData *sd)
354 {
355 if (sd == NULL)
356 return;
357 if (sd->mgf != NULL) {
358 free(sd->mgf);
359 sd->mgf = NULL;
360 }
361 if (sd->rf != NULL) {
362 SDfreeSpectralDF(sd->rf);
363 sd->rf = NULL;
364 }
365 if (sd->rb != NULL) {
366 SDfreeSpectralDF(sd->rb);
367 sd->rb = NULL;
368 }
369 if (sd->tf != NULL) {
370 SDfreeSpectralDF(sd->tf);
371 sd->tf = NULL;
372 }
373 if (sd->tb != NULL) {
374 SDfreeSpectralDF(sd->tb);
375 sd->tb = NULL;
376 }
377 sd->rLambFront.cieY = .0;
378 sd->rLambFront.spec.flags = 0;
379 sd->rLambBack.cieY = .0;
380 sd->rLambBack.spec.flags = 0;
381 sd->tLamb.cieY = .0;
382 sd->tLamb.spec.flags = 0;
383 }
384
385 /* Find writeable BSDF by name, or allocate new cache entry if absent */
386 SDData *
387 SDgetCache(const char *bname)
388 {
389 struct SDCache_s *sdl;
390 char sdnam[SDnameLn];
391
392 if (bname == NULL)
393 return NULL;
394
395 SDclipName(sdnam, bname);
396 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
397 if (!strcmp(sdl->bsdf.name, sdnam)) {
398 sdl->refcnt++;
399 return &sdl->bsdf;
400 }
401
402 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
403 if (sdl == NULL)
404 return NULL;
405
406 strcpy(sdl->bsdf.name, sdnam);
407 sdl->next = SDcacheList;
408 SDcacheList = sdl;
409
410 sdl->refcnt = 1;
411 return &sdl->bsdf;
412 }
413
414 /* Get loaded BSDF from cache (or load and cache it on first call) */
415 /* Report any problem to stderr and return NULL on failure */
416 const SDData *
417 SDcacheFile(const char *fname)
418 {
419 SDData *sd;
420 SDError ec;
421
422 if (fname == NULL || !*fname)
423 return NULL;
424 SDerrorDetail[0] = '\0';
425 /* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */
426 if ((sd = SDgetCache(fname)) == NULL) {
427 SDreportError(SDEmemory, stderr);
428 return NULL;
429 }
430 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
431 SDreportError(ec, stderr);
432 SDfreeCache(sd);
433 sd = NULL;
434 }
435 /* END MUTEX LOCK */
436 return sd;
437 }
438
439 /* Free a BSDF from our cache (clear all if NULL) */
440 void
441 SDfreeCache(const SDData *sd)
442 {
443 struct SDCache_s *sdl, *sdLast = NULL;
444
445 if (sd == NULL) { /* free entire list */
446 while ((sdl = SDcacheList) != NULL) {
447 SDcacheList = sdl->next;
448 SDfreeBSDF(&sdl->bsdf);
449 free(sdl);
450 }
451 return;
452 }
453 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
454 if (&sdl->bsdf == sd)
455 break;
456 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
457 return; /* missing or still in use */
458 /* keep unreferenced data? */
459 if (SDisLoaded(sd) && SDretainSet) {
460 if (SDretainSet == SDretainAll)
461 return; /* keep everything */
462 /* else free cumulative data */
463 SDfreeCumulativeCache(sd->rf);
464 SDfreeCumulativeCache(sd->rb);
465 SDfreeCumulativeCache(sd->tf);
466 SDfreeCumulativeCache(sd->tb);
467 return;
468 }
469 /* remove from list and free */
470 if (sdLast == NULL)
471 SDcacheList = sdl->next;
472 else
473 sdLast->next = sdl->next;
474 SDfreeBSDF(&sdl->bsdf);
475 free(sdl);
476 }
477
478 /* Sample an individual BSDF component */
479 SDError
480 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
481 {
482 float coef[SDmaxCh];
483 SDError ec;
484 FVECT inVec;
485 const SDCDst *cd;
486 double d;
487 int n;
488 /* check arguments */
489 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
490 return SDEargument;
491 /* get cumulative distribution */
492 VCOPY(inVec, ioVec);
493 sv->cieY = 0;
494 cd = (*sdc->func->getCDist)(inVec, sdc);
495 if (cd != NULL)
496 sv->cieY = cd->cTotal;
497 if (sv->cieY <= 1e-6) { /* nothing to sample? */
498 sv->spec = c_dfcolor;
499 memset(ioVec, 0, sizeof(FVECT));
500 return SDEnone;
501 }
502 /* compute sample direction */
503 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
504 if (ec)
505 return ec;
506 /* get BSDF color */
507 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
508 if (n <= 0) {
509 strcpy(SDerrorDetail, "BSDF sample value error");
510 return SDEinternal;
511 }
512 sv->spec = sdc->cspec[0];
513 d = coef[0];
514 while (--n) {
515 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
516 d += coef[n];
517 }
518 /* make sure everything is set */
519 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
520 return SDEnone;
521 }
522
523 #define MS_MAXDIM 15
524
525 /* Convert 1-dimensional random variable to N-dimensional */
526 void
527 SDmultiSamp(double t[], int n, double randX)
528 {
529 unsigned nBits;
530 double scale;
531 bitmask_t ndx, coord[MS_MAXDIM];
532
533 if (n <= 0) /* check corner cases */
534 return;
535 if (randX < 0) randX = 0;
536 else if (randX >= 1.) randX = 0.999999999999999;
537 if (n == 1) {
538 t[0] = randX;
539 return;
540 }
541 while (n > MS_MAXDIM) /* punt for higher dimensions */
542 t[--n] = rand()*(1./(RAND_MAX+.5));
543 nBits = (8*sizeof(bitmask_t) - 1) / n;
544 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
545 /* get coordinate on Hilbert curve */
546 hilbert_i2c(n, nBits, ndx, coord);
547 /* convert back to [0,1) range */
548 scale = 1. / (double)((bitmask_t)1 << nBits);
549 while (n--)
550 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
551 }
552
553 #undef MS_MAXDIM
554
555 /* Generate diffuse hemispherical sample */
556 static void
557 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
558 {
559 /* convert to position on hemisphere */
560 SDmultiSamp(outVec, 2, randX);
561 SDsquare2disk(outVec, outVec[0], outVec[1]);
562 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
563 outVec[2] = sqrt(outVec[2]*(outVec[2]>0));
564 if (!outFront) /* going out back? */
565 outVec[2] = -outVec[2];
566 }
567
568 /* Query projected solid angle coverage for non-diffuse BSDF direction */
569 SDError
570 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
571 int qflags, const SDData *sd)
572 {
573 SDSpectralDF *rdf, *tdf;
574 SDError ec;
575 int i;
576 /* check arguments */
577 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
578 return SDEargument;
579 /* initialize extrema */
580 switch (qflags) {
581 case SDqueryMax:
582 projSA[0] = .0;
583 break;
584 case SDqueryMin+SDqueryMax:
585 projSA[1] = .0;
586 /* fall through */
587 case SDqueryMin:
588 projSA[0] = 10.;
589 break;
590 case 0:
591 return SDEargument;
592 }
593 if (v1[2] > 0) { /* front surface query? */
594 rdf = sd->rf;
595 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
596 } else {
597 rdf = sd->rb;
598 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
599 }
600 if (v2 != NULL) { /* bidirectional? */
601 if (v1[2] > 0 ^ v2[2] > 0)
602 rdf = NULL;
603 else
604 tdf = NULL;
605 }
606 ec = SDEdata; /* run through components */
607 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
608 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
609 qflags, &rdf->comp[i]);
610 if (ec)
611 return ec;
612 }
613 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
614 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
615 qflags, &tdf->comp[i]);
616 if (ec)
617 return ec;
618 }
619 if (ec) { /* all diffuse? */
620 projSA[0] = M_PI;
621 if (qflags == SDqueryMin+SDqueryMax)
622 projSA[1] = M_PI;
623 } else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1])
624 projSA[0] = projSA[1];
625 return SDEnone;
626 }
627
628 /* Return BSDF for the given incident and scattered ray vectors */
629 SDError
630 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
631 {
632 int inFront, outFront;
633 SDSpectralDF *sdf;
634 float coef[SDmaxCh];
635 int nch, i;
636 /* check arguments */
637 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
638 return SDEargument;
639 /* whose side are we on? */
640 inFront = (inVec[2] > 0);
641 outFront = (outVec[2] > 0);
642 /* start with diffuse portion */
643 if (inFront & outFront) {
644 *sv = sd->rLambFront;
645 sdf = sd->rf;
646 } else if (!(inFront | outFront)) {
647 *sv = sd->rLambBack;
648 sdf = sd->rb;
649 } else if (outFront) {
650 *sv = sd->tLamb;
651 sdf = (sd->tf != NULL) ? sd->tf : sd->tb;
652 } else /* inFront & !outFront */ {
653 *sv = sd->tLamb;
654 sdf = (sd->tb != NULL) ? sd->tb : sd->tf;
655 }
656 sv->cieY *= 1./M_PI;
657 /* add non-diffuse components */
658 i = (sdf != NULL) ? sdf->ncomp : 0;
659 while (i-- > 0) {
660 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
661 &sdf->comp[i]);
662 while (nch-- > 0) {
663 c_cmix(&sv->spec, sv->cieY, &sv->spec,
664 coef[nch], &sdf->comp[i].cspec[nch]);
665 sv->cieY += coef[nch];
666 }
667 }
668 /* make sure everything is set */
669 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
670 return SDEnone;
671 }
672
673 /* Compute directional hemispherical scattering at this incident angle */
674 double
675 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
676 {
677 double hsum;
678 SDSpectralDF *rdf, *tdf;
679 const SDCDst *cd;
680 int i;
681 /* check arguments */
682 if ((inVec == NULL) | (sd == NULL))
683 return .0;
684 /* gather diffuse components */
685 if (inVec[2] > 0) {
686 hsum = sd->rLambFront.cieY;
687 rdf = sd->rf;
688 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
689 } else /* !inFront */ {
690 hsum = sd->rLambBack.cieY;
691 rdf = sd->rb;
692 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
693 }
694 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
695 hsum = .0;
696 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
697 hsum += sd->tLamb.cieY;
698 /* gather non-diffuse components */
699 i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
700 (rdf != NULL)) ? rdf->ncomp : 0;
701 while (i-- > 0) { /* non-diffuse reflection */
702 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
703 if (cd != NULL)
704 hsum += cd->cTotal;
705 }
706 i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
707 (tdf != NULL)) ? tdf->ncomp : 0;
708 while (i-- > 0) { /* non-diffuse transmission */
709 cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]);
710 if (cd != NULL)
711 hsum += cd->cTotal;
712 }
713 return hsum;
714 }
715
716 /* Sample BSDF direction based on the given random variable */
717 SDError
718 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
719 {
720 SDError ec;
721 FVECT inVec;
722 int inFront;
723 SDSpectralDF *rdf, *tdf;
724 double rdiff;
725 float coef[SDmaxCh];
726 int i, j, n, nr;
727 SDComponent *sdc;
728 const SDCDst **cdarr = NULL;
729 /* check arguments */
730 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
731 (randX < 0) | (randX >= 1.))
732 return SDEargument;
733 /* whose side are we on? */
734 VCOPY(inVec, ioVec);
735 inFront = (inVec[2] > 0);
736 /* remember diffuse portions */
737 if (inFront) {
738 *sv = sd->rLambFront;
739 rdf = sd->rf;
740 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
741 } else /* !inFront */ {
742 *sv = sd->rLambBack;
743 rdf = sd->rb;
744 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
745 }
746 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
747 sv->cieY = .0;
748 rdiff = sv->cieY;
749 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
750 sv->cieY += sd->tLamb.cieY;
751 /* gather non-diffuse components */
752 i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
753 (rdf != NULL)) ? rdf->ncomp : 0;
754 j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
755 (tdf != NULL)) ? tdf->ncomp : 0;
756 n = i + j;
757 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
758 return SDEmemory;
759 while (j-- > 0) { /* non-diffuse transmission */
760 cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]);
761 if (cdarr[i+j] == NULL)
762 cdarr[i+j] = &SDemptyCD;
763 sv->cieY += cdarr[i+j]->cTotal;
764 }
765 while (i-- > 0) { /* non-diffuse reflection */
766 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
767 if (cdarr[i] == NULL)
768 cdarr[i] = &SDemptyCD;
769 sv->cieY += cdarr[i]->cTotal;
770 }
771 if (sv->cieY <= 1e-6) { /* anything to sample? */
772 sv->cieY = .0;
773 memset(ioVec, 0, sizeof(FVECT));
774 return SDEnone;
775 }
776 /* scale random variable */
777 randX *= sv->cieY;
778 /* diffuse reflection? */
779 if (randX < rdiff) {
780 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
781 goto done;
782 }
783 randX -= rdiff;
784 /* diffuse transmission? */
785 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
786 if (randX < sd->tLamb.cieY) {
787 sv->spec = sd->tLamb.spec;
788 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
789 goto done;
790 }
791 randX -= sd->tLamb.cieY;
792 }
793 /* else one of cumulative dist. */
794 for (i = 0; i < n && randX > cdarr[i]->cTotal; i++)
795 randX -= cdarr[i]->cTotal;
796 if (i >= n)
797 return SDEinternal;
798 /* compute sample direction */
799 sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr];
800 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
801 if (ec)
802 return ec;
803 /* compute color */
804 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
805 if (j <= 0) {
806 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
807 sd->name);
808 return SDEinternal;
809 }
810 sv->spec = sdc->cspec[0];
811 rdiff = coef[0];
812 while (--j) {
813 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
814 rdiff += coef[j];
815 }
816 done:
817 if (cdarr != NULL)
818 free(cdarr);
819 /* make sure everything is set */
820 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
821 return SDEnone;
822 }
823
824 /* Compute World->BSDF transform from surface normal and up (Y) vector */
825 SDError
826 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
827 {
828 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
829 return SDEargument;
830 VCOPY(vMtx[2], sNrm);
831 if (normalize(vMtx[2]) == 0)
832 return SDEargument;
833 fcross(vMtx[0], uVec, vMtx[2]);
834 if (normalize(vMtx[0]) == 0)
835 return SDEargument;
836 fcross(vMtx[1], vMtx[2], vMtx[0]);
837 return SDEnone;
838 }
839
840 /* Compute inverse transform */
841 SDError
842 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
843 {
844 RREAL mTmp[3][3];
845 double d;
846
847 if ((iMtx == NULL) | (vMtx == NULL))
848 return SDEargument;
849 /* compute determinant */
850 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
851 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
852 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
853 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
854 if (d == 0) {
855 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
856 return SDEargument;
857 }
858 d = 1./d; /* invert matrix */
859 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
860 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
861 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
862 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
863 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
864 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
865 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
866 memcpy(iMtx, mTmp, sizeof(mTmp));
867 return SDEnone;
868 }
869
870 /* Transform and normalize direction (column) vector */
871 SDError
872 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
873 {
874 FVECT vTmp;
875
876 if ((resVec == NULL) | (inpVec == NULL))
877 return SDEargument;
878 if (vMtx == NULL) { /* assume they just want to normalize */
879 if (resVec != inpVec)
880 VCOPY(resVec, inpVec);
881 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
882 }
883 vTmp[0] = DOT(vMtx[0], inpVec);
884 vTmp[1] = DOT(vMtx[1], inpVec);
885 vTmp[2] = DOT(vMtx[2], inpVec);
886 if (normalize(vTmp) == 0)
887 return SDEargument;
888 VCOPY(resVec, vTmp);
889 return SDEnone;
890 }